|
|
//============ Copyright (c) Valve Corporation, All rights reserved. ============
//
// cglmtex.cpp
//
//===============================================================================
#include "togl/rendermechanism.h"
#include "tier0/icommandline.h"
#include "glmtexinlines.h"
// memdbgon -must- be the last include file in a .cpp file.
#include "tier0/memdbgon.h"
#if defined(OSX)
#include "appframework/ilaunchermgr.h"
extern ILauncherMgr *g_pLauncherMgr; #endif
//===============================================================================
#if GLMDEBUG
CGLMTex *g_pFirstCGMLTex; #endif
#define TEXSPACE_LOGGING 0
// encoding layout to an index where the bits read
// 4 : 1 if compressed
// 2 : 1 if not power of two
// 1 : 1 if mipmapped
bool pwroftwo (int val ) { return (val & (val-1)) == 0; }
int sEncodeLayoutAsIndex( GLMTexLayoutKey *key ) { int index = 0; if (key->m_texFlags & kGLMTexMipped) { index |= 1; }
if ( ! ( pwroftwo(key->m_xSize) && pwroftwo(key->m_ySize) && pwroftwo(key->m_zSize) ) ) { // if not all power of two
index |= 2; } if (GetFormatDesc( key->m_texFormat )->m_chunkSize >1 ) { index |= 4; }
return index; }
static unsigned long g_texGlobalBytes[8];
//===============================================================================
const GLMTexFormatDesc g_formatDescTable[] = { // not yet handled by this table:
// D3DFMT_INDEX16, D3DFMT_VERTEXDATA // D3DFMT_INDEX32,
// WTF { D3DFMT_R5G6R5 ???, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, 1, 2 },
// WTF { D3DFMT_A ???, GL_ALPHA8, GL_ALPHA, GL_UNSIGNED_BYTE, 1, 1 },
// ??? D3DFMT_V8U8,
// ??? D3DFMT_Q8W8V8U8,
// ??? D3DFMT_X8L8V8U8,
// ??? D3DFMT_R32F,
// ??? D3DFMT_D24X4S4 unsure how to handle or if it is ever used..
// ??? D3DFMT_D15S1 ever used ?
// ??? D3DFMT_D24X8 ever used?
// summ-name d3d-format gl-int-format gl-int-format-srgb gl-data-format gl-data-type chunksize, bytes-per-sqchunk
{ "_D16", D3DFMT_D16, GL_DEPTH_COMPONENT16, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, 1, 2 }, { "_D24X8", D3DFMT_D24X8, GL_DEPTH_COMPONENT24, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, 1, 4 }, // ??? unsure on this one
{ "_D24S8", D3DFMT_D24S8, GL_DEPTH24_STENCIL8_EXT, 0, GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, 1, 4 },
{ "_A8R8G8B8", D3DFMT_A8R8G8B8, GL_RGBA8, GL_SRGB8_ALPHA8_EXT, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, 1, 4 }, { "_A4R4G4B4", D3DFMT_A4R4G4B4, GL_RGBA4, 0, GL_BGRA, GL_UNSIGNED_SHORT_4_4_4_4_REV, 1, 2 }, { "_X8R8G8B8", D3DFMT_X8R8G8B8, GL_RGB8, GL_SRGB8_EXT, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, 1, 4 },
{ "_X1R5G5B5", D3DFMT_X1R5G5B5, GL_RGB5, 0, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV, 1, 2 }, { "_A1R5G5B5", D3DFMT_A1R5G5B5, GL_RGB5_A1, 0, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV, 1, 2 },
{ "_L8", D3DFMT_L8, GL_LUMINANCE8, GL_SLUMINANCE8_EXT, GL_LUMINANCE, GL_UNSIGNED_BYTE, 1, 1 }, { "_A8L8", D3DFMT_A8L8, GL_LUMINANCE8_ALPHA8, GL_SLUMINANCE8_ALPHA8_EXT, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, 1, 2 },
{ "_DXT1", D3DFMT_DXT1, GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_COMPRESSED_SRGB_S3TC_DXT1_EXT, GL_RGB, GL_UNSIGNED_BYTE, 4, 8 }, { "_DXT3", D3DFMT_DXT3, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_BYTE, 4, 16 }, { "_DXT5", D3DFMT_DXT5, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_BYTE, 4, 16 },
{ "_A16B16G16R16F", D3DFMT_A16B16G16R16F, GL_RGBA16F_ARB, 0, GL_RGBA, GL_HALF_FLOAT_ARB, 1, 8 }, { "_A16B16G16R16", D3DFMT_A16B16G16R16, GL_RGBA16, 0, GL_RGBA, GL_UNSIGNED_SHORT, 1, 8 }, // 16bpc integer tex
{ "_A32B32G32R32F", D3DFMT_A32B32G32R32F, GL_RGBA32F_ARB, 0, GL_RGBA, GL_FLOAT, 1, 16 },
{ "_R8G8B8", D3DFMT_R8G8B8, GL_RGB8, GL_SRGB8_EXT, GL_BGR, GL_UNSIGNED_BYTE, 1, 3 },
{ "_A8", D3DFMT_A8, GL_ALPHA8, 0, GL_ALPHA, GL_UNSIGNED_BYTE, 1, 1 }, { "_R5G6B5", D3DFMT_R5G6B5, GL_RGB, GL_SRGB_EXT, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, 1, 2 },
// fakey tex formats: the stated GL format and the memory layout may not agree (U8V8 for example)
// _Q8W8V8U8 we just pass through as RGBA bytes. Shader does scale/bias fix
{ "_Q8W8V8U8", D3DFMT_Q8W8V8U8, GL_RGBA8, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, 1, 4 }, // straight ripoff of D3DFMT_A8R8G8B8
// U8V8 is exposed to the client as 2-bytes per texel, but we download it as 3-byte RGB.
// WriteTexels needs to do that conversion from rg8 to rgb8 in order to be able to download it correctly
{ "_V8U8", D3DFMT_V8U8, GL_RGB8, 0, GL_RG, GL_BYTE, 1, 2 }, { "_R32F", D3DFMT_R32F, GL_R32F, GL_R32F, GL_RED, GL_FLOAT, 1, 4 }, { "_A2R10G10B10", D3DFMT_A2R10G10B10, GL_RGB10_A2, GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_10_10_10_2, 1, 4 }, { "_A2B10G10R10", D3DFMT_A2B10G10R10, GL_RGB10_A2, GL_RGB10_A2, GL_BGRA, GL_UNSIGNED_INT_10_10_10_2, 1, 4 },
/*
// NV shadow depth tex
D3DFMT_NV_INTZ = 0x5a544e49, // MAKEFOURCC('I','N','T','Z')
D3DFMT_NV_RAWZ = 0x5a574152, // MAKEFOURCC('R','A','W','Z')
// NV null tex
D3DFMT_NV_NULL = 0x4c4c554e, // MAKEFOURCC('N','U','L','L')
// ATI shadow depth tex
D3DFMT_ATI_D16 = 0x36314644, // MAKEFOURCC('D','F','1','6')
D3DFMT_ATI_D24S8 = 0x34324644, // MAKEFOURCC('D','F','2','4')
// ATI 1N and 2N compressed tex
D3DFMT_ATI_2N = 0x32495441, // MAKEFOURCC('A', 'T', 'I', '2')
D3DFMT_ATI_1N = 0x31495441, // MAKEFOURCC('A', 'T', 'I', '1')
*/ };
int g_formatDescTableCount = sizeof(g_formatDescTable) / sizeof( g_formatDescTable[0] );
const GLMTexFormatDesc *GetFormatDesc( D3DFORMAT format ) { for( int i=0; i<g_formatDescTableCount; i++) { if (g_formatDescTable[i].m_d3dFormat == format) { return &g_formatDescTable[i]; } } return (const GLMTexFormatDesc *)NULL; // not found
}
//===============================================================================
void InsertTexelComponentFixed( float value, int width, unsigned long *valuebuf ) { unsigned long range = (1<<width); unsigned long scaled = (value * (float) range) * (range-1) / (range); if (scaled >= range) DebuggerBreak(); *valuebuf = (*valuebuf << width) | scaled; }
// return true if successful
bool GLMGenTexels( GLMGenTexelParams *params ) { unsigned char chunkbuf[256]; // can't think of any chunk this big..
