|
|
//===================== Copyright (c) Valve Corporation. All Rights Reserved. ======================
// STATIC: "BUMPMAP" "0..2" // STATIC: "BUMPMAP2" "0..1" // STATIC: "CUBEMAP" "0..2" // STATIC: "ENVMAPMASK" "0..1" // STATIC: "BASEALPHAENVMAPMASK" "0..1" // STATIC: "SELFILLUM" "0..1" // STATIC: "SEAMLESS" "0..1" // STATIC: "ENVMAPANISOTROPY" "0..1"
// STATIC: "TEXTURE3_BLENDMODE" "0..1" // STATIC: "TEXTURE4_BLENDMODE" "0..1"
// diffuse bump map is always true when bumpmapping is enabled, so just set it to 1 #define DIFFUSEBUMPMAP 1
// STATIC: "DETAIL_BLEND_MODE" "0..12" // STATIC: "FLASHLIGHT" "0..1" [ps20b] [CONSOLE] // STATIC: "SHADER_SRGB_READ" "0..1" [XBOX] // STATIC: "SHADER_SRGB_READ" "0..0" [PC] // STATIC: "SHADER_SRGB_READ" "0..0" [SONYPS3] // STATIC: "LIGHTING_PREVIEW" "0..3" [PC] // STATIC: "LIGHTING_PREVIEW" "0..0" [CONSOLE]
// STATIC: "CASCADED_SHADOW_MAPPING" "0..1" [ = g_pHardwareConfig->SupportsCascadedShadowMapping() ] [CONSOLE] // STATIC: "CASCADED_SHADOW_MAPPING" "0..0" [ = 0 ] [ps20] [PC] // STATIC: "CASCADED_SHADOW_MAPPING" "0..1" [ = g_pHardwareConfig->SupportsCascadedShadowMapping() && !ToolsEnabled() ] [ps20b] [ps30] [PC] // STATIC: "CSM_MODE" "0..0" [ = 0 ] [CONSOLE] // STATIC: "CSM_MODE" "0..0" [ = 0 ] [ps20] [ps20b] [PC] // STATIC: "CSM_MODE" "0..3" [ps30] [PC]
// STATIC: "CSM_BLENDING" "0..1" // 0 is old, 1 is for new/fixed blending of CSM and baked shadows
// DYNAMIC: "FASTPATHENVMAPCONTRAST" "0..1" // DYNAMIC: "FASTPATH" "0..1" // DYNAMIC: "WRITEWATERFOGTODESTALPHA" "0..1" // DYNAMIC: "WRITE_DEPTH_TO_DESTALPHA" "0..0" [ps20b] [CONSOLE] // DYNAMIC: "WRITE_DEPTH_TO_DESTALPHA" "0..1" [ps20b] [ps30] [PC] // DYNAMIC: "FLASHLIGHTSHADOWS" "0..1" [ps20b] [CONSOLE] // DYNAMIC: "FLASHLIGHTSHADOWS" "0..0" [ps20b] [ps30] [PC]
// DYNAMIC: "CASCADE_SIZE" "0..1" [ = ( pShaderAPI->IsCascadedShadowMapping() ) ? 1 : 0 ] [CONSOLE] // DYNAMIC: "CASCADE_SIZE" "0..1" [ = ( pShaderAPI->IsCascadedShadowMapping() ) ? 1 : 0 ] [ps20b] [PC] // DYNAMIC: "CASCADE_SIZE" "0..0" [ = 0 ] [ps20] [ps30] [PC]
// we only support detail blend modes 0, 7, 10, 11, and 12 // SKIP: ($DETAIL_BLEND_MODE == 1 ) // SKIP: ($DETAIL_BLEND_MODE == 2 ) // SKIP: ($DETAIL_BLEND_MODE == 3 ) // SKIP: ($DETAIL_BLEND_MODE == 4 ) // SKIP: ($DETAIL_BLEND_MODE == 5 ) // SKIP: ($DETAIL_BLEND_MODE == 6 ) // SKIP: ($DETAIL_BLEND_MODE == 8 ) // SKIP: ($DETAIL_BLEND_MODE == 9 )
// SKIP: ( $FLASHLIGHT == 0 ) && ( $FLASHLIGHTSHADOWS == 1 )
// program too complex for ps20. Don't do darkened cubemaps and 2 bump maps at the same time. Fairly arbitrary pairing just to get the damn thing compiling // SKIP: ( $CUBEMAP == 2 ) && ( $BUMPMAP2 ) [ps20] // program slightly more complex on 360 because of shader srgb read. Eliminate coexistance of srgb read, water fog, and darkened cubemaps // SKIP: ( $CUBEMAP == 2 ) && ( $PIXELFOGTYPE == 1 ) && ( $SHADER_SRGB_READ == 1 ) [CONSOLE]
// SKIP: ( $CASCADED_SHADOW_MAPPING == 0 ) && ( $CASCADE_SIZE != 0 ) // SKIP: ( $CASCADED_SHADOW_MAPPING != 0 ) && ( $SFM != 0 ) // SKIP: ( $CASCADED_SHADOW_MAPPING == 0 ) && ( $CSM_MODE != 0 )
