|
|
// gcm.cpp - written and placed in the public domain by Wei Dai
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM
#include "gcm.h"
#include "cpu.h"
NAMESPACE_BEGIN(CryptoPP)
word16 GCM_Base::s_reductionTable[256]; volatile bool GCM_Base::s_reductionTableInitialized = false;
void GCM_Base::GCTR::IncrementCounterBy256() { IncrementCounterByOne(m_counterArray+BlockSize()-4, 3); }
#if 0
// preserved for testing
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c) { word64 Z0=0, Z1=0, V0, V1;
typedef BlockGetAndPut<word64, BigEndian> Block; Block::Get(a)(V0)(V1);
for (int i=0; i<16; i++) { for (int j=0x80; j!=0; j>>=1) { int x = b[i] & j; Z0 ^= x ? V0 : 0; Z1 ^= x ? V1 : 0; x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } } Block::Put(NULL, c)(Z0)(Z1); }
__m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i) { word64 A[1] = {ByteReverse(((word64*)&a)[i&1])}; word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])};
PolynomialMod2 pa((byte *)A, 8); PolynomialMod2 pb((byte *)B, 8); PolynomialMod2 c = pa*pb;
__m128i output; for (int i=0; i<16; i++) ((byte *)&output)[i] = c.GetByte(i); return output; } #endif
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
inline static void SSE2_Xor16(byte *a, const byte *b, const byte *c) { #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
*(__m128i *)a = _mm_xor_si128(*(__m128i *)b, *(__m128i *)c); #else
asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;" : "=m" (a[0]) : "m"(b[0]), "m"(c[0])); #endif
} #endif
inline static void Xor16(byte *a, const byte *b, const byte *c) { ((word64 *)a)[0] = ((word64 *)b)[0] ^ ((word64 *)c)[0]; ((word64 *)a)[1] = ((word64 *)b)[1] ^ ((word64 *)c)[1]; }
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
static CRYPTOPP_ALIGN_DATA(16) const word64 s_clmulConstants64[] = { W64LIT(0xe100000000000000), W64LIT(0xc200000000000000), W64LIT(0x08090a0b0c0d0e0f), W64LIT(0x0001020304050607), W64LIT(0x0001020304050607), W64LIT(0x08090a0b0c0d0e0f)}; static const __m128i *s_clmulConstants = (const __m128i *)s_clmulConstants64; static const unsigned int s_clmulTableSizeInBlocks = 8;
inline __m128i CLMUL_Reduce(__m128i c0, __m128i c1, __m128i c2, const __m128i &r) { /*
The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the rightmost bit positions, and the lowest byte addresses.
c1 ^= c0t * 0xc200000000000000 c2t ^= c0t t = shift (c1t ^ c0b) left 1 bit c2 ^= t * 0xe100000000000000 c2t ^= c1b shift c2 left 1 bit and xor in lowest bit of c1t */ #if 0 // MSVC 2010 workaround: see http://connect.microsoft.com/VisualStudio/feedback/details/575301
c2 = _mm_xor_si128(c2, _mm_move_epi64(c0)); #else
c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8)); #endif
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10)); c0 = _mm_srli_si128(c0, 8); c0 = _mm_xor_si128(c0, c1); c0 = _mm_slli_epi64(c0, 1); c0 = _mm_clmulepi64_si128(c0, r, 0); c2 = _mm_xor_si128(c2, c0); c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8)); c1 = _mm_unpacklo_epi64(c1, c2); c1 = _mm_srli_epi64(c1, 63); c2 = _mm_slli_epi64(c2, 1); return _mm_xor_si128(c2, c1); }
inline __m128i CLMUL_GF_Mul(const __m128i &x, const __m128i &h, const __m128i &r) { __m128i c0 = _mm_clmulepi64_si128(x,h,0); __m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10)); __m128i c2 = _mm_clmulepi64_si128(x,h,0x11);
return CLMUL_Reduce(c0, c1, c2, r); } #endif
void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs ¶ms) { BlockCipher &blockCipher = AccessBlockCipher(); blockCipher.SetKey(userKey, keylength, params);
if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE) throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16");
int tableSize, i, j, k;
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
if (HasCLMUL()) { params.GetIntValue(Name::TableSize(), tableSize); // avoid "parameter not used" error
tableSize = s_clmulTableSizeInBlocks * REQUIRED_BLOCKSIZE; } else #endif
{ if (params.GetIntValue(Name::TableSize(), tableSize)) tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024; else tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024;