const GLMTexFormatDesc *format = GetFormatDesc( params->m_format );
if (!format) { return FALSE; // fail
} // this section just generates one square chunk in the desired format
unsigned long *temp32 = (unsigned long*)chunkbuf; unsigned int chunksize = 0; // we can sanity check against the format table with this
switch( params->m_format ) { // comment shows byte order in RAM
// lowercase is bit arrangement in a byte
case D3DFMT_A8R8G8B8: // B G R A
InsertTexelComponentFixed( params->a, 8, temp32 ); // A is inserted first and winds up at most significant bits after insertions follow
InsertTexelComponentFixed( params->r, 8, temp32 ); InsertTexelComponentFixed( params->g, 8, temp32 ); InsertTexelComponentFixed( params->b, 8, temp32 ); chunksize = 4; break; case D3DFMT_A4R4G4B4: // [ggggbbbb] [aaaarrrr] RA (nibbles)
InsertTexelComponentFixed( params->a, 4, temp32 ); InsertTexelComponentFixed( params->r, 4, temp32 ); InsertTexelComponentFixed( params->g, 4, temp32 ); InsertTexelComponentFixed( params->b, 4, temp32 ); chunksize = 2; break; case D3DFMT_X8R8G8B8: // B G R X
InsertTexelComponentFixed( 0.0, 8, temp32 ); InsertTexelComponentFixed( params->r, 8, temp32 ); InsertTexelComponentFixed( params->g, 8, temp32 ); InsertTexelComponentFixed( params->b, 8, temp32 ); chunksize = 4; break; case D3DFMT_X1R5G5B5: // [gggbbbbb] [xrrrrrgg]
InsertTexelComponentFixed( 0.0, 1, temp32 ); InsertTexelComponentFixed( params->r, 5, temp32 ); InsertTexelComponentFixed( params->g, 5, temp32 ); InsertTexelComponentFixed( params->b, 5, temp32 ); chunksize = 2; break;
case D3DFMT_A1R5G5B5: // [gggbbbbb] [arrrrrgg]
InsertTexelComponentFixed( params->a, 1, temp32 ); InsertTexelComponentFixed( params->r, 5, temp32 ); InsertTexelComponentFixed( params->g, 5, temp32 ); InsertTexelComponentFixed( params->b, 5, temp32 ); chunksize = 2; break;
case D3DFMT_L8: // L // caller, use R for L
InsertTexelComponentFixed( params->r, 8, temp32 ); chunksize = 1; break; case D3DFMT_A8L8: // L A // caller, use R for L and A for A
InsertTexelComponentFixed( params->a, 8, temp32 ); InsertTexelComponentFixed( params->r, 8, temp32 ); chunksize = 2; break; case D3DFMT_R8G8B8: // B G R
InsertTexelComponentFixed( params->r, 8, temp32 ); InsertTexelComponentFixed( params->g, 8, temp32 ); InsertTexelComponentFixed( params->b, 8, temp32 ); chunksize = 3; break;
case D3DFMT_A8: // A
InsertTexelComponentFixed( params->a, 8, temp32 ); chunksize = 1; break; case D3DFMT_R5G6B5: // [gggbbbbb] [rrrrrggg]
InsertTexelComponentFixed( params->r, 5, temp32 ); InsertTexelComponentFixed( params->g, 6, temp32 ); InsertTexelComponentFixed( params->b, 5, temp32 ); chunksize = 2; break;
case D3DFMT_DXT1: { memset( temp32, 0, 8 ); // zap 8 bytes
// two 565 RGB words followed by 32 bits of 2-bit interp values for a 4x4 block
// we write the same color to both slots and all zeroes for the mask (one color total)
unsigned long dxt1_color = 0; // generate one such word and clone it
InsertTexelComponentFixed( params->r, 5, &dxt1_color ); InsertTexelComponentFixed( params->g, 6, &dxt1_color ); InsertTexelComponentFixed( params->b, 5, &dxt1_color ); // dupe
dxt1_color = dxt1_color | (dxt1_color<<16); // write into chunkbuf
*(unsigned long*)&chunkbuf[0] = dxt1_color; // color mask bits after that are already set to all zeroes. chunk is done.
chunksize = 8; } break; case D3DFMT_DXT3: { memset( temp32, 0, 16 ); // zap 16 bytes
// eight bytes of alpha (16 4-bit alpha nibbles)
// followed by a DXT1 block
unsigned long dxt3_alpha = 0; for( int i=0; i<8; i++) { // splat same alpha through block
InsertTexelComponentFixed( params->a, 4, &dxt3_alpha ); }
unsigned long dxt3_color = 0; // generate one such word and clone it
InsertTexelComponentFixed( params->r, 5, &dxt3_color ); InsertTexelComponentFixed( params->g, 6, &dxt3_color ); InsertTexelComponentFixed( params->b, 5, &dxt3_color ); // dupe
dxt3_color = dxt3_color | (dxt3_color<<16); // write into chunkbuf
*(unsigned long*)&chunkbuf[0] = dxt3_alpha; *(unsigned long*)&chunkbuf[4] = dxt3_alpha; *(unsigned long*)&chunkbuf[8] = dxt3_color; *(unsigned long*)&chunkbuf[12] = dxt3_color;
chunksize = 16; } break;
case D3DFMT_DXT5: { memset( temp32, 0, 16 ); // zap 16 bytes
// DXT5 has 8 bytes of compressed alpha, then 8 bytes of compressed RGB like DXT1.
// the 8 alpha bytes are 2 bytes of endpoint alpha values, then 16x3 bits of interpolants.
// so to write a single alpha value, just figure out the value, store it in both the first two bytes then store zeroes.
InsertTexelComponentFixed( params->a, 8, (unsigned long*)&chunkbuf[0] ); InsertTexelComponentFixed( params->a, 8, (unsigned long*)&chunkbuf[0] ); // rest of the alpha mask was already zeroed.
// now do colors
unsigned long dxt5_color = 0; // generate one such word and clone it
InsertTexelComponentFixed( params->r, 5, &dxt5_color ); InsertTexelComponentFixed( params->g, 6, &dxt5_color ); InsertTexelComponentFixed( params->b, 5, &dxt5_color ); // dupe
dxt5_color = dxt5_color | (dxt5_color<<16); // write into chunkbuf
*(unsigned long*)&chunkbuf[8] = dxt5_color; *(unsigned long*)&chunkbuf[12] = dxt5_color;
chunksize = 16; } break;
case D3DFMT_A32B32G32R32F: { *(float*)&chunkbuf[0] = params->r; *(float*)&chunkbuf[4] = params->g; *(float*)&chunkbuf[8] = params->b; *(float*)&chunkbuf[12] = params->a; chunksize = 16; } break;
case D3DFMT_A16B16G16R16: memset( chunkbuf, 0, 8 ); // R and G wind up in the first 32 bits
// B and A wind up in the second 32 bits
InsertTexelComponentFixed( params->a, 16, (unsigned long*)&chunkbuf[4] ); // winds up as MSW of second word (note [4]) - thus last in RAM
InsertTexelComponentFixed( params->b, 16, (unsigned long*)&chunkbuf[4] );
InsertTexelComponentFixed( params->g, 16, (unsigned long*)&chunkbuf[0] ); InsertTexelComponentFixed( params->r, 16, (unsigned long*)&chunkbuf[0] ); // winds up as LSW of first word, thus first in RAM
chunksize = 8; break; // not done yet
//case D3DFMT_D16:
//case D3DFMT_D24X8:
//case D3DFMT_D24S8:
//case D3DFMT_A16B16G16R16F:
default: return FALSE; // fail
break; } // once the chunk buffer is filled..
// sanity check the reported chunk size.
if (static_cast<int>(chunksize) != format->m_bytesPerSquareChunk) { DebuggerBreak(); return FALSE; } // verify that the amount you want to write will not exceed the limit byte count
unsigned long destByteCount = chunksize * params->m_chunkCount; if (static_cast<int>(destByteCount) > params->m_byteCountLimit) { DebuggerBreak(); return FALSE; } // write the bytes.