// SKIP: $ENVMAPMASK && $BUMPMAP // SKIP: $BASEALPHAENVMAPMASK && $ENVMAPMASK // SKIP: $BASEALPHAENVMAPMASK && $SELFILLUM // SKIP: !$FASTPATH && $FASTPATHENVMAPCONTRAST // SKIP: !$FASTPATH && $FASTPATHENVMAPTINT // SKIP: !$BUMPMAP && $BUMPMAP2 // SKIP: $ENVMAPMASK && $BUMPMAP2 // SKIP: $SEAMLESS && ( $DETAIL_BLEND_MODE != 12 ) // SKIP: $ENVMAPANISOTROPY && !$ENVMAP && ( $BUMPMAP != 1 ) // SKIP: $ENVMAPANISOTROPY && $NORMALMAPALPHAENVMAPMASK
// Turning off 32bit lightmaps on Portal 2 to save shader perf. --Thorsten //#define USE_32BIT_LIGHTMAPS_ON_360 //uncomment to use 32bit lightmaps, be sure to keep this in sync with the same #define in materialsystem/cmatlightmaps.cpp
// NOTE: This has to be before inclusion of common_multiblend_fxc.h to get the vertex format right! #if ( DETAIL_BLEND_MODE == 12 ) #define DETAILTEXTURE 0 #else #define DETAILTEXTURE 1 #endif
#include "common_fog_ps_supportsvertexfog_fxc.h" #include "common_ps_fxc.h" #include "common_flashlight_fxc.h" #define PIXELSHADER #include "common_4wayblend_fxc.h"
#if SEAMLESS #define USE_FAST_PATH 1 #else #define USE_FAST_PATH FASTPATH #endif
const float4 g_EnvmapTint : register( c0 );
// 4WayBlend specific constants const float3 g_BumpBlendFactors : register( c1 ); const float4 g_LumStartEnd12 : register( c5 ); const float4 g_LumStartEnd34 : register( c28 ); const float4 g_BlendStartEnd23 : register( c15 ); const float4 g_uvScales23 : register( c16 ); const float4 g_BlendStartEnd4_uvScales4 : register( c17 ); const float3 g_LumBlends : register( c18 );
#if ( USE_FAST_PATH == 1 )
#if FASTPATHENVMAPCONTRAST == 0 static const float3 g_EnvmapContrast = { 0.0f, 0.0f, 0.0f }; #else static const float3 g_EnvmapContrast = { 1.0f, 1.0f, 1.0f }; #endif static const float3 g_EnvmapSaturation = { 1.0f, 1.0f, 1.0f }; static const float g_FresnelReflection = 1.0f; static const float g_OneMinusFresnelReflection = 0.0f; static const float4 g_SelfIllumTint = { 1.0f, 1.0f, 1.0f, 1.0f };
#else // ( USE_FAST_PATH == 0 )
const float3 g_EnvmapContrast : register( c2 ); const float3 g_EnvmapSaturation : register( c3 ); const float4 g_FresnelReflectionReg : register( c4 ); #define g_FresnelReflection g_FresnelReflectionReg.a #define g_OneMinusFresnelReflection g_FresnelReflectionReg.b const float4 g_SelfIllumTint : register( c7 );
#endif
const float3 g_DetailTint : register( c8 ); const float4 g_DetailBlendFactors : register( c9 );
const float3 g_EyePos : register( c10 ); const float4 g_FogParams : register( c11 ); const float4 g_TintValuesTimesLightmapScale : register( c12 );
const float4 g_FlashlightAttenuationFactors : register( c13 ); const float3 g_FlashlightPos : register( c14 );
const float4 g_ShadowTweaks : register( c19 );
#if !defined( SHADER_MODEL_PS_2_0 ) && ( FLASHLIGHT == 0 ) #define g_cAmbientColor cFlashlightScreenScale.rgb //const float3 g_cAmbientColor : register( c31 ); #endif
#if ( ( CUBEMAP == 2 ) || ( ENVMAPANISOTROPY ) ) const float4 g_envMapParams : register( c20 ); #endif
#if ( CUBEMAP == 2 ) #define g_DiffuseCubemapScale g_envMapParams.y #define g_fvDiffuseCubemapMin float3( g_envMapParams.z, g_envMapParams.z, g_envMapParams.z ) #define g_fvDiffuseCubemapMax float3( g_envMapParams.w, g_envMapParams.w, g_envMapParams.w ) #endif
#if ( ENVMAPANISOTROPY ) #define g_EnvmapAnisotropyScale g_envMapParams.x #endif