#if defined(_MSC_VER) && (_MSC_VER >= 1300 && _MSC_VER < 1400)
// VC 2003 workaround: compiler generates bad code for 64K tables
tableSize = 2*1024; #endif
}
m_buffer.resize(3*REQUIRED_BLOCKSIZE + tableSize); byte *table = MulTable(); byte *hashKey = HashKey(); memset(hashKey, 0, REQUIRED_BLOCKSIZE); blockCipher.ProcessBlock(hashKey);
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
if (HasCLMUL()) { const __m128i r = s_clmulConstants[0]; __m128i h0 = _mm_shuffle_epi8(_mm_load_si128((__m128i *)hashKey), s_clmulConstants[1]); __m128i h = h0;
for (i=0; i<tableSize; i+=32) { __m128i h1 = CLMUL_GF_Mul(h, h0, r); _mm_storel_epi64((__m128i *)(table+i), h); _mm_storeu_si128((__m128i *)(table+i+16), h1); _mm_storeu_si128((__m128i *)(table+i+8), h); _mm_storel_epi64((__m128i *)(table+i+8), h1); h = CLMUL_GF_Mul(h1, h0, r); }
return; } #endif
word64 V0, V1; typedef BlockGetAndPut<word64, BigEndian> Block; Block::Get(hashKey)(V0)(V1);
if (tableSize == 64*1024) { for (i=0; i<128; i++) { k = i%8; Block::Put(NULL, table+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1);
int x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); }
for (i=0; i<16; i++) { memset(table+i*256*16, 0, 16); #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
if (HasSSE2()) for (j=2; j<=0x80; j*=2) for (k=1; k<j; k++) SSE2_Xor16(table+i*256*16+(j+k)*16, table+i*256*16+j*16, table+i*256*16+k*16); else #endif
for (j=2; j<=0x80; j*=2) for (k=1; k<j; k++) Xor16(table+i*256*16+(j+k)*16, table+i*256*16+j*16, table+i*256*16+k*16); } } else { if (!s_reductionTableInitialized) { s_reductionTable[0] = 0; word16 x = 0x01c2; s_reductionTable[1] = ByteReverse(x); for (int i=2; i<=0x80; i*=2) { x <<= 1; s_reductionTable[i] = ByteReverse(x); for (int j=1; j<i; j++) s_reductionTable[i+j] = s_reductionTable[i] ^ s_reductionTable[j]; } s_reductionTableInitialized = true; }
for (i=0; i<128-24; i++) { k = i%32; if (k < 4) Block::Put(NULL, table+1024+(i/32)*256+(size_t(1)<<(7-k)))(V0)(V1); else if (k < 8) Block::Put(NULL, table+(i/32)*256+(size_t(1)<<(11-k)))(V0)(V1);
int x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); }
for (i=0; i<4; i++) { memset(table+i*256, 0, 16); memset(table+1024+i*256, 0, 16); #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE || CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
if (HasSSE2()) for (j=2; j<=8; j*=2) for (k=1; k<j; k++) { SSE2_Xor16(table+i*256+(j+k)*16, table+i*256+j*16, table+i*256+k*16); SSE2_Xor16(table+1024+i*256+(j+k)*16, table+1024+i*256+j*16, table+1024+i*256+k*16); } else #endif
for (j=2; j<=8; j*=2) for (k=1; k<j; k++) { Xor16(table+i*256+(j+k)*16, table+i*256+j*16, table+i*256+k*16); Xor16(table+1024+i*256+(j+k)*16, table+1024+i*256+j*16, table+1024+i*256+k*16); } } } }
inline void GCM_Base::ReverseHashBufferIfNeeded() { #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
if (HasCLMUL()) { __m128i &x = *(__m128i *)HashBuffer(); x = _mm_shuffle_epi8(x, s_clmulConstants[1]); } #endif
}
void GCM_Base::Resync(const byte *iv, size_t len) { BlockCipher &cipher = AccessBlockCipher(); byte *hashBuffer = HashBuffer();
if (len == 12) { memcpy(hashBuffer, iv, len); memset(hashBuffer+len, 0, 3); hashBuffer[len+3] = 1; } else { size_t origLen = len; memset(hashBuffer, 0, HASH_BLOCKSIZE);
if (len >= HASH_BLOCKSIZE) { len = GCM_Base::AuthenticateBlocks(iv, len); iv += (origLen - len); }
if (len > 0) { memcpy(m_buffer, iv, len); memset(m_buffer+len, 0, HASH_BLOCKSIZE-len); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); }
PutBlock<word64, BigEndian, true>(NULL, m_buffer)(0)(origLen*8); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
ReverseHashBufferIfNeeded(); }
if (m_state >= State_IVSet) m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE); else m_ctr.SetCipherWithIV(cipher, hashBuffer);
m_ctr.Seek(HASH_BLOCKSIZE);
memset(hashBuffer, 0, HASH_BLOCKSIZE); }
unsigned int GCM_Base::OptimalDataAlignment() const { return #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