unsigned char *destP = (unsigned char*)params->m_dest; for( int chunk=0; chunk < params->m_chunkCount; chunk++) { for( uint byteindex = 0; byteindex < chunksize; byteindex++) { *destP++ = chunkbuf[byteindex]; } } params->m_bytesWritten = destP - (unsigned char*)params->m_dest; return TRUE; }
//===============================================================================
bool LessFunc_GLMTexLayoutKey( const GLMTexLayoutKey &a, const GLMTexLayoutKey &b ) { #define DO_LESS(fff) if (a.fff != b.fff) { return (a.fff< b.fff); }
DO_LESS(m_texGLTarget); DO_LESS(m_texFormat); DO_LESS(m_texFlags); DO_LESS(m_texSamples); DO_LESS(m_xSize); DO_LESS(m_ySize) DO_LESS(m_zSize); #undef DO_LESS
return false; // they are equal
}
CGLMTexLayoutTable::CGLMTexLayoutTable() { m_layoutMap.SetLessFunc( LessFunc_GLMTexLayoutKey ); }
GLMTexLayout *CGLMTexLayoutTable::NewLayoutRef( GLMTexLayoutKey *pDesiredKey ) { GLMTexLayoutKey tempKey; GLMTexLayoutKey *key = pDesiredKey;
// look up 'key' in the map and see if it's a hit, if so, bump the refcount and return
// if not, generate a completed layout based on the key, add to map, set refcount to 1, return that
const GLMTexFormatDesc *formatDesc = GetFormatDesc( key->m_texFormat );
//bool compression = (formatDesc->m_chunkSize > 1) != 0;
if (!formatDesc) { GLMStop(); // bad news
}
if ( gGL->m_bHave_GL_EXT_texture_sRGB_decode ) { if ( ( formatDesc->m_glIntFormatSRGB != 0 ) && ( ( key->m_texFlags & kGLMTexSRGB ) == 0 ) ) { tempKey = *pDesiredKey; key = &tempKey;
// Slam on SRGB texture flag, and we'll use GL_EXT_texture_sRGB_decode to selectively turn it off in the samplers
key->m_texFlags |= kGLMTexSRGB; } }
unsigned short index = m_layoutMap.Find( *key ); if (index != m_layoutMap.InvalidIndex()) { // found it
//printf(" -hit- ");
GLMTexLayout *layout = m_layoutMap[ index ]; // bump ref count
layout->m_refCount ++; return layout; } else { //printf(" -miss- ");
// need to make a new one
// to allocate it, we need to know how big to make it (slice count)
// figure out how many mip levels are in play
int mipCount = 1; if (key->m_texFlags & kGLMTexMipped) { int largestAxis = key->m_xSize; if (key->m_ySize > largestAxis) largestAxis = key->m_ySize; if (key->m_zSize > largestAxis) largestAxis = key->m_zSize; mipCount = 0; while( largestAxis > 0 ) { mipCount ++; largestAxis >>= 1; } }
int faceCount = 1; if (key->m_texGLTarget == GL_TEXTURE_CUBE_MAP) { faceCount = 6; } int sliceCount = mipCount * faceCount; if (key->m_texFlags & kGLMTexMultisampled) { Assert( (key->m_texGLTarget == GL_TEXTURE_2D) ); Assert( sliceCount == 1 ); // assume non mipped
Assert( (key->m_texFlags & kGLMTexMipped) == 0 ); Assert( (key->m_texFlags & kGLMTexMippedAuto) == 0 ); // assume renderable and srgb
Assert( (key->m_texFlags & kGLMTexRenderable) !=0 ); //Assert( (key->m_texFlags & kGLMTexSRGB) !=0 ); //FIXME don't assert on making depthstencil surfaces which are non srgb
// double check sample count (FIXME need real limit check here against device/driver)
Assert( (key->m_texSamples==2) || (key->m_texSamples==4) || (key->m_texSamples==6) || (key->m_texSamples==8) ); } // now we know enough to allocate and populate the new tex layout.
// malloc the new layout
int layoutSize = sizeof( GLMTexLayout ) + (sliceCount * sizeof( GLMTexLayoutSlice )); GLMTexLayout *layout = (GLMTexLayout *)malloc( layoutSize ); memset( layout, 0, layoutSize ); // clone the key in there
memset( &layout->m_key, 0x00, sizeof(layout->m_key) ); layout->m_key = *key;
// set refcount
layout->m_refCount = 1; // save the format desc
layout->m_format = (GLMTexFormatDesc *)formatDesc; // we know the mipcount from before
layout->m_mipCount = mipCount; // we know the face count too
layout->m_faceCount = faceCount; // slice count is the product
layout->m_sliceCount = mipCount * faceCount; // we can now fill in the slices.
GLMTexLayoutSlice *slicePtr = &layout->m_slices[0]; int storageOffset = 0; //bool compressed = (formatDesc->m_chunkSize > 1); // true if DXT
for( int mip = 0; mip < mipCount; mip ++ ) { for( int face = 0; face < faceCount; face++ ) { // note application of chunk size which is 1 for uncompressed, and 4 for compressed tex (DXT)
// note also that the *dimensions* must scale down to 1
// but that the *storage* cannot go below 4x4.
// we introduce the "storage sizes" which are clamped, to compute the storage footprint.
int storage_x,storage_y,storage_z; slicePtr->m_xSize = layout->m_key.m_xSize >> mip; slicePtr->m_xSize = MAX( slicePtr->m_xSize, 1 ); // dimension can't go to zero
storage_x = MAX( slicePtr->m_xSize, formatDesc->m_chunkSize ); // storage extent can't go below chunk size
slicePtr->m_ySize = layout->m_key.m_ySize >> mip; slicePtr->m_ySize = MAX( slicePtr->m_ySize, 1 ); // dimension can't go to zero
storage_y = MAX( slicePtr->m_ySize, formatDesc->m_chunkSize ); // storage extent can't go below chunk size
slicePtr->m_zSize = layout->m_key.m_zSize >> mip; slicePtr->m_zSize = MAX( slicePtr->m_zSize, 1 ); // dimension can't go to zero
storage_z = MAX( slicePtr->m_zSize, 1); // storage extent for Z cannot go below '1'.
//if (compressed) NO NO NO do not lie about the dimensionality, just fudge the storage.
//{
// // round up to multiple of 4 in X and Y axes
// slicePtr->m_xSize = (slicePtr->m_xSize+3) & (~3);
// slicePtr->m_ySize = (slicePtr->m_ySize+3) & (~3);
//}
int xchunks = (storage_x / formatDesc->m_chunkSize ); int ychunks = (storage_y / formatDesc->m_chunkSize ); slicePtr->m_storageSize = (xchunks * ychunks * formatDesc->m_bytesPerSquareChunk) * storage_z; slicePtr->m_storageOffset = storageOffset; storageOffset += slicePtr->m_storageSize; storageOffset = ( (storageOffset+0x0F) & (~0x0F)); // keep each MIP starting on a 16 byte boundary.
slicePtr++; } } layout->m_storageTotalSize = storageOffset; //printf("\n size %08x for key (x=%d y=%d z=%d, fmt=%08x, bpsc=%d)", layout->m_storageTotalSize, key->m_xSize, key->m_ySize, key->m_zSize, key->m_texFormat, formatDesc->m_bytesPerSquareChunk );
// generate summary
// "target, format, +/- mips, base size"
char scratch[1024];
char *targetname = "?"; switch( key->m_texGLTarget ) { case GL_TEXTURE_2D: targetname = "2D "; break; case GL_TEXTURE_3D: targetname = "3D "; break; case GL_TEXTURE_CUBE_MAP: targetname = "CUBE"; break; } sprintf( scratch, "[%s %s %dx%dx%d mips=%d slices=%d flags=%02lX%s]", targetname, formatDesc->m_formatSummary, layout->m_key.m_xSize, layout->m_key.m_ySize, layout->m_key.m_zSize, mipCount, sliceCount, layout->m_key.m_texFlags, (layout->m_key.m_texFlags & kGLMTexSRGB) ? " SRGB" : "" ); layout->m_layoutSummary = strdup( scratch ); //GLMPRINTF(("-D- new tex layout [ %s ]", scratch ));
// then insert into map. disregard returned index.
m_layoutMap.Insert( layout->m_key, layout ); return layout; } }
void CGLMTexLayoutTable::DelLayoutRef( GLMTexLayout *layout ) { // locate layout in hash, drop refcount
// (some GC step later on will harvest expired layouts - not like it's any big challenge to re-generate them)
unsigned short index = m_layoutMap.Find( layout->m_key ); if (index != m_layoutMap.InvalidIndex()) { // found it
GLMTexLayout *layout = m_layoutMap[ index ]; // drop ref count
layout->m_refCount --; //assert( layout->m_refCount >= 0 );
} else { // that's bad
GLMStop(); } }
void CGLMTexLayoutTable::DumpStats( ) { for (uint i=0; i<m_layoutMap.Count(); i++ ) { GLMTexLayout *layout = m_layoutMap[ i ]; // print it out
printf("\n%05d instances %08d bytes %08d totbytes %s", layout->m_refCount, layout->m_storageTotalSize, (layout->m_refCount*layout->m_storageTotalSize), layout->m_layoutSummary ); } }
ConVar gl_texmsaalog ( "gl_texmsaalog", "0");
ConVar gl_rt_forcergba ( "gl_rt_forcergba", "1" ); // on teximage of a renderable tex, pass GL_RGBA in place of GL_BGRA
ConVar gl_minimize_rt_tex ( "gl_minimize_rt_tex", "0" ); // if 1, set the GL_TEXTURE_MINIMIZE_STORAGE_APPLE texture parameter to cut off mipmaps for RT's
ConVar gl_minimize_all_tex ( "gl_minimize_all_tex", "1" ); // if 1, set the GL_TEXTURE_MINIMIZE_STORAGE_APPLE texture parameter to cut off mipmaps for textures which are unmipped
ConVar gl_minimize_tex_log ( "gl_minimize_tex_log", "0" ); // if 1, printf the names of the tex that got minimized
CGLMTex::CGLMTex( GLMContext *ctx, GLMTexLayout *layout, uint levels, const char *debugLabel ) { #if GLMDEBUG
m_pPrevTex = NULL; m_pNextTex = g_pFirstCGMLTex; if ( m_pNextTex ) { Assert( m_pNextTex->m_pPrevTex == NULL ); m_pNextTex->m_pPrevTex = this; } g_pFirstCGMLTex = this; #endif
// caller has responsibility to make 'ctx' current, but we check to be sure.