#if defined( SHADER_MODEL_PS_3_0 ) const float3 g_TintValuesWithoutLightmapScale : register( c21 ); #else const float4 g_vCSMLightColor : register( c21 ); #endif
// c22 - c27 available
sampler BaseTextureSampler : register( s0 ); sampler LightmapSampler : register( s1 ); samplerCUBE EnvmapSampler : register( s2 );
#if DETAILTEXTURE sampler DetailSampler : register( s12 ); #endif
sampler BumpmapSampler : register( s4 );
#if (BUMPMAP == 1) && defined( _PS3 ) // Causes the Cg compiler to automatically produce _bx2 modifier on the texture load instead of producing a MAD to range expand the vector, saving one instruction. #pragma texsign BumpmapSampler #pragma texformat BumpmapSampler RGBA8 #endif
#if BUMPMAP2 == 1 sampler BumpmapSampler2 : register( s5 ); #else sampler EnvmapMaskSampler : register( s5 ); #endif
sampler BaseTextureSampler2 : register( s7 ); sampler BaseTextureSampler3 : register( s8 ); sampler BaseTextureSampler4 : register( s11 );
#if ( defined( _X360 ) || defined( _PS3 ) ) && FLASHLIGHT sampler FlashlightSampler : register( s13 ); sampler ShadowDepthSampler : register( s14 ); sampler RandRotSampler : register( s15 );
#if defined(_PS3) // Needed for optimal shadow filter code generation on PS3. #pragma texformat ShadowDepthSampler DEPTH_COMPONENT24 #endif
#endif
//const float g_flTime : register( c27 );
float Luminance( float3 cColor ) { // Formula for calculating luminance based on NTSC standard return dot( cColor.rgb, float3( 0.2125, 0.7154, 0.0721 ) ); }
//-----------------------------------------------------------------------------------------------------------------------------
#if ( CASCADED_SHADOW_MAPPING ) && !defined( _X360 ) && !defined( _PS3 ) && !defined( SHADER_MODEL_PS_2_B ) const bool g_bCSMEnabled : register(b0); #undef CASCADE_SIZE #define CASCADE_SIZE 1 #endif
#if ( CASCADE_SIZE > 0 ) #undef CASCADE_SIZE #define CASCADE_SIZE 3 #endif
#if ( ( CASCADED_SHADOW_MAPPING ) && ( CASCADE_SIZE > 0 ) ) sampler CSMDepthAtlasSampler : register( s15 ); #if defined(_PS3) // Needed for optimal shadow filter code generation on PS3. #pragma texformat CSMDepthAtlasSampler DEPTH_COMPONENT24 #endif
#define CSM_LIGHTMAPPEDGENERIC
#include "csm_common_fxc.h" #include "csm_blending_fxc.h" #endif
//-----------------------------------------------------------------------------------------------------------------------------
#if defined( _X360 ) // The compiler runs out of temp registers in certain combos, increase the maximum for now #if ( (BUMPMAP == 2) && CUBEMAP && DIFFUSEBUMPMAP && FLASHLIGHT && SHADER_SRGB_READ ) [maxtempreg(44)] #elif ( SHADER_SRGB_READ == 1 ) [maxtempreg(41)] #else [maxtempreg(36)] #endif #endif
#if LIGHTING_PREVIEW == 2 LPREVIEW_PS_OUT main( PS_INPUT i ) #else float4_color_return_type main( PS_INPUT i ) : COLOR #endif { bool bDetailTexture = DETAILTEXTURE ? true : false; bool bBumpmap = BUMPMAP ? true : false; bool bDiffuseBumpmap = DIFFUSEBUMPMAP ? true : false; bool bEnvmapMask = ENVMAPMASK ? true : false; bool bBaseAlphaEnvmapMask = BASEALPHAENVMAPMASK ? true : false; bool bSelfIllum = SELFILLUM ? true : false;
HALF4 baseColor = 0.0h; HALF4 baseColor2 = 0.0h; HALF4 baseColor3 = 0.0h; HALF4 baseColor4 = 0.0h;
HALF4 vNormal = HALF4(0, 0, 1, 1); float3 baseTexCoords = float3(0,0,0); float3 worldPos = i.worldPos_projPosZ.xyz; HALF3x3 tangenttranspose = (HALF3x3)i.tangentSpaceTranspose;