HasSSE2() ? 16 : #endif
GetBlockCipher().OptimalDataAlignment(); }
#pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" { void GCM_AuthenticateBlocks_2K(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable); void GCM_AuthenticateBlocks_64K(const byte *data, size_t blocks, word64 *hashBuffer); } #endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len) { #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
if (HasCLMUL()) { const __m128i *table = (const __m128i *)MulTable(); __m128i x = _mm_load_si128((__m128i *)HashBuffer()); const __m128i r = s_clmulConstants[0], bswapMask = s_clmulConstants[1], bswapMask2 = s_clmulConstants[2];
while (len >= 16) { size_t s = UnsignedMin(len/16, s_clmulTableSizeInBlocks), i=0; __m128i d, d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-1)*16)), bswapMask2);; __m128i c0 = _mm_setzero_si128(); __m128i c1 = _mm_setzero_si128(); __m128i c2 = _mm_setzero_si128();
while (true) { __m128i h0 = _mm_load_si128(table+i); __m128i h1 = _mm_load_si128(table+i+1); __m128i h01 = _mm_xor_si128(h0, h1);
if (++i == s) { d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask); d = _mm_xor_si128(d, x); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1)); d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2))); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0)); break; }
d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask2); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 1)); d2 = _mm_xor_si128(d2, d); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h01, 1));
if (++i == s) { d = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)data), bswapMask); d = _mm_xor_si128(d, x); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d, h1, 0x11)); d = _mm_xor_si128(d, _mm_shuffle_epi32(d, _MM_SHUFFLE(1, 0, 3, 2))); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10)); break; }
d2 = _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)(data+(s-i)*16-8)), bswapMask); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d, h0, 0x10)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10)); d = _mm_xor_si128(d, d2); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d, h01, 0x10)); } data += s*16; len -= s*16;
c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2); x = CLMUL_Reduce(c0, c1, c2, r); }
_mm_store_si128((__m128i *)HashBuffer(), x); return len; } #endif
typedef BlockGetAndPut<word64, NativeByteOrder> Block; word64 *hashBuffer = (word64 *)HashBuffer();
switch (2*(m_buffer.size()>=64*1024) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
+ HasSSE2() #endif
) { case 0: // non-SSE2 and 2K tables
{ byte *table = MulTable(); word64 x0 = hashBuffer[0], x1 = hashBuffer[1];
do { word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1; Block::Get(data)(y0)(y1); x0 ^= y0; x1 ^= y1;
data += HASH_BLOCKSIZE; len -= HASH_BLOCKSIZE;
#define READ_TABLE_WORD64_COMMON(a, b, c, d) *(word64 *)(table+(a*1024)+(b*256)+c+d*8)
#ifdef IS_LITTLE_ENDIAN
#if CRYPTOPP_BOOL_SLOW_WORD64
word32 z0 = (word32)x0; word32 z1 = (word32)(x0>>32); word32 z2 = (word32)x1; word32 z3 = (word32)(x1>>32); #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e)
#else
#define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e)
#endif
#define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8)
#define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8;
#else
#define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e)
#define GF_MOST_SIG_8BITS(a) (a##1 & 0xff)
#define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8;
#endif
#define GF_MUL_32BY128(op, a, b, c) \
a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0);\ a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1);\ b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0);\ b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1);\ c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0);\ c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1);\ d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0);\ d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1);\