ctx->CheckCurrent(); m_nLastResolvedBatchCounter = ctx->m_nBatchCounter; // note layout requested
m_layout = layout; m_texGLTarget = m_layout->m_key.m_texGLTarget; m_nSamplerType = SAMPLER_TYPE_UNUSED; switch ( m_texGLTarget ) { case GL_TEXTURE_CUBE_MAP: m_nSamplerType = SAMPLER_TYPE_CUBE; break; case GL_TEXTURE_2D: m_nSamplerType = SAMPLER_TYPE_2D; break; case GL_TEXTURE_3D: m_nSamplerType = SAMPLER_TYPE_3D; break; default: Assert( 0 ); break; }
m_maxActiveMip = -1; //index of highest mip that has been written - increase as each mip arrives
m_minActiveMip = 999; //index of lowest mip that has been written - lower it as each mip arrives
// note context owner
m_ctx = ctx; // clear the bind point flags
//m_bindPoints.ClearAll();
// clear the RT attach count
m_rtAttachCount = 0; // come up with a GL name for this texture.
// for MTGL friendliness, we should generate our own names at some point..
gGL->glGenTextures( 1, &m_texName );
m_pBlitSrcFBO = NULL; m_pBlitDstFBO = NULL;
// Sense whether to try and apply client storage upon teximage/subimage.
// This should only be true if we're running on OSX 10.6 or it was explicitly
// enabled with -gl_texclientstorage on the command line.
m_texClientStorage = ctx->m_bTexClientStorage; // flag that we have not yet been explicitly kicked into VRAM..
m_texPreloaded = false; // clone the debug label if there is one.
m_debugLabel = debugLabel ? strdup(debugLabel) : NULL;
// if tex is MSAA renderable, make an RBO, else zero the RBO name and dirty bit
if (layout->m_key.m_texFlags & kGLMTexMultisampled) { gGL->glGenRenderbuffersEXT( 1, &m_rboName ); // so we have enough info to go ahead and bind the RBO and put storage on it?
// try it.
gGL->glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, m_rboName );
// quietly clamp if sample count exceeds known limit for the device
int sampleCount = layout->m_key.m_texSamples; if (sampleCount > ctx->Caps().m_maxSamples) { sampleCount = ctx->Caps().m_maxSamples; // clamp
} GLenum msaaFormat = (layout->m_key.m_texFlags & kGLMTexSRGB) ? layout->m_format->m_glIntFormatSRGB : layout->m_format->m_glIntFormat; gGL->glRenderbufferStorageMultisampleEXT( GL_RENDERBUFFER_EXT, sampleCount, // not "layout->m_key.m_texSamples"
msaaFormat, layout->m_key.m_xSize, layout->m_key.m_ySize );
if (gl_texmsaalog.GetInt()) { printf( "\n == MSAA Tex %p %s : MSAA RBO is intformat %s (%x)", this, m_debugLabel?m_debugLabel:"", GLMDecode( eGL_ENUM, msaaFormat ), msaaFormat ); }
gGL->glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, 0 ); } else { m_rboName = 0; } // at this point we have the complete description of the texture, and a name for it, but no data and no actual GL object.
// we know this name has bever seen duty before, so we're going to hard-bind it to TMU 0, displacing any other tex that might have been bound there.
// any previously bound tex will be unbound and appropriately marked as a result.
// the active TMU will be set as a side effect.
CGLMTex *pPrevTex = ctx->m_samplers[0].m_pBoundTex; ctx->BindTexToTMU( this, 0 );
m_SamplingParams.SetToDefaults(); m_SamplingParams.SetToTarget( m_texGLTarget ); // OK, our texture now exists and is bound on the active TMU. Not drawable yet though.
// if not an RT, create backing storage and fill it
if ( !(layout->m_key.m_texFlags & kGLMTexRenderable) ) { m_backing = (char *)malloc( m_layout->m_storageTotalSize ); memset( m_backing, 0, m_layout->m_storageTotalSize ); // track bytes allocated for non-RT's
int formindex = sEncodeLayoutAsIndex( &layout->m_key ); g_texGlobalBytes[ formindex ] += m_layout->m_storageTotalSize; #if TEXSPACE_LOGGING
printf( "\n Tex %s added %d bytes in form %d which is now %d bytes", m_debugLabel ? m_debugLabel : "-", m_layout->m_storageTotalSize, formindex, g_texGlobalBytes[ formindex ] ); printf( "\n\t\t[ %d %d %d %d %d %d %d %d ]", g_texGlobalBytes[ 0 ],g_texGlobalBytes[ 1 ],g_texGlobalBytes[ 2 ],g_texGlobalBytes[ 3 ], g_texGlobalBytes[ 4 ],g_texGlobalBytes[ 5 ],g_texGlobalBytes[ 6 ],g_texGlobalBytes[ 7 ] ); #endif
} else { m_backing = NULL; m_texClientStorage = false; }
// init lock count
// lock reqs are tracked by the owning context
m_lockCount = 0;
m_sliceFlags.SetCount( m_layout->m_sliceCount ); for( int i=0; i< m_layout->m_sliceCount; i++) { m_sliceFlags[i] = 0; // kSliceValid = false (we have not teximaged each slice yet)
// kSliceStorageValid = false (the storage allocated does not reflect what is in the tex)
// kSliceLocked = false (the slices are not locked)
// kSliceFullyDirty = false (this does not come true til first lock)
} // texture minimize parameter keeps driver from allocing mips when it should not, by being explicit about the ones that have no mips.
bool setMinimizeParameter = false; bool minimize_rt = (gl_minimize_rt_tex.GetInt()!=0); bool minimize_all = (gl_minimize_all_tex.GetInt()!=0); if (layout->m_key.m_texFlags & kGLMTexRenderable) { // it's an RT. if mips were not explicitly requested, and "gl_minimize_rt_tex" is true, set the minimize parameter.
if ( (minimize_rt || minimize_all) && ( !(layout->m_key.m_texFlags & kGLMTexMipped) ) ) { setMinimizeParameter = true; } } else { // not an RT. if mips were not requested, and "gl_minimize_all_tex" is true, set the minimize parameter.
if ( minimize_all && ( !(layout->m_key.m_texFlags & kGLMTexMipped) ) ) { setMinimizeParameter = true; } }
if (setMinimizeParameter) { if (gl_minimize_tex_log.GetInt()) { printf("\n minimizing storage for tex '%s' [%s] ", m_debugLabel?m_debugLabel:"-", m_layout->m_layoutSummary ); } if (gGL->m_bHave_GL_APPLE_texture_range) gGL->glTexParameteri( m_layout->m_key.m_texGLTarget, GL_TEXTURE_MINIMIZE_STORAGE_APPLE, 1 ); }
// after a lot of pain with texture completeness...
// always push black into all slices of all newly created textures.
