|
|
//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: The Escort's Shield weapon effect
//
// $Workfile: $
// $Date: $
//
//-----------------------------------------------------------------------------
// $Log: $
//
// $NoKeywords: $
//=============================================================================//
#include "sheetsimulator.h"
#include "edict.h"
#include "collisionutils.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define COLLISION_PLANE_OFFSET 6.0f
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
CSheetSimulator::CSheetSimulator( TraceLineFunc_t traceline, TraceHullFunc_t traceHull ) : m_pFixedPoint(0), m_ControlPoints(0), m_TraceLine(traceline), m_TraceHull(traceHull) { }
CSheetSimulator::~CSheetSimulator() { if (m_pFixedPoint) { delete[] m_pFixedPoint; delete[] m_ControlPoints; delete[] m_pCollisionPlanes; delete[] m_pValidCollisionPlane; } delete[] m_Particle; }
//-----------------------------------------------------------------------------
// Initialization
//-----------------------------------------------------------------------------
void CSheetSimulator::Init( int w, int h, int fixedPointCount ) { m_ControlPointOffset.Init( 0, 0, 0 ); m_HorizontalCount = w; m_VerticalCount = h; m_Particle = new Particle_t[w * h]; m_FixedPointCount = fixedPointCount; if (fixedPointCount) { m_pFixedPoint = new Vector[fixedPointCount]; m_ControlPoints = new Vector[fixedPointCount]; m_pCollisionPlanes = new cplane_t[fixedPointCount]; m_pValidCollisionPlane = new bool[fixedPointCount]; }
// Initialize distances and such
m_Origin = Vector(0, 0, 0); for ( int i = 0; i < NumParticles(); ++i ) { m_Particle[i].m_Mass = 1.0f; m_Particle[i].m_Collided = false; m_Particle[i].m_Position = Vector(0,0,0); m_Particle[i].m_Velocity = Vector(0,0,0); } }
//-----------------------------------------------------------------------------
// adds springs
//-----------------------------------------------------------------------------
void CSheetSimulator::AddSpring( int p1, int p2, float restLength ) { int spring = m_Springs.AddToTail(); m_Springs[spring].m_Particle1 = p1; m_Springs[spring].m_Particle2 = p2; m_Springs[spring].m_RestLength = restLength; }
void CSheetSimulator::AddFixedPointSpring( int fixedPoint, int p, float restLength ) { Assert( fixedPoint < m_FixedPointCount ); int spring = m_Springs.AddToTail(); m_Springs[spring].m_Particle1 = p; m_Springs[spring].m_Particle2 = -(fixedPoint+1); m_Springs[spring].m_RestLength = restLength; }
//-----------------------------------------------------------------------------
// Gravity
//-----------------------------------------------------------------------------
void CSheetSimulator::SetGravityConstant( float g ) { m_GravityConstant = g; }
void CSheetSimulator::AddGravityForce( int particle ) { m_Gravity.AddToTail( particle ); }
//-----------------------------------------------------------------------------
// spring constants....