GF_MUL_32BY128(=, 0, 0, 0) GF_MUL_32BY128(^=, 0, 1, 1) GF_MUL_32BY128(^=, 1, 0, 2) GF_MUL_32BY128(^=, 1, 1, 3)
word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16; GF_SHIFT_8(d) c0 ^= d0; c1 ^= d1; r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8; GF_SHIFT_8(c) b0 ^= c0; b1 ^= c1; r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)]; GF_SHIFT_8(b) a0 ^= b0; a1 ^= b1; a0 ^= ConditionalByteReverse<word64>(LITTLE_ENDIAN_ORDER, r); x0 = a0; x1 = a1; } while (len >= HASH_BLOCKSIZE);
hashBuffer[0] = x0; hashBuffer[1] = x1; return len; }
case 2: // non-SSE2 and 64K tables
{ byte *table = MulTable(); word64 x0 = hashBuffer[0], x1 = hashBuffer[1];
do { word64 y0, y1, a0, a1; Block::Get(data)(y0)(y1); x0 ^= y0; x1 ^= y1;
data += HASH_BLOCKSIZE; len -= HASH_BLOCKSIZE;
#undef READ_TABLE_WORD64_COMMON
#undef READ_TABLE_WORD64
#define READ_TABLE_WORD64_COMMON(a, c, d) *(word64 *)(table+(a)*256*16+(c)+(d)*8)
#ifdef IS_LITTLE_ENDIAN
#if CRYPTOPP_BOOL_SLOW_WORD64
word32 z0 = (word32)x0; word32 z1 = (word32)(x0>>32); word32 z2 = (word32)x1; word32 z3 = (word32)(x1>>32); #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e)
#else
#define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
#endif
#else
#define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
#endif
#define GF_MUL_8BY128(op, b, c, d) \
a0 op READ_TABLE_WORD64(b, c, d, 0);\ a1 op READ_TABLE_WORD64(b, c, d, 1);\
GF_MUL_8BY128(=, 0, 0, 0) GF_MUL_8BY128(^=, 0, 0, 1) GF_MUL_8BY128(^=, 0, 0, 2) GF_MUL_8BY128(^=, 0, 0, 3) GF_MUL_8BY128(^=, 0, 1, 0) GF_MUL_8BY128(^=, 0, 1, 1) GF_MUL_8BY128(^=, 0, 1, 2) GF_MUL_8BY128(^=, 0, 1, 3) GF_MUL_8BY128(^=, 1, 2, 0) GF_MUL_8BY128(^=, 1, 2, 1) GF_MUL_8BY128(^=, 1, 2, 2) GF_MUL_8BY128(^=, 1, 2, 3) GF_MUL_8BY128(^=, 1, 3, 0) GF_MUL_8BY128(^=, 1, 3, 1) GF_MUL_8BY128(^=, 1, 3, 2) GF_MUL_8BY128(^=, 1, 3, 3)
x0 = a0; x1 = a1; } while (len >= HASH_BLOCKSIZE);
hashBuffer[0] = x0; hashBuffer[1] = x1; return len; } #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
case 1: // SSE2 and 2K tables
GCM_AuthenticateBlocks_2K(data, len/16, hashBuffer, s_reductionTable); return len % 16; case 3: // SSE2 and 64K tables
GCM_AuthenticateBlocks_64K(data, len/16, hashBuffer); return len % 16; #endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
case 1: // SSE2 and 2K tables
{ #ifdef __GNUC__
__asm__ __volatile__ ( ".intel_syntax noprefix;" #elif defined(CRYPTOPP_GENERATE_X64_MASM)
ALIGN 8 GCM_AuthenticateBlocks_2K PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx .endprolog mov rsi, r8 mov r11, r9 #else
AS2( mov WORD_REG(cx), data ) AS2( mov WORD_REG(dx), len ) AS2( mov WORD_REG(si), hashBuffer ) AS2( shr WORD_REG(dx), 4 ) #endif
AS_PUSH_IF86( bx) AS_PUSH_IF86( bp)
#ifdef __GNUC__
AS2( mov AS_REG_7, WORD_REG(di)) #elif CRYPTOPP_BOOL_X86
AS2( lea AS_REG_7, s_reductionTable) #endif
AS2( movdqa xmm0, [WORD_REG(si)] )
#define MUL_TABLE_0 WORD_REG(si) + 32
#define MUL_TABLE_1 WORD_REG(si) + 32 + 1024
#define RED_TABLE AS_REG_7
ASL(0) AS2( movdqu xmm4, [WORD_REG(cx)] ) AS2( pxor xmm0, xmm4 )
AS2( movd ebx, xmm0 ) AS2( mov eax, AS_HEX(f0f0f0f0) ) AS2( and eax, ebx ) AS2( shl ebx, 4 ) AS2( and ebx, AS_HEX(f0f0f0f0) ) AS2( movzx edi, ah ) AS2( movdqa xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( movzx edi, al ) AS2( movdqa xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( shr eax, 16 ) AS2( movzx edi, ah ) AS2( movdqa xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( movzx edi, al ) AS2( movdqa xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] )
#define SSE2_MUL_32BITS(i) \