float3 worldVertToEyeVector = g_EyePos - worldPos; #if SEAMLESS baseTexCoords = i.SeamlessTexCoord_fogFactorW.xyz; #else baseTexCoords.xy = i.BASETEXCOORD.xy; #endif
float3 coords = baseTexCoords;
float2 detailTexCoord = 0.0f; float2 bumpmapTexCoord = 0.0f; float2 bumpmap2TexCoord = 0.0f;
#if ( DETAILTEXTURE == 1 ) detailTexCoord = i.DETAILCOORDS; #endif
#if BUMPMAP bumpmapTexCoord = i.BUMPCOORDS; #endif
GetBaseTextureAndNormal( BaseTextureSampler, BaseTextureSampler2, BaseTextureSampler3, BaseTextureSampler4, BumpmapSampler, bBumpmap, coords, bumpmapTexCoord, g_uvScales23, g_BlendStartEnd4_uvScales4.zw, (HALF3)i.vertexColor.rgb, baseColor, baseColor2, baseColor3, baseColor4, vNormal ); #if ( ENVMAPANISOTROPY ) HALF anisotropyFactor = g_EnvmapAnisotropyScale; #endif #if BUMPMAP == 1 // not ssbump vNormal.xyz = vNormal.xyz * 2.0h - 1.0h; // make signed if we're not ssbump HALF3 vThisReallyIsANormal = vNormal.xyz; #if ( ENVMAPANISOTROPY ) anisotropyFactor *= (HALF)vNormal.a; #endif #endif
HALF4 lightmapColor1 = HALF4( 1.0, 1.0, 1.0, 1.0 ); HALF4 lightmapColor2 = HALF4( 1.0, 1.0, 1.0, 1.0 ); HALF4 lightmapColor3 = HALF4( 1.0, 1.0, 1.0, 1.0 );
#if LIGHTING_PREVIEW == 0 if ( bBumpmap && bDiffuseBumpmap ) { float2 bumpCoord1; float2 bumpCoord2; float2 bumpCoord3; ComputeBumpedLightmapCoordinates( i.lightmapTexCoord1And2, i.lightmapTexCoord3.xy, bumpCoord1, bumpCoord2, bumpCoord3 );
lightmapColor1 = LightMapSample( LightmapSampler, bumpCoord1 ); lightmapColor2 = LightMapSample( LightmapSampler, bumpCoord2 ); lightmapColor3 = LightMapSample( LightmapSampler, bumpCoord3 ); } else { float2 bumpCoord1 = ComputeLightmapCoordinates( i.lightmapTexCoord1And2, i.lightmapTexCoord3.xy ); lightmapColor1 = LightMapSample( LightmapSampler, bumpCoord1 ); } #endif
float2 envmapMaskTexCoord = i.ENVMAPMASKCOORDS;
HALF4 detailColor = HALF4( 1.0f, 1.0f, 1.0f, 1.0f );
#if DETAILTEXTURE #if SHADER_MODEL_PS_2_0 detailColor = h4tex2D( DetailSampler, detailTexCoord ); #else detailColor = HALF4( g_DetailTint, 1.0h ) * h4tex2D( DetailSampler, detailTexCoord ); #endif #endif
float lum1 = smoothstep( g_LumStartEnd12.x, g_LumStartEnd12.y, Luminance( baseColor.rgb ) ); float lum2 = smoothstep( g_LumStartEnd12.z, g_LumStartEnd12.w, Luminance( baseColor2.rgb ) ); float lum3 = smoothstep( g_LumStartEnd34.x, g_LumStartEnd34.y, Luminance( baseColor3.rgb ) ); float lum4 = smoothstep( g_LumStartEnd34.z, g_LumStartEnd34.w, Luminance( baseColor4.rgb ) );
float lum = lerp( 1-lum1, lum2, g_LumBlends.x ); float blendfactor1 = i.vertexBlend.g * lum + i.vertexBlend.g; blendfactor1 = smoothstep( g_BlendStartEnd23.x, g_BlendStartEnd23.y, blendfactor1 );
float lums = lerp( lum1, lum2, blendfactor1 ); lum = lerp( 1-lums, lum3, g_LumBlends.y ); float blendfactor2 = i.vertexBlend.b * lum + i.vertexBlend.b; blendfactor2 = smoothstep( g_BlendStartEnd23.z, g_BlendStartEnd23.w, blendfactor2 );
lums = lerp( lums, lum3, blendfactor2 ); lum = lerp( 1-lums, lum4, g_LumBlends.z ); float blendfactor3 = i.vertexBlend.a * lum + i.vertexBlend.a; blendfactor3 = smoothstep( g_BlendStartEnd4_uvScales4.x, g_BlendStartEnd4_uvScales4.y, blendfactor3 );
//#if LIGHTING_PREVIEW == 0 // return float4(blendfactor3, blendfactor3, blendfactor3, 1.0f); //#endif