//-----------------------------------------------------------------------------
void CSheetSimulator::SetPointSpringConstant( float constant ) { m_PointSpringConstant = constant; }
void CSheetSimulator::SetFixedSpringConstant( float constant ) { m_FixedSpringConstant = constant; }
void CSheetSimulator::SetViscousDrag( float drag ) { m_ViscousDrag = drag; }
void CSheetSimulator::SetSpringDampConstant( float damp ) { m_DampConstant = damp; }
//-----------------------------------------------------------------------------
// Sets the collision group
//-----------------------------------------------------------------------------
void CSheetSimulator::SetCollisionGroup( int group ) { m_CollisionGroup = group; }
//-----------------------------------------------------------------------------
// bounding box for collision
//-----------------------------------------------------------------------------
void CSheetSimulator::SetBoundingBox( Vector& mins, Vector& maxs ) { m_FrustumBoxMin = mins; m_FrustumBoxMax = maxs; }
//-----------------------------------------------------------------------------
// bounding box for collision
//-----------------------------------------------------------------------------
void CSheetSimulator::ComputeBounds( Vector& mins, Vector& maxs ) { VectorCopy( m_Particle[0].m_Position, mins ); VectorCopy( m_Particle[0].m_Position, maxs );
for (int i = 1; i < NumParticles(); ++i) { VectorMin( mins, m_Particle[i].m_Position, mins ); VectorMax( maxs, m_Particle[i].m_Position, maxs ); } mins -= m_Origin; maxs -= m_Origin; }
//-----------------------------------------------------------------------------
// Set the shield position
//-----------------------------------------------------------------------------
void CSheetSimulator::SetPosition( const Vector& origin, const QAngle& angles ) { // FIXME: Need a better metric for position reset
if (m_Origin.DistToSqr(origin) > 1e3) { for ( int i = 0; i < NumParticles(); ++i ) { m_Particle[i].m_Position = origin; m_Particle[i].m_Velocity = Vector(0,0,0); } }
m_Origin = origin; m_Angles = angles; ComputeControlPoints(); }
//-----------------------------------------------------------------------------
// get at the points
//-----------------------------------------------------------------------------
int CSheetSimulator::NumHorizontal() const { return m_HorizontalCount; }
int CSheetSimulator::NumVertical() const { return m_VerticalCount; }
int CSheetSimulator::PointCount() const { return m_HorizontalCount * m_VerticalCount; }
const Vector& CSheetSimulator::GetPoint( int x, int y ) const { return m_Particle[y * NumHorizontal() + x].m_Position; }
const Vector& CSheetSimulator::GetPoint( int i ) const { return m_Particle[i].m_Position; }
// Fixed points
Vector& CSheetSimulator::GetFixedPoint( int i ) { Assert( i < m_FixedPointCount ); return m_pFixedPoint[i]; }
//-----------------------------------------------------------------------------
// For offseting the control points
//-----------------------------------------------------------------------------
void CSheetSimulator::SetControlPointOffset( const Vector& offset ) { VectorCopy( offset, m_ControlPointOffset ); }
//-----------------------------------------------------------------------------
// Compute the position of the fixed points
//-----------------------------------------------------------------------------
void CSheetSimulator::ComputeControlPoints() { //trace_t tr;
Vector forward, right, up; AngleVectors(m_Angles, &forward, &right, &up);
for (int i = 0; i < m_FixedPointCount; ++i) { VectorAdd( m_Origin, m_ControlPointOffset, m_ControlPoints[i] ); m_ControlPoints[i] += right * m_pFixedPoint[i].x; m_ControlPoints[i] += up * m_pFixedPoint[i].z; m_ControlPoints[i] += forward * m_pFixedPoint[i].y; } }
//-----------------------------------------------------------------------------
// Clear forces + velocities affecting each point
//-----------------------------------------------------------------------------
void CSheetSimulator::ClearForces() { int i; for ( i = 0; i < NumParticles(); ++i) { m_Particle[i].m_Force = Vector(0,0,0); } }
//-----------------------------------------------------------------------------
// Update the shield positions
//-----------------------------------------------------------------------------
void CSheetSimulator::ComputeForces() {
float springConstant; int i; for ( i = 0; i < m_Springs.Count(); ++i ) { // Hook's law for a damped spring:
// got two particles, a and b with positions xa and xb and velocities va and vb
// and l = xa - xb
