|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: A little helper class that computes a spline patch
//
// $Workfile: $
// $Date: $
//
//-----------------------------------------------------------------------------
// $Log: $
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "splinepatch.h"
#include "mathlib/vmatrix.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Catmull rom blend weights
//-----------------------------------------------------------------------------
static VMatrix s_CatmullRom( -0.5, 1.5, -1.5, 0.5, 1, -2.5, 2, -0.5, -0.5, 0, 0.5, 0, 0, 1, 0, 0 );
//-----------------------------------------------------------------------------
// The last argument represents the number of float channels in addition to position
//-----------------------------------------------------------------------------
CSplinePatch::CSplinePatch( ) : m_ChannelCount(0), m_Width(0), m_Height(0), m_ppPositions(0), m_LinearFactor(1.0f) { }
CSplinePatch::~CSplinePatch() { }
//-----------------------------------------------------------------------------
// Initialize the spline patch
//-----------------------------------------------------------------------------
void CSplinePatch::Init( int w, int h, int extraChannels ) { assert( extraChannels < MAX_CHANNELS ); m_ChannelCount = extraChannels; m_Width = w; m_Height = h; m_LinearFactor = 1.0f; }
//-----------------------------------------------------------------------------
// 0 = linear, 1 = spliney!
//-----------------------------------------------------------------------------
void CSplinePatch::SetLinearBlend( float factor ) { m_LinearFactor = factor; }
//-----------------------------------------------------------------------------
// Hooks the patch up to externally controlled data...
//-----------------------------------------------------------------------------
void CSplinePatch::SetControlPositions( Vector const** pPositions ) { m_ppPositions = pPositions; }
void CSplinePatch::SetChannelData( int channel, float* pChannel ) { m_pChannel[channel] = pChannel; }
static inline void ComputeIndex( int i, int maxval, int* idx ) { if (i == 0) { idx[0] = 0; idx[1] = 0; idx[2] = 1; idx[3] = (maxval > 2) ? 2 : 1; } else { idx[0] = i-1; idx[1] = i; if (i >= maxval - 1) { idx[2] = i; idx[3] = i; } else { idx[2] = i+1; if (i >= maxval - 2) idx[3] = i+1; else idx[3]= i+2; } } }
//-----------------------------------------------------------------------------
// Computes indices of the samples to read for this interpolation
//-----------------------------------------------------------------------------
void CSplinePatch::ComputeIndices( ) { int s[4]; int t[4];
ComputeIndex( m_is, m_Width, s ); ComputeIndex( m_it, m_Height, t );
int base = t[0] * m_Width; m_SampleIndices[0][0] = base + s[0]; m_SampleIndices[1][0] = base + s[1]; m_SampleIndices[2][0] = base + s[2]; m_SampleIndices[3][0] = base + s[3];
base = t[1] * m_Width; m_SampleIndices[0][1] = base + s[0]; m_SampleIndices[1][1] = base + s[1]; m_SampleIndices[2][1] = base + s[2]; m_SampleIndices[3][1] = base + s[3];
base = t[2] * m_Width; m_SampleIndices[0][2] = base + s[0]; m_SampleIndices[1][2] = base + s[1]; m_SampleIndices[2][2] = base + s[2]; m_SampleIndices[3][2] = base + s[3];
base = t[3] * m_Width; m_SampleIndices[0][3] = base + s[0]; m_SampleIndices[1][3] = base + s[1]; m_SampleIndices[2][3] = base + s[2]; m_SampleIndices[3][3] = base + s[3]; }
//-----------------------------------------------------------------------------
// Call this before querying the patch for data at (s,t)
//-----------------------------------------------------------------------------
void CSplinePatch::SetupPatchQuery( float s, float t ) { m_is = (int)s; m_it = (int)t;
if( m_is >= m_Width ) { m_is = m_Width - 1; m_fs = 1.0f; } else { m_fs = s - m_is; }
if( m_it >= m_Height ) { m_it = m_Height - 1; m_ft = 1.0f; } else { m_ft = t - m_it; }
ComputeIndices( );
// The patch equation is:
// px = S * M * Gx * M^T * T^T
// py = S * M * Gy * M^T * T^T
// pz = S * M * Gz * M^T * T^T
// where S = [s^3 s^2 s 1], T = [t^3 t^2 t 1]
// M is the patch type matrix, in my case I'm using a catmull-rom
// G is the array of control points. rows have constant t
// We're gonna cache off S * M and M^T * T^T...