baseColor = lerp( baseColor, baseColor2, blendfactor1 );
#if ( TEXTURE3_BLENDMODE == 0 ) // blend baseColor = lerp( baseColor, baseColor3, blendfactor2 ); #endif #if ( TEXTURE3_BLENDMODE == 1 ) // multiply 2x baseColor *= lerp( 1, baseColor3 + baseColor3, blendfactor2 ); #endif
#if ( TEXTURE4_BLENDMODE == 0 ) // blend baseColor = lerp( baseColor, baseColor4, blendfactor3 ); #endif #if ( TEXTURE4_BLENDMODE == 1 ) // multiply 2x baseColor *= lerp( 1, baseColor4 + baseColor4, blendfactor3 ); #endif
HALF3 specularFactor = 1.0h; if ( bBumpmap ) { float fBumpBlendFactor = 1.0f; #if ( BUMPMAP2 == 1 ) { float2 b2TexCoord = bumpmapTexCoord * g_uvScales23.xy;
HALF4 vNormal2; #if ( BUMPMAP == 2 ) // ssbump mode { vNormal2 = h4tex2D( BumpmapSampler2, b2TexCoord ); vNormal.xyz = lerp( vNormal.xyz, vNormal2.xyz, blendfactor1 ); } #else { HALF4 normalTexel = h4tex2D( BumpmapSampler2, b2TexCoord ); vNormal2 = HALF4( normalTexel.xyz * 2.0h - 1.0h, normalTexel.a ); vNormal.xyz = normalize( lerp( vNormal.xyz, vNormal2.xyz, blendfactor1 ) ); } #endif } #else fBumpBlendFactor = lerp( fBumpBlendFactor, g_BumpBlendFactors.x, blendfactor1 ); #endif // BUMPMAP2 == 1
fBumpBlendFactor = lerp( fBumpBlendFactor, g_BumpBlendFactors.y, blendfactor2 ); fBumpBlendFactor = lerp( fBumpBlendFactor, g_BumpBlendFactors.z, blendfactor3 );
#if ( BUMPMAP == 2 ) // ssbump mode { vNormal.xyz = lerp( float3( 0, 0, 0 ), vNormal.xyz, fBumpBlendFactor ); } #else { vNormal.xyz = normalize( lerp( float3( 0, 0, 1 ), vNormal.xyz, fBumpBlendFactor ) ); } #endif }
#if ( BUMPMAP2 == 0 ) if ( bEnvmapMask ) { specularFactor *= h3tex2D( EnvmapMaskSampler, envmapMaskTexCoord ).xyz; } #endif
if ( bBaseAlphaEnvmapMask ) { specularFactor *= 1.0h - baseColor.a; // Reversing alpha blows! }
HALF4 albedo = HALF4( 1.0f, 1.0f, 1.0f, 1.0f ); HALF alpha = 1.0h; albedo *= baseColor; if ( !bBaseAlphaEnvmapMask && !bSelfIllum ) { alpha *= baseColor.a; }
float detailBlendFactor = 0.0f; if ( bDetailTexture ) { float detailBlendFactor = g_DetailBlendFactors.x; detailBlendFactor = lerp( detailBlendFactor, g_DetailBlendFactors.y, blendfactor1 ); detailBlendFactor = lerp( detailBlendFactor, g_DetailBlendFactors.z, blendfactor2 ); detailBlendFactor = lerp( detailBlendFactor, g_DetailBlendFactors.w, blendfactor3 );
albedo = TextureCombine( albedo, detailColor, DETAIL_BLEND_MODE, detailBlendFactor ); #if ( ( DETAIL_BLEND_MODE == TCOMBINE_MOD2X_SELECT_TWO_PATTERNS ) && !SELFILLUM ) { // don't do this in the SELFILLUM case since we don't have enough instructions in ps20 specularFactor *= 2.0h * lerp( detailColor.g, detailColor.b, baseColor.a ); } #endif }
// The vertex color contains the modulation color + vertex color combined #if ( SEAMLESS == 0 ) albedo.rgb *= i.vertexColor.rgb; #endif
alpha *= i.vertexColor.a;
float flShadowScalar = 0.0; float flShadow = 1.0;
// Save this off for single-pass flashlight, since we'll still need the SSBump vector, not a real normal HALF3 vSSBumpVector = vNormal.xyz;
HALF3 diffuseLighting; if ( bBumpmap && bDiffuseBumpmap ) { // ssbump #if ( BUMPMAP == 2 ) #if ( DETAIL_BLEND_MODE == TCOMBINE_SSBUMP_BUMP ) vNormal.xyz *= lerp( HALF3( 1, 1, 1 ), 2 * detailColor.xyz, alpha ); vSSBumpVector = vNormal.xyz; alpha = 1; #endif diffuseLighting = vNormal.x * lightmapColor1.rgb + vNormal.y * lightmapColor2.rgb + vNormal.z * lightmapColor3.rgb;