// fa = -( ks * (|l| - r) + kd * (va - vb) dot (l) / |l|) * l/|l|
Vector dx, dv, force; if (m_Springs[i].m_Particle2 < 0) { // Case where we're connected to a control point
dx = m_Particle[m_Springs[i].m_Particle1].m_Position - m_ControlPoints[- m_Springs[i].m_Particle2 - 1]; dv = m_Particle[m_Springs[i].m_Particle1].m_Velocity;
springConstant = m_FixedSpringConstant; } else { // Case where we're connected to another part of the shield
dx = m_Particle[m_Springs[i].m_Particle1].m_Position - m_Particle[m_Springs[i].m_Particle2].m_Position; dv = m_Particle[m_Springs[i].m_Particle1].m_Velocity - m_Particle[m_Springs[i].m_Particle2].m_Velocity;
springConstant = m_PointSpringConstant; }
float length = dx.Length(); if (length < 1e-6) continue;
dx /= length;
float springfactor = springConstant * ( length - m_Springs[i].m_RestLength); float dampfactor = m_DampConstant * DotProduct( dv, dx ); force = dx * -( springfactor + dampfactor );
m_Particle[m_Springs[i].m_Particle1].m_Force += force; if (m_Springs[i].m_Particle2 >= 0) m_Particle[m_Springs[i].m_Particle2].m_Force -= force;
Assert( IsFinite( m_Particle[m_Springs[i].m_Particle1].m_Force.x ) && IsFinite( m_Particle[m_Springs[i].m_Particle1].m_Force.y) && IsFinite( m_Particle[m_Springs[i].m_Particle1].m_Force.z) ); }
// gravity term
for (i = 0; i < m_Gravity.Count(); ++i) { m_Particle[m_Gravity[i]].m_Force.z -= m_Particle[m_Gravity[i]].m_Mass * m_GravityConstant; }
// viscous drag term
for (i = 0; i < NumParticles(); ++i) { // Factor out bad forces for surface contact
// Do this before the drag term otherwise the drag will be too large
if ((m_Particle[i].m_CollisionPlane) >= 0) { const Vector& planeNormal = m_pCollisionPlanes[m_Particle[i].m_CollisionPlane].normal; float perp = DotProduct( m_Particle[i].m_Force, planeNormal ); if (perp < 0) m_Particle[i].m_Force -= planeNormal * perp; }
Vector drag = m_Particle[i].m_Velocity * m_ViscousDrag; m_Particle[i].m_Force -= drag; } }
//-----------------------------------------------------------------------------
// Used for testing neighbors against a particular plane
//-----------------------------------------------------------------------------
void CSheetSimulator::TestVertAgainstPlane( int vert, int plane, bool bFarTest ) { if (!m_pValidCollisionPlane[plane]) return;
// Compute distance to the plane under consideration
cplane_t* pPlane = &m_pCollisionPlanes[plane];
Ray_t ray; ray.Init( m_Origin, m_Particle[vert].m_Position ); float t = IntersectRayWithPlane( ray, *pPlane );
if (!bFarTest || (t <= 1.0f)) { if ((t < m_Particle[vert].m_CollisionDist) && (t >= 0.0f)) { m_Particle[vert].m_CollisionDist = t; m_Particle[vert].m_CollisionPlane = plane; } } }
//-----------------------------------------------------------------------------
// Collision detect
//-----------------------------------------------------------------------------
void CSheetSimulator::InitPosition( int i ) { // Collision test...
// Check a line that goes farther out than our current point...
// This will let us check for resting contact
trace_t tr; m_TraceHull(m_Origin, m_ControlPoints[i], m_FrustumBoxMin, m_FrustumBoxMax, MASK_SOLID_BRUSHONLY, m_CollisionGroup, &tr ); if ( tr.fraction - 1.0 < 0 ) { memcpy( &m_pCollisionPlanes[i], &tr.plane, sizeof(cplane_t) ); m_pCollisionPlanes[i].dist += COLLISION_PLANE_OFFSET;
// The trace endpos represents where the center of the box
// ends up being. We actually want to choose a point which is on the
// collision plane
Vector delta; VectorSubtract( m_ControlPoints[i], m_Origin, delta ); int maxdist = VectorNormalize( delta ); float dist = (m_pCollisionPlanes[i].dist - DotProduct( m_Origin, m_pCollisionPlanes[i].normal )) / DotProduct( delta, m_pCollisionPlanes[i].normal );
if (dist > maxdist) dist = maxdist;
VectorMA( m_Origin, dist, delta, m_Particle[i].m_Position ); m_pValidCollisionPlane[i] = true; } else if (tr.allsolid || tr.startsolid) { m_pValidCollisionPlane[i] = true; VectorSubtract( m_Origin, m_ControlPoints[i], m_pCollisionPlanes[i].normal ); VectorNormalize( m_pCollisionPlanes[i].normal ); m_pCollisionPlanes[i].dist = DotProduct( m_Origin, m_pCollisionPlanes[i].normal ) - COLLISION_PLANE_OFFSET; m_pCollisionPlanes[i].type = 3; } else { VectorCopy( m_ControlPoints[i], m_Particle[i].m_Position ); m_pValidCollisionPlane[i] = false; } }
//-----------------------------------------------------------------------------
// Collision detect
//-----------------------------------------------------------------------------
void CSheetSimulator::DetectCollision( int i, float flPlaneOffset ) { // Collision test...