#if 0
bool pushRenderableSlices = (m_layout->m_key.m_texFlags & kGLMTexRenderable) != 0; bool pushTexSlices = true; // just do it everywhere (m_layout->m_mipCount>1) && (m_layout->m_format->m_chunkSize !=1) ;
if (pushTexSlices) { // fill storage with mostly-opaque purple
GLMGenTexelParams genp; memset( &genp, 0, sizeof(genp) ); genp.m_format = m_layout->m_format->m_d3dFormat; const GLMTexFormatDesc *format = GetFormatDesc( genp.m_format ); genp.m_dest = m_backing; // dest addr
genp.m_chunkCount = m_layout->m_storageTotalSize / format->m_bytesPerSquareChunk; // fill the whole slab
genp.m_byteCountLimit = m_layout->m_storageTotalSize; // limit writes to this amount
genp.r = 1.0; genp.g = 0.0; genp.b = 1.0; genp.a = 0.75; GLMGenTexels( &genp ); } #endif
//if (pushRenderableSlices || pushTexSlices)
if ( !( ( layout->m_key.m_texFlags & kGLMTexMipped ) && ( levels == m_layout->m_mipCount ) ) ) { for( int face=0; face <m_layout->m_faceCount; face++) { for( int mip=0; mip <m_layout->m_mipCount; mip++) { // we're not really going to lock, we're just going to write the blank data from the backing store we just made
GLMTexLockDesc desc; desc.m_req.m_tex = this; desc.m_req.m_face = face; desc.m_req.m_mip = mip;
desc.m_sliceIndex = CalcSliceIndex( face, mip );
GLMTexLayoutSlice *slice = &m_layout->m_slices[ desc.m_sliceIndex ]; desc.m_req.m_region.xmin = desc.m_req.m_region.ymin = desc.m_req.m_region.zmin = 0; desc.m_req.m_region.xmax = slice->m_xSize; desc.m_req.m_region.ymax = slice->m_ySize; desc.m_req.m_region.zmax = slice->m_zSize;
desc.m_sliceBaseOffset = slice->m_storageOffset; // doesn't really matter... we're just pushing zeroes..
desc.m_sliceRegionOffset = 0;
WriteTexels( &desc, true, (layout->m_key.m_texFlags & kGLMTexRenderable)!=0 ); // write whole slice - but disable data source if it's an RT, as there's no backing
} } } GLMPRINTF(("-A- -**TEXNEW '%-60s' name=%06d size=%09d storage=%08x label=%s ", m_layout->m_layoutSummary, m_texName, m_layout->m_storageTotalSize, m_backing, m_debugLabel ? m_debugLabel : "-" ));
ctx->BindTexToTMU( pPrevTex, 0 ); }
CGLMTex::~CGLMTex( ) { #if GLMDEBUG
if ( m_pPrevTex ) { Assert( m_pPrevTex->m_pNextTex == this ); m_pPrevTex->m_pNextTex = m_pNextTex; } else { Assert( g_pFirstCGMLTex == this ); g_pFirstCGMLTex = m_pNextTex; } if ( m_pNextTex ) { Assert( m_pNextTex->m_pPrevTex == this ); m_pNextTex->m_pPrevTex = m_pPrevTex; } m_pNextTex = m_pPrevTex = NULL; #endif
if ( !(m_layout->m_key.m_texFlags & kGLMTexRenderable) ) { int formindex = sEncodeLayoutAsIndex( &m_layout->m_key );
g_texGlobalBytes[ formindex ] -= m_layout->m_storageTotalSize; #if TEXSPACE_LOGGING
printf( "\n Tex %s freed %d bytes in form %d which is now %d bytes", m_debugLabel ? m_debugLabel : "-", m_layout->m_storageTotalSize, formindex, g_texGlobalBytes[ formindex ] ); printf( "\n\t\t[ %d %d %d %d %d %d %d %d ]", g_texGlobalBytes[ 0 ],g_texGlobalBytes[ 1 ],g_texGlobalBytes[ 2 ],g_texGlobalBytes[ 3 ], g_texGlobalBytes[ 4 ],g_texGlobalBytes[ 5 ],g_texGlobalBytes[ 6 ],g_texGlobalBytes[ 7 ] ); #endif
} GLMPRINTF(("-A- -**TEXDEL '%-60s' name=%06d size=%09d storage=%08x label=%s ", m_layout->m_layoutSummary, m_texName, m_layout->m_storageTotalSize, m_backing, m_debugLabel ? m_debugLabel : "-" )); // check first to see if we were still bound anywhere or locked... these should be failures.
if ( m_pBlitSrcFBO ) { m_ctx->DelFBO( m_pBlitSrcFBO ); m_pBlitSrcFBO = NULL; }
if ( m_pBlitDstFBO ) { m_ctx->DelFBO( m_pBlitDstFBO ); m_pBlitDstFBO = NULL; }
if ( m_rboName ) { gGL->glDeleteRenderbuffersEXT( 1, &m_rboName ); m_rboName = 0; }
// if all that is OK, then delete the underlying tex
if ( m_texName ) { gGL->glDeleteTextures( 1, &m_texName ); m_texName = 0; } // release our usage of the layout
m_ctx->m_texLayoutTable->DelLayoutRef( m_layout ); m_layout = NULL; if (m_backing) { free( m_backing ); m_backing = NULL; } if (m_debugLabel) { free( m_debugLabel ); m_debugLabel = NULL; } m_ctx = NULL; }
int CGLMTex::CalcSliceIndex( int face, int mip ) { // faces of the same mip level are adjacent. "face major" storage
int index = (mip * m_layout->m_faceCount) + face;
return index; }
void CGLMTex::CalcTexelDataOffsetAndStrides( int sliceIndex, int x, int y, int z, int *offsetOut, int *yStrideOut, int *zStrideOut ) { int offset = 0; int yStride = 0; int zStride = 0; GLMTexFormatDesc *format = m_layout->m_format; if (format->m_chunkSize==1) { // figure out row stride and layer stride
yStride = format->m_bytesPerSquareChunk * m_layout->m_slices[sliceIndex].m_xSize; // bytes per texel row (y stride)
zStride = yStride * m_layout->m_slices[sliceIndex].m_ySize; // bytes per texel layer (if 3D tex)
offset = x * format->m_bytesPerSquareChunk; // lateral offset
offset += (y * yStride); // scanline offset
offset += (z * zStride); // should be zero for 2D tex
} else { yStride = format->m_bytesPerSquareChunk * (m_layout->m_slices[sliceIndex].m_xSize / format->m_chunkSize); zStride = yStride * (m_layout->m_slices[sliceIndex].m_ySize / format->m_chunkSize); // compressed format. scale the x,y values into chunks. Z isn't chunked.
// assert if any of them are not multiples of a chunk.
int chunkx = x / format->m_chunkSize; int chunky = y / format->m_chunkSize; if ( (chunkx * format->m_chunkSize) != x) { GLMStop(); } if ( (chunky * format->m_chunkSize) != y) { GLMStop(); } offset = chunkx * format->m_bytesPerSquareChunk; // lateral offset
offset += (chunky * yStride); // chunk row offset
offset += (z * zStride); // should be zero for 2D tex
} *offsetOut = offset; *yStrideOut = yStride; *zStrideOut = zStride; }
void CGLMTex::ReadTexels( GLMTexLockDesc *desc, bool readWholeSlice ) { GLMRegion readBox; if (readWholeSlice) { readBox.xmin = readBox.ymin = readBox.zmin = 0;
readBox.xmax = m_layout->m_slices[ desc->m_sliceIndex ].m_xSize; readBox.ymax = m_layout->m_slices[ desc->m_sliceIndex ].m_ySize; readBox.zmax = m_layout->m_slices[ desc->m_sliceIndex ].m_zSize; } else { readBox = desc->m_req.m_region; } CGLMTex *pPrevTex = m_ctx->m_samplers[0].m_pBoundTex; m_ctx->BindTexToTMU( this, 0 ); // SelectTMU(n) is a side effect
if (readWholeSlice) { // make this work first.... then write the partial path
// (Hmmmm, I don't think we will ever actually need a partial path -
// since we have no notion of a partially valid slice of storage
GLMTexFormatDesc *format = m_layout->m_format; GLenum target = m_layout->m_key.m_texGLTarget; void *sliceAddress = m_backing + m_layout->m_slices[ desc->m_sliceIndex ].m_storageOffset; // this would change for PBO
//int sliceSize = m_layout->m_slices[ desc->m_sliceIndex ].m_storageSize;
// interestingly enough, we can use the same path for both 2D and 3D fetch
switch( target ) { case GL_TEXTURE_CUBE_MAP:
// adjust target to steer to the proper face, then fall through to the 2D texture path.
target = GL_TEXTURE_CUBE_MAP_POSITIVE_X + desc->m_req.m_face; case GL_TEXTURE_2D: case GL_TEXTURE_3D: { // check compressed or not
if (format->m_chunkSize != 1) { // compressed path
// http://www.opengl.org/sdk/docs/man/xhtml/glGetCompressedTexImage.xml
gGL->glGetCompressedTexImage( target, // target
desc->m_req.m_mip, // level
sliceAddress ); // destination
} else { // uncompressed path
// http://www.opengl.org/sdk/docs/man/xhtml/glGetTexImage.xml
gGL->glGetTexImage( target, // target
desc->m_req.m_mip, // level
format->m_glDataFormat, // dataformat
format->m_glDataType, // datatype
sliceAddress ); // destination
} } break; } } else { GLMStop(); }
m_ctx->BindTexToTMU( pPrevTex, 0 ); }
// TexSubImage should work properly on every driver stack and GPU--enabling by default.