AS2( psrldq xmm0, 4 )\ AS2( movd eax, xmm0 )\ AS2( and eax, AS_HEX(f0f0f0f0) )\ AS2( movzx edi, bh )\ AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movzx edi, bl )\ AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( shr ebx, 16 )\ AS2( movzx edi, bh )\ AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movzx edi, bl )\ AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movd ebx, xmm0 )\ AS2( shl ebx, 4 )\ AS2( and ebx, AS_HEX(f0f0f0f0) )\ AS2( movzx edi, ah )\ AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( movzx edi, al )\ AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( shr eax, 16 )\ AS2( movzx edi, ah )\ AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( movzx edi, al )\ AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\
SSE2_MUL_32BITS(1) SSE2_MUL_32BITS(2) SSE2_MUL_32BITS(3)
AS2( movzx edi, bh ) AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movzx edi, bl ) AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( shr ebx, 16 ) AS2( movzx edi, bh ) AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movzx edi, bl ) AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] )
AS2( movdqa xmm0, xmm3 ) AS2( pslldq xmm3, 1 ) AS2( pxor xmm2, xmm3 ) AS2( movdqa xmm1, xmm2 ) AS2( pslldq xmm2, 1 ) AS2( pxor xmm5, xmm2 )
AS2( psrldq xmm0, 15 ) AS2( movd WORD_REG(di), xmm0 ) AS2( movzx eax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( shl eax, 8 )
AS2( movdqa xmm0, xmm5 ) AS2( pslldq xmm5, 1 ) AS2( pxor xmm4, xmm5 )
AS2( psrldq xmm1, 15 ) AS2( movd WORD_REG(di), xmm1 ) AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( shl eax, 8 )
AS2( psrldq xmm0, 15 ) AS2( movd WORD_REG(di), xmm0 ) AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] )
AS2( movd xmm0, eax ) AS2( pxor xmm0, xmm4 )
AS2( add WORD_REG(cx), 16 ) AS2( sub WORD_REG(dx), 1 ) ASJ( jnz, 0, b ) AS2( movdqa [WORD_REG(si)], xmm0 )
AS_POP_IF86( bp) AS_POP_IF86( bx)
#ifdef __GNUC__
".att_syntax prefix;" : : "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable) : "memory", "cc", "%eax" #if CRYPTOPP_BOOL_X64
, "%ebx", "%r11" #endif
); #elif defined(CRYPTOPP_GENERATE_X64_MASM)
pop rbx pop rdi pop rsi ret GCM_AuthenticateBlocks_2K ENDP #endif
return len%16; } case 3: // SSE2 and 64K tables
{ #ifdef __GNUC__
__asm__ __volatile__ ( ".intel_syntax noprefix;" #elif defined(CRYPTOPP_GENERATE_X64_MASM)
ALIGN 8 GCM_AuthenticateBlocks_64K PROC FRAME rex_push_reg rsi push_reg rdi .endprolog mov rsi, r8 #else
AS2( mov WORD_REG(cx), data ) AS2( mov WORD_REG(dx), len ) AS2( mov WORD_REG(si), hashBuffer ) AS2( shr WORD_REG(dx), 4 ) #endif
AS2( movdqa xmm0, [WORD_REG(si)] )
#undef MUL_TABLE
#define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16
ASL(1) AS2( movdqu xmm1, [WORD_REG(cx)] ) AS2( pxor xmm1, xmm0 ) AS2( pxor xmm0, xmm0 )
#undef SSE2_MUL_32BITS
#define SSE2_MUL_32BITS(i) \
AS2( movd eax, xmm1 )\ AS2( psrldq xmm1, 4 )\ AS2( movzx edi, al )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8] )\ AS2( movzx edi, ah )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8] )\ AS2( shr eax, 16 )\ AS2( movzx edi, al )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8] )\ AS2( movzx edi, ah )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8] )\
SSE2_MUL_32BITS(0) SSE2_MUL_32BITS(1) SSE2_MUL_32BITS(2) SSE2_MUL_32BITS(3)
AS2( add WORD_REG(cx), 16 ) AS2( sub WORD_REG(dx), 1 ) ASJ( jnz, 1, b ) AS2( movdqa [WORD_REG(si)], xmm0 )
#ifdef __GNUC__
".att_syntax prefix;" : : "c" (data), "d" (len/16), "S" (hashBuffer) : "memory", "cc", "%edi", "%eax" ); #elif defined(CRYPTOPP_GENERATE_X64_MASM)
pop rdi pop rsi ret GCM_AuthenticateBlocks_64K ENDP #endif
return len%16; } #endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
}
return len%16; }
void GCM_Base::AuthenticateLastHeaderBlock() { if (m_bufferedDataLength > 0) { memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength); m_bufferedDataLength = 0; GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } }
void GCM_Base::AuthenticateLastConfidentialBlock() { GCM_Base::AuthenticateLastHeaderBlock(); PutBlock<word64, BigEndian, true>(NULL, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); }
void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize) { m_ctr.Seek(0); ReverseHashBufferIfNeeded(); m_ctr.ProcessData(mac, HashBuffer(), macSize); }
NAMESPACE_END
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
#endif
|