// Check a line that goes farther out than our current point...
// This will let us check for resting contact
// Vector endpt = m_Particle[i].m_Position;
trace_t tr; m_TraceHull(m_Origin, m_ControlPoints[i], m_FrustumBoxMin, m_FrustumBoxMax, MASK_SOLID_BRUSHONLY, m_CollisionGroup, &tr ); if ( tr.fraction - 1.0 < 0 ) { m_pValidCollisionPlane[i] = true; memcpy( &m_pCollisionPlanes[i], &tr.plane, sizeof(cplane_t) ); m_pCollisionPlanes[i].dist += flPlaneOffset; } else if (tr.allsolid || tr.startsolid) { m_pValidCollisionPlane[i] = true; VectorSubtract( m_Origin, m_ControlPoints[i], m_pCollisionPlanes[i].normal ); VectorNormalize( m_pCollisionPlanes[i].normal ); m_pCollisionPlanes[i].dist = DotProduct( m_Origin, m_pCollisionPlanes[i].normal ) - flPlaneOffset; m_pCollisionPlanes[i].type = 3; } else { m_pValidCollisionPlane[i] = false; } }
//-----------------------------------------------------------------------------
// Collision plane fixup
//-----------------------------------------------------------------------------
void CSheetSimulator::DetermineBestCollisionPlane( bool bFarTest ) { // Check neighbors for violation of collision plane constraints
for ( int i = 0; i < NumVertical(); ++i) { for ( int j = 0; j < NumHorizontal(); ++j) { // Here's the particle we're making springs for
int idx = i * NumHorizontal() + j;
// Now that we've seen all collisions, find the best collision plane
// to use (look at myself and all neighbors). The best plane
// is the one that comes closest to the origin.
m_Particle[idx].m_CollisionDist = FLT_MAX; m_Particle[idx].m_CollisionPlane = -1; TestVertAgainstPlane( idx, idx, bFarTest ); if (j > 0) { TestVertAgainstPlane( idx, idx-1, bFarTest ); } if (j < NumHorizontal() - 1) { TestVertAgainstPlane( idx, idx+1, bFarTest ); } if (i > 0) TestVertAgainstPlane( idx, idx-NumHorizontal(), bFarTest ); if (i < NumVertical() - 1) TestVertAgainstPlane( idx, idx+NumHorizontal(), bFarTest ); } } }
//-----------------------------------------------------------------------------
// satify collision constraints
//-----------------------------------------------------------------------------
void CSheetSimulator::SatisfyCollisionConstraints() { // Eliminate velocity perp to a collision plane
for ( int i = 0; i < NumParticles(); ++i ) { // The actual collision plane
if (m_Particle[i].m_CollisionPlane >= 0) { cplane_t* pPlane = &m_pCollisionPlanes[m_Particle[i].m_CollisionPlane];
// Fix up position so it lies on the plane
Vector delta = m_Particle[i].m_Position - m_Origin; m_Particle[i].m_Position = m_Origin + delta * m_Particle[i].m_CollisionDist;
float perp = DotProduct( m_Particle[i].m_Velocity, pPlane->normal ); if (perp < 0) m_Particle[i].m_Velocity -= pPlane->normal * perp; } } }
//-----------------------------------------------------------------------------
// integrator
//-----------------------------------------------------------------------------
void CSheetSimulator::EulerStep( float dt ) { ClearForces(); ComputeForces();
// Update positions and velocities
for ( int i = 0; i < NumParticles(); ++i) { m_Particle[i].m_Position += m_Particle[i].m_Velocity * dt; m_Particle[i].m_Velocity += m_Particle[i].m_Force * dt / m_Particle[i].m_Mass;
