|
|
// luc.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "luc.h"
#include "asn.h"
#include "nbtheory.h"
#include "sha.h"
#include "algparam.h"
NAMESPACE_BEGIN(CryptoPP)
void LUC_TestInstantiations() { LUC_HMP<SHA>::Signer t1; LUCFunction t2; InvertibleLUCFunction t3; }
void DL_Algorithm_LUC_HMP::Sign(const DL_GroupParameters<Integer> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const { const Integer &q = params.GetSubgroupOrder(); r = params.ExponentiateBase(k); s = (k + x*(r+e)) % q; }
bool DL_Algorithm_LUC_HMP::Verify(const DL_GroupParameters<Integer> ¶ms, const DL_PublicKey<Integer> &publicKey, const Integer &e, const Integer &r, const Integer &s) const { Integer p = params.GetGroupOrder()-1; const Integer &q = params.GetSubgroupOrder();
Integer Vsg = params.ExponentiateBase(s); Integer Vry = publicKey.ExponentiatePublicElement((r+e)%q); return (Vsg*Vsg + Vry*Vry + r*r) % p == (Vsg * Vry * r + 4) % p; }
Integer DL_BasePrecomputation_LUC::Exponentiate(const DL_GroupPrecomputation<Element> &group, const Integer &exponent) const { return Lucas(exponent, m_g, static_cast<const DL_GroupPrecomputation_LUC &>(group).GetModulus()); }
void DL_GroupParameters_LUC::SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const { for (unsigned int i=0; i<exponentsCount; i++) results[i] = Lucas(exponents[i], base, GetModulus()); }
void LUCFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_e.BERDecode(seq); seq.MessageEnd(); }
void LUCFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_e.DEREncode(seq); seq.MessageEnd(); }
Integer LUCFunction::ApplyFunction(const Integer &x) const { DoQuickSanityCheck(); return Lucas(m_e, x, m_n); }
bool LUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n.IsOdd(); pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n; return pass; }
bool LUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent) ; }
void LUCFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent) ; }
// *****************************************************************************
// private key operations:
class LUCPrimeSelector : public PrimeSelector { public: LUCPrimeSelector(const Integer &e) : m_e(e) {} bool IsAcceptable(const Integer &candidate) const { return RelativelyPrime(m_e, candidate+1) && RelativelyPrime(m_e, candidate-1); } Integer m_e; };
void InvertibleLUCFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
if (modulusSize < 16) throw InvalidArgument("InvertibleLUCFunction: specified modulus size is too small");
m_e = alg.GetValueWithDefault("PublicExponent", Integer(17));
if (m_e < 5 || m_e.IsEven()) throw InvalidArgument("InvertibleLUCFunction: invalid public exponent");
LUCPrimeSelector selector(m_e); AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize) ("PointerToPrimeSelector", selector.GetSelectorPointer()); m_p.GenerateRandom(rng, primeParam); m_q.GenerateRandom(rng, primeParam);
m_n = m_p * m_q; m_u = m_q.InverseMod(m_p); }
void InvertibleLUCFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e) { GenerateRandom(rng, MakeParameters("ModulusSize", (int)keybits)("PublicExponent", e)); }
void InvertibleLUCFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt);
Integer version(seq); if (!!version) // make sure version is 0
BERDecodeError();
m_n.BERDecode(seq); m_e.BERDecode(seq); m_p.BERDecode(seq); m_q.BERDecode(seq); m_u.BERDecode(seq); seq.MessageEnd(); }
void InvertibleLUCFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt);
const byte version[] = {INTEGER, 1, 0}; seq.Put(version, sizeof(version)); m_n.DEREncode(seq); m_e.DEREncode(seq); m_p.DEREncode(seq); m_q.DEREncode(seq); m_u.DEREncode(seq); seq.MessageEnd(); }
Integer InvertibleLUCFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const { // not clear how to do blinding with LUC
DoQuickSanityCheck(); return InverseLucas(m_e, x, m_q, m_p, m_u); }
bool InvertibleLUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = LUCFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n; pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && RelativelyPrime(m_e, m_p+1); pass = pass && RelativelyPrime(m_e, m_p-1); pass = pass && RelativelyPrime(m_e, m_q+1); pass = pass && RelativelyPrime(m_e, m_q-1); pass = pass && m_u * m_q % m_p == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; }
bool InvertibleLUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper<LUCFunction>(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; }
void InvertibleLUCFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper<LUCFunction>(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; }
NAMESPACE_END
|