ConVar gl_enabletexsubimage( "gl_enabletexsubimage", "1" );
void CGLMTex::WriteTexels( GLMTexLockDesc *desc, bool writeWholeSlice, bool noDataWrite ) { //if ( m_nBindlessHashNumEntries )
// return;
GLMRegion writeBox;
bool needsExpand = false; char *expandTemp = NULL; switch( m_layout->m_format->m_d3dFormat) { case D3DFMT_V8U8: { needsExpand = true; writeWholeSlice = true; // shoot down client storage if we have to generate a new flavor of the data
m_texClientStorage = false; } break; } if (writeWholeSlice) { writeBox.xmin = writeBox.ymin = writeBox.zmin = 0;
writeBox.xmax = m_layout->m_slices[ desc->m_sliceIndex ].m_xSize; writeBox.ymax = m_layout->m_slices[ desc->m_sliceIndex ].m_ySize; writeBox.zmax = m_layout->m_slices[ desc->m_sliceIndex ].m_zSize; } else { writeBox = desc->m_req.m_region; }
// first thing is to get the GL texture bound to a TMU, or just select one if already bound
// to get this running we will just always slam TMU 0 and let the draw time code fix it back
// a later optimization would be to hoist the bind call to the caller, do it exactly once
CGLMTex *pPrevTex = m_ctx->m_samplers[0].m_pBoundTex; m_ctx->BindTexToTMU( this, 0 ); // SelectTMU(n) is a side effect
GLMTexFormatDesc *format = m_layout->m_format; GLenum target = m_layout->m_key.m_texGLTarget; GLenum glDataFormat = format->m_glDataFormat; // this could change if expansion kicks in
GLenum glDataType = format->m_glDataType; GLMTexLayoutSlice *slice = &m_layout->m_slices[ desc->m_sliceIndex ]; void *sliceAddress = m_backing ? (m_backing + slice->m_storageOffset) : NULL; // this would change for PBO
// allow use of subimage if the target is texture2D and it has already been teximage'd
bool mayUseSubImage = false; if ( (target==GL_TEXTURE_2D) && (m_sliceFlags[ desc->m_sliceIndex ] & kSliceValid) ) { mayUseSubImage = gl_enabletexsubimage.GetInt() != 0; } // check flavor, 2D, 3D, or cube map
// we also have the choice to use subimage if this is a tex already created. (open question as to benefit)
// SRGB select. At this level (writetexels) we firmly obey the m_texFlags.
// (mechanism not policy)
GLenum intformat = (m_layout->m_key.m_texFlags & kGLMTexSRGB) ? format->m_glIntFormatSRGB : format->m_glIntFormat; if (CommandLine()->FindParm("-disable_srgbtex")) { // force non srgb flavor - experiment to make ATI r600 happy on 10.5.8 (maybe x1600 too!)
intformat = format->m_glIntFormat; } Assert( intformat != 0 ); if (m_layout->m_key.m_texFlags & kGLMTexSRGB) { Assert( m_layout->m_format->m_glDataFormat != GL_DEPTH_COMPONENT ); Assert( m_layout->m_format->m_glDataFormat != GL_DEPTH_STENCIL_EXT ); Assert( m_layout->m_format->m_glDataFormat != GL_ALPHA ); } // adjust min and max mip written
if (desc->m_req.m_mip > m_maxActiveMip) { m_maxActiveMip = desc->m_req.m_mip;
//gGL->glTexParameteri( target, GL_TEXTURE_MAX_LEVEL, desc->m_req.m_mip);
} if (desc->m_req.m_mip < m_minActiveMip) { m_minActiveMip = desc->m_req.m_mip; //gGL->glTexParameteri( target, GL_TEXTURE_BASE_LEVEL, desc->m_req.m_mip);
}
if (needsExpand) { int expandSize = 0; switch( m_layout->m_format->m_d3dFormat) { case D3DFMT_V8U8: { // figure out new size based on 3byte RGB format
// easy, just take the two byte size and grow it by 50%
expandSize = (slice->m_storageSize * 3) / 2; expandTemp = (char*)malloc( expandSize ); char *src = (char*)sliceAddress; char *dst = expandTemp;
// transfer RG's to RGB's
while(expandSize>0) { *dst = *src++; // move first byte
*dst = *src++; // move second byte
*reinterpret_cast<uint8*>(dst) = 0xBB; // pad third byte
expandSize -= 3; } // move the slice pointer
sliceAddress = expandTemp; // change the data format we tell GL about
glDataFormat = GL_RGB; } break; default: Assert(!"Don't know how to expand that format.."); } }
// set up the client storage now, one way or another
// If this extension isn't supported, we just end up with two copies of the texture, one in the GL and one in app memory.
// So it's safe to just go on as if this extension existed and hold the possibly-unnecessary extra RAM.
if (gGL->m_bHave_GL_APPLE_client_storage) { gGL->glPixelStorei( GL_UNPACK_CLIENT_STORAGE_APPLE, m_texClientStorage ); }
switch( target ) { case GL_TEXTURE_CUBE_MAP:
// adjust target to steer to the proper face, then fall through to the 2D texture path.
target = GL_TEXTURE_CUBE_MAP_POSITIVE_X + desc->m_req.m_face; case GL_TEXTURE_2D: { // check compressed or not
if (format->m_chunkSize != 1) { Assert( writeWholeSlice ); //subimage not implemented in this path yet
// compressed path
// http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage2D.xml
gGL->glCompressedTexImage2D( target, // target
desc->m_req.m_mip, // level
intformat, // internalformat - don't use format->m_glIntFormat because we have the SRGB select going on above
slice->m_xSize, // width
slice->m_ySize, // height
0, // border
slice->m_storageSize, // imageSize
sliceAddress ); // data
} else { if (mayUseSubImage) { // go subimage2D if it's a replacement, not a creation
gGL->glPixelStorei( GL_UNPACK_ROW_LENGTH, slice->m_xSize ); // in pixels
gGL->glPixelStorei( GL_UNPACK_SKIP_PIXELS, writeBox.xmin ); // in pixels
gGL->glPixelStorei( GL_UNPACK_SKIP_ROWS, writeBox.ymin ); // in pixels
gGL->glTexSubImage2D( target, desc->m_req.m_mip, // level
writeBox.xmin, // xoffset into dest
writeBox.ymin, // yoffset into dest
writeBox.xmax - writeBox.xmin, // width (was slice->m_xSize)
writeBox.ymax - writeBox.ymin, // height (was slice->m_ySize)
glDataFormat, // format
glDataType, // type
sliceAddress // data (will be offsetted by the SKIP_PIXELS and SKIP_ROWS - let GL do the math to find the first source texel)
);
gGL->glPixelStorei( GL_UNPACK_ROW_LENGTH, 0 ); gGL->glPixelStorei( GL_UNPACK_SKIP_PIXELS, 0 ); gGL->glPixelStorei( GL_UNPACK_SKIP_ROWS, 0 );
/*
//http://www.opengl.org/sdk/docs/man/xhtml/glTexSubImage2D.xml
glTexSubImage2D( target, desc->m_req.m_mip, // level
0, // xoffset
0, // yoffset
slice->m_xSize, // width
slice->m_ySize, // height
glDataFormat, // format
glDataType, // type
sliceAddress // data
); */ } else { if (m_layout->m_key.m_texFlags & kGLMTexRenderable) { if (gl_rt_forcergba.GetInt()) { if (glDataFormat == GL_BGRA) { // change it
glDataFormat = GL_RGBA; } } } // uncompressed path
// http://www.opengl.org/documentation/specs/man_pages/hardcopy/GL/html/gl/teximage2d.html
gGL->glTexImage2D( target, // target
desc->m_req.m_mip, // level
intformat, // internalformat - don't use format->m_glIntFormat because we have the SRGB select going on above
slice->m_xSize, // width
slice->m_ySize, // height
0, // border
glDataFormat, // dataformat
glDataType, // datatype
noDataWrite ? NULL : sliceAddress ); // data (optionally suppressed in case ResetSRGB desires)
if (m_layout->m_key.m_texFlags & kGLMTexMultisampled) { if (gl_texmsaalog.GetInt()) { printf( "\n == MSAA Tex %p %s : glTexImage2D for flat tex using intformat %s (%x)", this, m_debugLabel?m_debugLabel:"", GLMDecode( eGL_ENUM, intformat ), intformat ); printf( "\n" ); } }
m_sliceFlags[ desc->m_sliceIndex ] |= kSliceValid; // for next time, we can subimage..