Assert( IsFinite( m_Particle[i].m_Velocity.x ) && IsFinite( m_Particle[i].m_Velocity.y) && IsFinite( m_Particle[i].m_Velocity.z) );
// clamp for stability
float lensq = m_Particle[i].m_Velocity.LengthSqr(); if (lensq > 1e6) { m_Particle[i].m_Velocity *= 1e3 / sqrt(lensq); } } SatisfyCollisionConstraints(); }
//-----------------------------------------------------------------------------
// Update the shield position:
//-----------------------------------------------------------------------------
void CSheetSimulator::Simulate( float dt ) { // Initialize positions if necessary
EulerStep(dt); }
void CSheetSimulator::Simulate( float dt, int steps ) { ComputeControlPoints(); // Initialize positions if necessary
dt /= steps; for (int i = 0; i < steps; ++i) { // Each step, we want to re-select the best collision planes to constrain
// the movement by
DetermineBestCollisionPlane();
EulerStep(dt); } }
#define CLAMP_DIST 6.0
void CSheetSimulator::ClampPointsToCollisionPlanes() { // Find collision planes to clamp to
DetermineBestCollisionPlane( false );
// Eliminate velocity perp to a collision plane
for ( int i = 0; i < NumParticles(); ++i ) { // The actual collision plane
if (m_Particle[i].m_CollisionPlane >= 0) { cplane_t* pPlane = &m_pCollisionPlanes[m_Particle[i].m_CollisionPlane];
// Make sure we have a close enough perpendicular distance to the plane...
float flPerpDist = fabs ( DotProduct( m_Particle[i].m_Position, pPlane->normal ) - pPlane->dist ); if (flPerpDist >= CLAMP_DIST) continue;
// Drop it along the perp
VectorMA( m_Particle[i].m_Position, -flPerpDist, pPlane->normal, m_Particle[i].m_Position ); } } }
//-----------------------------------------------------------------------------
// Class to help dealing with the iterative computation
//-----------------------------------------------------------------------------
CIterativeSheetSimulator::CIterativeSheetSimulator( TraceLineFunc_t traceline, TraceHullFunc_t traceHull ) : CSheetSimulator( traceline, traceHull ), m_SimulationSteps(0) { }
void CIterativeSheetSimulator::BeginSimulation( float dt, int steps, int substeps, int collisionCount ) { m_CurrentCollisionPt = 0; m_TimeStep = dt; m_SimulationSteps = steps; m_TotalSteps = steps; m_SubSteps = substeps; m_InitialPass = true; m_CollisionCount = collisionCount; }
bool CIterativeSheetSimulator::Think( ) { Assert( m_SimulationSteps >= 0 );
// Need to iteratively perform collision detection
if (m_CurrentCollisionPt >= 0) { DetectCollisions(); return false; } else { // Simulate it a bunch of times
Simulate(m_TimeStep, m_SubSteps);
// Reset the collision point for collision detect
m_CurrentCollisionPt = 0; --m_SimulationSteps;
if ( m_SimulationSteps == 0 ) { ClampPointsToCollisionPlanes(); }
return true; } }
// Iterative collision detection
void CIterativeSheetSimulator::DetectCollisions( void ) { for ( int i = 0; i < m_CollisionCount; ++i ) { if (m_InitialPass) { InitPosition( m_CurrentCollisionPt ); } else { float flOffset = COLLISION_PLANE_OFFSET * ( (float)(m_SimulationSteps - 1) / (float)(m_TotalSteps - 1) ); DetectCollision( m_CurrentCollisionPt, flOffset ); }
if (++m_CurrentCollisionPt >= NumParticles()) { m_CurrentCollisionPt = -1; m_InitialPass = false; break; } } }
|