#if ( ( CSM_BLENDING == 1 ) && ( CASCADED_SHADOW_MAPPING ) && ( CASCADE_SIZE > 0 ) && !defined( SHADER_MODEL_PS_2_B ) ) // currently not supporting CSM's with 4wayblend in ps2b/OSX since out of instructions/consts diffuseLighting = BlendBumpDiffuseLightmapWithCSM( diffuseLighting, lightmapColor1.a, lightmapColor2.a, lightmapColor3.a, vNormal.xyz, worldPos, flShadow, flShadowScalar ); #endif
// SSBump textures are created assuming the shader decodes lighting for each basis vector by taking dot( N, basis )*lightmap. // But the lightmaps are created assuming that the 3 coeffs sum to 1.0 and are more like barycentric coords than visibility // along the basis vector...so the lightmap math is really just a weighted average of the 3 directional light maps. So a flat // normal should have 3 weights each = 0.333. But since ssbump textures are created assuming the other math, a flat normal // converted into an ssbump texture generates 3 weights each = 0.578, so instead of all 3 weights summing to 1.0, they sum // to 1.733. To adjust for this, I'm scaling these coefficients by 1 / 1.733 = 0.578. NOTE: I'm not scaling vNormal directly // since it is used elsewhere for flashlight computations and shouldn't be scaled for that code. diffuseLighting *= 0.57735025882720947h;
diffuseLighting *= (HALF3)g_TintValuesTimesLightmapScale.rgb; // now, calculate vNormal for reflection purposes. if vNormal isn't needed, hopefully // the compiler will eliminate these calculations vNormal.xyz = normalize( bumpBasis[0]*vNormal.x + bumpBasis[1]*vNormal.y + bumpBasis[2]*vNormal.z); #else HALF3 dp; dp.x = saturate( dot( vNormal.xyz, bumpBasis[0] ) ); dp.y = saturate( dot( vNormal.xyz, bumpBasis[1] ) ); dp.z = saturate( dot( vNormal.xyz, bumpBasis[2] ) ); dp *= dp;
#if ( DETAIL_BLEND_MODE == TCOMBINE_SSBUMP_BUMP ) dp *= 2*detailColor.rgb; #endif diffuseLighting = dp.x * lightmapColor1.rgb + dp.y * lightmapColor2.rgb + dp.z * lightmapColor3.rgb; HALF sum = dot( dp, HALF3( 1.0f, 1.0f, 1.0f ) );
#if ( ( CSM_BLENDING == 1 ) && ( CASCADED_SHADOW_MAPPING ) && ( CASCADE_SIZE > 0 ) && !defined( SHADER_MODEL_PS_2_B ) ) // currently not supporting CSM's with 4wayblend in ps2b/OSX since out of instructions/consts diffuseLighting = BlendBumpDiffuseLightmapWithCSM( diffuseLighting.rgb, lightmapColor1.a, lightmapColor2.a, lightmapColor3.a, dp, worldPos, flShadow, flShadowScalar ); #endif
diffuseLighting *= (HALF3)g_TintValuesTimesLightmapScale.rgb / sum; #endif } else { diffuseLighting = lightmapColor1.rgb;
#if ( ( CSM_BLENDING == 1 ) && ( CASCADED_SHADOW_MAPPING ) && ( CASCADE_SIZE > 0 ) && !defined( SHADER_MODEL_PS_2_B ) ) // currently not supporting CSM's with 4wayblend in ps2b/OSX since out of instructions/consts diffuseLighting = BlendDiffuseLightmapWithCSM( diffuseLighting, lightmapColor1.a, worldPos, flShadow, flShadowScalar ); #endif