} } } break; case GL_TEXTURE_3D: { // check compressed or not
if (format->m_chunkSize != 1) { // compressed path
// http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage3D.xml
gGL->glCompressedTexImage3D( target, // target
desc->m_req.m_mip, // level
intformat, // internalformat
slice->m_xSize, // width
slice->m_ySize, // height
slice->m_zSize, // depth
0, // border
slice->m_storageSize, // imageSize
sliceAddress ); // data
} else { // uncompressed path
// http://www.opengl.org/sdk/docs/man/xhtml/glTexImage3D.xml
gGL->glTexImage3D( target, // target
desc->m_req.m_mip, // level
intformat, // internalformat
slice->m_xSize, // width
slice->m_ySize, // height
slice->m_zSize, // depth
0, // border
glDataFormat, // dataformat
glDataType, // datatype
noDataWrite ? NULL : sliceAddress ); // data (optionally suppressed in case ResetSRGB desires)
} } break; }
if (gGL->m_bHave_GL_APPLE_client_storage) { gGL->glPixelStorei( GL_UNPACK_CLIENT_STORAGE_APPLE, GL_FALSE ); }
if ( expandTemp ) { free( expandTemp ); }
m_ctx->BindTexToTMU( pPrevTex, 0 ); }
void CGLMTex::Lock( GLMTexLockParams *params, char** addressOut, int* yStrideOut, int *zStrideOut ) { #if GL_TELEMETRY_GPU_ZONES
CScopedGLMPIXEvent glmPIXEvent( "CGLMTex::Lock" ); g_TelemetryGPUStats.m_nTotalTexLocksAndUnlocks++; #endif
// locate appropriate slice in layout record
int sliceIndex = CalcSliceIndex( params->m_face, params->m_mip ); GLMTexLayoutSlice *slice = &m_layout->m_slices[sliceIndex];
// obtain offset
//int sliceBaseOffset = slice->m_storageOffset;
// cross check region req against slice bounds - figure out if it matches, exceeds, or is less than the whole slice.
char exceed = (params->m_region.xmin < 0) || (params->m_region.xmax > slice->m_xSize) || (params->m_region.ymin < 0) || (params->m_region.ymax > slice->m_ySize) || (params->m_region.zmin < 0) || (params->m_region.zmax > slice->m_zSize);
char partial = (params->m_region.xmin > 0) || (params->m_region.xmax < slice->m_xSize) || (params->m_region.ymin > 0) || (params->m_region.ymax < slice->m_ySize) || (params->m_region.zmin > 0) || (params->m_region.zmax < slice->m_zSize); bool copyout = false; // set if a readback of the texture slice from GL is needed
if (exceed) { // illegal rect, out of bounds
GLMStop(); } // on return, these things need to be true
// a - there needs to be storage allocated, which we will return an address within
// b - the region corresponding to the slice being locked, will have valid data there for the whole slice.
// c - the slice is marked as locked
// d - the params of the lock request have been saved in the lock table (in the context)
// so step 1 is unambiguous. If there's no backing storage, make some.
if (!m_backing) { m_backing = (char *)malloc( m_layout->m_storageTotalSize ); memset( m_backing, 0, m_layout->m_storageTotalSize ); // clear the kSliceStorageValid bit on all slices
for( int i=0; i<m_layout->m_sliceCount; i++) { m_sliceFlags[i] &= ~kSliceStorageValid; } } // work on this slice now
// storage is known to exist at this point, but we need to check if its contents are valid for this slice.
// this is tracked per-slice so we don't hoist all the texels back out of GL across all slices if caller only
// wanted to lock some of them.
// (i.e. if we just alloced it, it's blank)
// if storage is invalid, but the texture itself is valid, hoist the texels back to the storage and mark it valid.
// if storage is invalid, and texture itself is also invalid, go ahead and mark storage as valid and fully dirty... to force teximage.
// ???????????? we need to go over this more carefully re "slice valid" (it has been teximaged) vs "storage valid" (it has been copied out).
unsigned char *sliceFlags = &m_sliceFlags[ sliceIndex ]; if (params->m_readback) { // caller is letting us know that it wants to readback the real texels.
*sliceFlags |= kSliceStorageValid; *sliceFlags |= kSliceValid; *sliceFlags &= ~(kSliceFullyDirty); copyout = true; } else { // caller is pushing texels.
if (! (*sliceFlags & kSliceStorageValid) ) { // storage is invalid. check texture state
if ( *sliceFlags & kSliceValid ) { // kSliceValid set: the texture itself has a valid slice, but we don't have it in our backing copy, so copy it out.
copyout = true; } else { // kSliceValid not set: the texture does not have a valid slice to copy out - it hasn't been teximage'd yet.
// set the "full dirty" bit to make sure we teximage the whole thing on unlock.
*sliceFlags |= kSliceFullyDirty; // assert if they did not ask to lock the full slice size on this go-round
if (partial) { // choice here -
// 1 - stop cold, we don't know how to subimage yet.
// 2 - grin and bear it, mark whole slice dirty (ah, we already did... so, do nothing).
// choice 2: // GLMStop();
} } // one way or another, upon reaching here the slice storage is valid for read.
*sliceFlags |= kSliceStorageValid; } }
// when we arrive here, there is storage, and the content of the storage for this slice is valid
// (or zeroes if it's the first lock)
// log the lock request in the context.
int newdesc = m_ctx->m_texLocks.AddToTail(); GLMTexLockDesc *desc = &m_ctx->m_texLocks[newdesc]; desc->m_req = *params; desc->m_active = true; desc->m_sliceIndex = sliceIndex; desc->m_sliceBaseOffset = m_layout->m_slices[sliceIndex].m_storageOffset;
// to calculate the additional offset we need to look at the rect's min corner
// combined with the per-texel size and Y/Z stride
// also cross check it for 4x multiple if there is compression in play
int offsetInSlice = 0; int yStride = 0; int zStride = 0; CalcTexelDataOffsetAndStrides( sliceIndex, params->m_region.xmin, params->m_region.ymin, params->m_region.zmin, &offsetInSlice, &yStride, &zStride );
// for compressed case...
// since there is presently no way to texsubimage a DXT when the rect does not cover the whole width,
// we will probably need to inflate the dirty rect in the recorded lock req so that the entire span is
// pushed across at unlock time.
desc->m_sliceRegionOffset = offsetInSlice + desc->m_sliceBaseOffset;
if (copyout) { // read the whole slice
// (odds are we'll never request anything but a whole slice to be read..)
ReadTexels( desc, true ); } // this would be a good place to fill with scrub value if in debug...
*addressOut = m_backing + desc->m_sliceRegionOffset; *yStrideOut = yStride; *zStrideOut = zStride;
m_lockCount++; }
void CGLMTex::Unlock( GLMTexLockParams *params ) { #if GL_TELEMETRY_GPU_ZONES
CScopedGLMPIXEvent glmPIXEvent( "CGLMTex::Unlock" ); g_TelemetryGPUStats.m_nTotalTexLocksAndUnlocks++; #endif
// look for an active lock request on this face and mip (doesn't necessarily matter which one, if more than one)
// and mark it inactive.
// --> if you can't find one, fail. first line of defense against mismatched locks/unlocks..
int i=0; bool found = false; while( !found && (i<m_ctx->m_texLocks.Count()) ) { GLMTexLockDesc *desc = &m_ctx->m_texLocks[i]; // is lock at index 'i' targeted at the texture/face/mip in question?
if ( (desc->m_req.m_tex == this) && (desc->m_req.m_face == params->m_face) & (desc->m_req.m_mip == params->m_mip) && (desc->m_active) ) { // matched and active, so retire it
desc->m_active = false; // stop searching
found = true; } i++; }
if (!found) { GLMStop(); // bad news
} // found - so drop lock count
m_lockCount--; if (m_lockCount <0) { GLMStop(); // bad news
}
if (m_lockCount==0) { // there should not be any active locks remaining on this texture.
// motivation to defer all texel pushing til *all* open locks are closed out -
// if/when we back the texture with a PBO, we will need to unmap that PBO before teximaging from it;
// by waiting for all the locks to clear this gives us an unambiguous signal to act on.
// scan through all the retired locks for this texture and push the texels for each one.
// after each one is dispatched, remove it from the pile.
int j=0; while( j<m_ctx->m_texLocks.Count() ) { GLMTexLockDesc *desc = &m_ctx->m_texLocks[j]; if ( desc->m_req.m_tex == this ) { // if it's active, something is wrong
if (desc->m_active) { GLMStop(); } // write the texels
bool fullyDirty = false; fullyDirty |= ((m_sliceFlags[ desc->m_sliceIndex ] & kSliceFullyDirty) != 0);
// this is not optimal and will result in full downloads on any dirty.
// we're papering over the fact that subimage isn't done yet.
// but this is safe if the slice of storage is all valid.