Vector4D svec, tvec; float fs2 = m_fs * m_fs; svec[0] = fs2 * m_fs; svec[1] = fs2; svec[2] = m_fs; svec[3] = 1.0f; float ft2 = m_ft * m_ft; tvec[0] = ft2 * m_ft; tvec[1] = ft2; tvec[2] = m_ft; tvec[3] = 1.0f;
// This sets up the catmull rom matrix based on the blend factor!!
// we can go from linear to curvy!
s_CatmullRom.Init( -0.5 * m_LinearFactor, 1.5 * m_LinearFactor, -1.5 * m_LinearFactor, 0.5 * m_LinearFactor, m_LinearFactor, -2.5 * m_LinearFactor, 2 * m_LinearFactor, -0.5 * m_LinearFactor, -0.5 * m_LinearFactor, -1 + m_LinearFactor, 1 - 0.5 * m_LinearFactor, 0, 0, 1, 0, 0 ); Vector4DMultiplyTranspose( s_CatmullRom, svec, m_SVec ); Vector4DMultiplyTranspose( s_CatmullRom, tvec, m_TVec ); }
//-----------------------------------------------------------------------------
// Gets the point and normal at (i,j) specified above
//-----------------------------------------------------------------------------
void CSplinePatch::GetPointAndNormal( Vector& position, Vector& normal ) const { // The patch equation is:
// px = S * M * Gx * M^T * T^T
// py = S * M * Gy * M^T * T^T
// pz = S * M * Gz * M^T * T^T
// where S = [s^3 s^2 s 1], T = [t^3 t^2 t 1]
// M is the patch type matrix, in my case I'm using a catmull-rom
// G is the array of control points. rows have constant t
VMatrix controlPointsX, controlPointsY, controlPointsZ; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { int idx = m_SampleIndices[i][j]; controlPointsX[i][j] = m_ppPositions[ idx ]->x; controlPointsY[i][j] = m_ppPositions[ idx ]->y; controlPointsZ[i][j] = m_ppPositions[ idx ]->z; } }
Vector4D tmp;
Vector4DMultiply( controlPointsX, m_TVec, tmp ); position[0] = DotProduct4D( tmp, m_SVec ); Vector4DMultiply( controlPointsY, m_TVec, tmp ); position[1] = DotProduct4D( tmp, m_SVec ); Vector4DMultiply( controlPointsZ, m_TVec, tmp ); position[2] = DotProduct4D( tmp, m_SVec );
// Normal computation
float fs2 = m_fs * m_fs; float ft2 = m_ft * m_ft; Vector4D dsvec( 3.0f * fs2, 2.0f * m_fs, 1.0f, 0.0f ); Vector4D dtvec( 3.0f * ft2, 2.0f * m_ft, 1.0f, 0.0f );
Vector4DMultiplyTranspose( s_CatmullRom, dsvec, dsvec ); Vector4DMultiplyTranspose( s_CatmullRom, dtvec, dtvec );
Vector ds, dt;
Vector4DMultiply( controlPointsX, m_TVec, tmp ); ds[0] = DotProduct4D( tmp, dsvec ); Vector4DMultiply( controlPointsY, m_TVec, tmp ); ds[1] = DotProduct4D( tmp, dsvec ); Vector4DMultiply( controlPointsZ, m_TVec, tmp ); ds[2] = DotProduct4D( tmp, dsvec );
Vector4DMultiply( controlPointsX, dtvec, tmp ); dt[0] = DotProduct4D( tmp, m_SVec ); Vector4DMultiply( controlPointsY, dtvec, tmp ); dt[1] = DotProduct4D( tmp, m_SVec ); Vector4DMultiply( controlPointsZ, dtvec, tmp ); dt[2] = DotProduct4D( tmp, m_SVec );
CrossProduct( ds, dt, normal ); VectorNormalize( normal ); }
//-----------------------------------------------------------------------------
// Gets at other channels
//-----------------------------------------------------------------------------
float CSplinePatch::GetChannel( int channel ) const { // The patch equation is:
// px = S * M * Gx * M^T * T^T
// py = S * M * Gy * M^T * T^T
// pz = S * M * Gz * M^T * T^T
// where S = [s^3 s^2 s 1], T = [t^3 t^2 t 1]
// M is the patch type matrix, in my case I'm using a catmull-rom
// G is the array of control points. rows have constant t
assert( m_pChannel[channel] );
VMatrix controlPoints; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { controlPoints[i][j] = m_pChannel[channel][ m_SampleIndices[i][j] ]; } }
Vector4D tmp; Vector4DMultiply( controlPoints, m_TVec, tmp ); return DotProduct4D( tmp, m_SVec ); }
|