diffuseLighting.rgb *= (HALF3)g_TintValuesTimesLightmapScale.rgb; } #if ( ( CSM_BLENDING == 0 ) && ( CASCADED_SHADOW_MAPPING ) && ( CASCADE_SIZE > 0 ) && !defined( SHADER_MODEL_PS_2_B ) ) { #if !defined( _X360 ) && !defined( _PS3 ) && !defined( SHADER_MODEL_PS_2_B ) if ( g_bCSMEnabled ) { #endif // Can't enable dynamic jumps around the Fetch4 shader, because it can't use tex2dlod() #if ( CSM_MODE != CSM_MODE_ATI_FETCH4 ) && !defined( SHADER_MODEL_PS_2_B ) [branch] #endif if ( lightmapColor1.a > 0.0f ) { float flSunPercent; if ( bBumpmap && bDiffuseBumpmap ) { flSunPercent = lightmapColor1.a / ( Luminance( lightmapColor1.rgb + lightmapColor2.rgb + lightmapColor3.rgb ) * 0.3333 ); } else { flSunPercent = lightmapColor1.a / Luminance( lightmapColor1.rgb ); }
flShadow = CSMComputeShadowing( worldPos ); flShadowScalar = 1.0 - ( flSunPercent * ( 1.0 - flShadow ) ); /* Debug - blink full shadows if ( step( frac( g_flTime * 0.5 ), 0.5 ) ) { flShadowScalar = 1.0 - lightmapColor1.a; } //*/
// Apply csm shadows diffuseLighting.rgb *= flShadowScalar;
// Desaturate shadow color since we only have a grayscale dim factor diffuseLighting.rgb = lerp( diffuseLighting.bgr, diffuseLighting.rgb, flShadowScalar * 0.5 + 0.5 ); // debug visualization // diffuseLighting.rgb = lerp( float3(1.0f-flShadowScalar,1.0f-flShadowScalar,1.0f-flShadowScalar), CSMVisualizeSplit( worldPos ), .3f ); // return float4(diffuseLighting.rgb, 1.0f); } #if !defined( _X360 ) && !defined( _PS3 ) } #endif } #endif
HALF3 worldSpaceNormal = mul( vNormal.xyz, tangenttranspose ); #if !defined( SHADER_MODEL_PS_2_0 ) && ( FLASHLIGHT == 0 ) diffuseLighting += (HALF3)g_cAmbientColor; #endif
HALF3 diffuseComponent = albedo.rgb * diffuseLighting;
#if ( defined( _X360 ) || defined( _PS3 ) ) && FLASHLIGHT // ssbump doesn't pass a normal to the flashlight...it computes shadowing a different way #if ( BUMPMAP == 2 ) bool bHasNormal = false;
float3 worldPosToLightVector = g_FlashlightPos - worldPos;
HALF3 tangentPosToLightVector; tangentPosToLightVector.x = dot( worldPosToLightVector, tangenttranspose[0] ); tangentPosToLightVector.y = dot( worldPosToLightVector, tangenttranspose[1] ); tangentPosToLightVector.z = dot( worldPosToLightVector, tangenttranspose[2] );
tangentPosToLightVector = normalize( tangentPosToLightVector ); HALF nDotL = saturate( vSSBumpVector.x*dot( tangentPosToLightVector, bumpBasis[0]) + vSSBumpVector.y*dot( tangentPosToLightVector, bumpBasis[1]) + vSSBumpVector.z*dot( tangentPosToLightVector, bumpBasis[2]) ); #else bool bHasNormal = true; HALF nDotL = 1.0h; #endif
bool bShadows = FLASHLIGHTSHADOWS ? true : false; HALF3 flashlightColor = DoFlashlight( g_FlashlightPos, worldPos, i.flashlightSpacePos, worldSpaceNormal, g_FlashlightAttenuationFactors.xyz, g_FlashlightAttenuationFactors.w, FlashlightSampler, ShadowDepthSampler, RandRotSampler, 0, bShadows, i.vProjPos.xy / i.vProjPos.w, false, g_ShadowTweaks, bHasNormal );
diffuseComponent = albedo.xyz * ( diffuseLighting + ( flashlightColor * nDotL * (HALF3)g_TintValuesWithoutLightmapScale.rgb ) ); #endif
if ( bSelfIllum ) { HALF3 selfIllumComponent = (HALF3)g_SelfIllumTint.xyz * albedo.xyz; diffuseComponent = lerp( diffuseComponent, selfIllumComponent, baseColor.a ); }
HALF3 specularLighting = HALF3( 0.0f, 0.0f, 0.0f ); #if ( CUBEMAP ) { float3 reflectVect = CalcReflectionVectorUnnormalized( worldSpaceNormal, worldVertToEyeVector );
// Calc Fresnel factor HALF3 eyeVect = normalize(worldVertToEyeVector); HALF fresnel = 1.0h - dot( worldSpaceNormal, eyeVect );