// at some point we'll need to actually compare the lock box against the slice bounds.
// fullyDirty |= (m_sliceFlags[ desc->m_sliceIndex ] & kSliceStorageValid);
WriteTexels( desc, fullyDirty );
// logical place to trigger preloading
// only do it for an RT tex, if it is not yet attached to any FBO.
// also, only do it if the slice number is the last slice in the tex.
if ( desc->m_sliceIndex == (m_layout->m_sliceCount-1) ) { if ( !(m_layout->m_key.m_texFlags & kGLMTexRenderable) || (m_rtAttachCount==0) ) { m_ctx->PreloadTex( this ); // printf("( slice %d of %d )", desc->m_sliceIndex, m_layout->m_sliceCount );
} }
m_ctx->m_texLocks.FastRemove( j ); // remove from the pile, don't advance index
} else { j++; // move on to next one
} } // clear the locked and full-dirty flags for all slices
for( int slice=0; slice < m_layout->m_sliceCount; slice++) { m_sliceFlags[slice] &= ~( kSliceLocked | kSliceFullyDirty ); } // The 3D texture upload code seems to rely on the host copy, probably
// because it reuploads the whole thing each slice; we only use 3D textures
// for the 32x32x32 colorpsace conversion lookups and debugging the problem
// would not save any more memory.
if ( !m_texClientStorage && ( m_texGLTarget == GL_TEXTURE_2D ) ) { free(m_backing); m_backing = NULL; } } }
#if defined( OSX )
void CGLMTex::HandleSRGBMismatch( bool srgb, int &srgbFlipCount ) { bool srgbCapableTex = false; // not yet known
bool renderableTex = false; // not yet known.
srgbCapableTex = m_layout->m_format->m_glIntFormatSRGB != 0; renderableTex = ( m_layout->m_key.m_texFlags & kGLMTexRenderable ) != 0; // we can fix it if it's not a renderable, and an sRGB enabled format variation is available.
if ( srgbCapableTex && !renderableTex ) { char *texname = m_debugLabel; if (!texname) texname = "-";
m_srgbFlipCount++;
//policy: print the ones that have flipped 1 or N times
bool print_allflips = CommandLine()->FindParm("-glmspewallsrgbflips"); bool print_firstflips = CommandLine()->FindParm("-glmspewfirstsrgbflips"); bool print_freqflips = CommandLine()->FindParm("-glmspewfreqsrgbflips"); bool print_crawls = CommandLine()->FindParm("-glmspewsrgbcrawls"); bool print_maxcrawls = CommandLine()->FindParm("-glmspewsrgbmaxcrawls"); bool print_it = false;
if (print_allflips) { print_it = true; } if (print_firstflips) // report on first flip
{ print_it |= m_srgbFlipCount==1; } if (print_freqflips) // report on 50th flip
{ print_it |= m_srgbFlipCount==50; }
if ( print_it ) { char *formatStr; formatStr = "srgb change (samp=%d): tex '%-30s' %08x %s (srgb=%d, %d times)";
if (strlen(texname) >= 30) { formatStr = "srgb change (samp=%d): tex '%s' %08x %s (srgb=%d, %d times)"; }
printf( "\n" ); printf( formatStr, index, texname, m_layout->m_layoutSummary, (int)srgb, m_srgbFlipCount );
#ifdef POSIX
if (print_crawls) { static char *interesting_crawl_substrs[] = { "CShader::OnDrawElements", NULL }; // add more as needed
CStackCrawlParams cp; memset( &cp, 0, sizeof(cp) ); cp.m_frameLimit = 20;
g_pLauncherMgr->GetStackCrawl(&cp);
for( int i=0; i< cp.m_frameCount; i++) { // for each row of crawl, decide if name is interesting
bool hit = print_maxcrawls;
for( char **match = interesting_crawl_substrs; (!hit) && (*match != NULL); match++) { if (strstr(cp.m_crawlNames[i], *match)) { hit = true; } }
if (hit) { printf( "\n\t%s", cp.m_crawlNames[i] ); } } printf( "\n"); } #endif
}
#if GLMDEBUG && 0
//"toi" = texture of interest
static char s_toi[256] = "colorcorrection"; if (strstr( texname, s_toi )) { // breakpoint on this if you like
GLMPRINTF(( "srgb change %d for %s", m_srgbFlipCount, texname )); } #endif
// re-submit the tex unless we're stifling it
if (!CommandLine()->FindParm( "-glmnosrgbflips" )) { ResetSRGB( srgb, false ); } } else { //GLMPRINTF(("-Z- srgb sampling conflict: NOT fixing tex %08x [%s] (srgb req: %d) because (tex-srgb-capable=%d tex-renderable=%d)", m_textures[index], m_textures[index]->m_tex->m_layout->m_layoutSummary, (int)glsamp->m_srgb, (int)srgbCapableTex, (int)renderableTex ));
// we just leave the sampler state where it is, and that's life
} }
void CGLMTex::ResetSRGB( bool srgb, bool noDataWrite ) { // see if requested SRGB state differs from the known one
bool wasSRGB = (m_layout->m_key.m_texFlags & kGLMTexSRGB); GLMTexLayout *oldLayout = m_layout; // need to m_ctx->m_texLayoutTable->DelLayoutRef on this one if we flip
if (srgb != wasSRGB) { // we're going to need a new layout (though the storage size should be the same - check it)
GLMTexLayoutKey newKey = m_layout->m_key; newKey.m_texFlags &= (~kGLMTexSRGB); // turn off that bit
newKey.m_texFlags |= srgb ? kGLMTexSRGB : 0; // turn on that bit if it should be so
// get new layout
GLMTexLayout *newLayout = m_ctx->m_texLayoutTable->NewLayoutRef( &newKey );
// if SRGB requested, verify that the layout we just got can do it.
// if it can't, delete the new layout ref and bail.
if (srgb && (newLayout->m_format->m_glIntFormatSRGB == 0)) { Assert( !"Can't enable SRGB mode on this format" ); m_ctx->m_texLayoutTable->DelLayoutRef( newLayout ); return; }
// check sizes and fail if no match
if( newLayout->m_storageTotalSize != oldLayout->m_storageTotalSize ) { Assert( !"Bug: layout sizes don't match on SRGB change" ); m_ctx->m_texLayoutTable->DelLayoutRef( newLayout ); return; }
// commit to new layout
m_layout = newLayout; m_texGLTarget = m_layout->m_key.m_texGLTarget; // check same size
Assert( m_layout->m_storageTotalSize == oldLayout->m_storageTotalSize ); Assert( newLayout != oldLayout );
// release old
m_ctx->m_texLayoutTable->DelLayoutRef( oldLayout ); oldLayout = NULL;
// force texel re-DL
// note this messes with TMU 0 as side effect of WriteTexels
// so we save and restore the TMU 0 binding first
// since we're likely to be called in dxabstract when it is syncing sampler state, we can't go trampling the bindings.
// a refinement would be to have each texture make a note of which TMU they're bound on, and just use that active TMU for DL instead of 0.
CGLMTex *tmu0save = m_ctx->m_samplers[0].m_pBoundTex; for( int face=0; face <m_layout->m_faceCount; face++) { for( int mip=0; mip <m_layout->m_mipCount; mip++) { // we're not really going to lock, we're just going to rewrite the orig data
GLMTexLockDesc desc; desc.m_req.m_tex = this; desc.m_req.m_face = face; desc.m_req.m_mip = mip;
desc.m_sliceIndex = CalcSliceIndex( face, mip );
GLMTexLayoutSlice *slice = &m_layout->m_slices[ desc.m_sliceIndex ]; desc.m_req.m_region.xmin = desc.m_req.m_region.ymin = desc.m_req.m_region.zmin = 0; desc.m_req.m_region.xmax = slice->m_xSize; desc.m_req.m_region.ymax = slice->m_ySize; desc.m_req.m_region.zmax = slice->m_zSize;
desc.m_sliceBaseOffset = slice->m_storageOffset; // doesn't really matter... we're just pushing zeroes..
desc.m_sliceRegionOffset = 0;
WriteTexels( &desc, true, noDataWrite ); // write whole slice. and avoid pushing real bits if the caller requests (RT's)
} } // put it back
m_ctx->BindTexToTMU( tmu0save, 0 ); } } #endif
bool CGLMTex::IsRBODirty() const { return m_nLastResolvedBatchCounter != m_ctx->m_nBatchCounter; }
void CGLMTex::ForceRBONonDirty() { m_nLastResolvedBatchCounter = m_ctx->m_nBatchCounter; }
void CGLMTex::ForceRBODirty() { m_nLastResolvedBatchCounter = m_ctx->m_nBatchCounter - 1; }
|