#if ( ENVMAPANISOTROPY ) // For anisotropic reflections on macroscopically rough sufaces like asphalt // Orthogonalize the view vector to the surface normal, and use it as the anisotropy direction reflectVect = normalize( reflectVect ); float3 rvec = cross( -eyeVect.xyz, worldSpaceNormal.xyz ); float3 tang = cross( rvec, worldSpaceNormal.xyz ); rvec = cross( tang, reflectVect ); float3 reflectVectAniso = normalize( cross( rvec, worldSpaceNormal.xyz ) ); // Anisotropy amount is influenced by the view angle to the surface. The more oblique the angle the more anisotropic the surface appears. anisotropyFactor *= dot( reflectVectAniso, -eyeVect ); anisotropyFactor *= anisotropyFactor; reflectVect = normalize( lerp( reflectVect, reflectVectAniso, anisotropyFactor ) ); #endif
fresnel = max( 0, fresnel ); // precision issues on RSX cause this value to occasionally go negative, which results in a NaN presumably because of the exp(log(n)) operation fresnel = pow( fresnel, 4.0h ); //changing this to 4th power to save 2 cycles - visually it's very similar
fresnel = fresnel * (HALF)g_OneMinusFresnelReflection + (HALF)g_FresnelReflection; specularLighting = (HALF)ENV_MAP_SCALE * h3texCUBE( EnvmapSampler, reflectVect ).rgb;
#if (CUBEMAP == 2) //cubemap darkened by lightmap mode float3 cubemapLight = saturate( ( diffuseLighting - g_fvDiffuseCubemapMin ) * g_fvDiffuseCubemapMax ); specularLighting = lerp( specularLighting, specularLighting * cubemapLight, (HALF)g_DiffuseCubemapScale ); //reduce the cubemap contribution when the pixel is in shadow #endif
specularLighting *= specularFactor; specularLighting *= (HALF3)g_EnvmapTint.rgb;
HALF3 specularLightingSquared = specularLighting * specularLighting; specularLighting = lerp( specularLighting, specularLightingSquared, (HALF)g_EnvmapContrast ); HALF3 greyScale = dot( specularLighting, HALF3( 0.299f, 0.587f, 0.114f ) ); specularLighting = lerp( greyScale, specularLighting, (HALF)g_EnvmapSaturation );
specularLighting *= fresnel; } #endif
if ( bDetailTexture ) { diffuseComponent = TextureCombinePostLighting( diffuseComponent, detailColor, DETAIL_BLEND_MODE, detailBlendFactor ); }
HALF3 result = diffuseComponent + specularLighting; #if ( LIGHTING_PREVIEW == 3 ) { return float4( worldSpaceNormal, i.worldPos_projPosZ.w ); } #endif
#if ( LIGHTING_PREVIEW == 1 ) { float dotprod = 0.2 + abs( dot( normalize(worldSpaceNormal), normalize(worldVertToEyeVector) ) ); return FinalOutput( float4( dotprod * albedo.xyz, alpha ), 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_NONE ); } #endif
#if ( LIGHTING_PREVIEW == 2 ) { LPREVIEW_PS_OUT ret; ret.color = float4( albedo.xyz,alpha ); ret.normal = float4( worldSpaceNormal, i.worldPos_projPosZ.w ); ret.position = float4( worldPos, alpha ); ret.flags = float4( 1, 1, 1, alpha ); return FinalOutput( ret, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_NONE ); } #endif
#if ( LIGHTING_PREVIEW == 0 ) { bool bWriteDepthToAlpha = false;
// ps_2_b and beyond #if !(defined(SHADER_MODEL_PS_1_1) || defined(SHADER_MODEL_PS_1_4) || defined(SHADER_MODEL_PS_2_0)) bWriteDepthToAlpha = ( WRITE_DEPTH_TO_DESTALPHA != 0 ) && ( WRITEWATERFOGTODESTALPHA == 0 ); #endif
HALF flVertexFogFactor = 0.0h; #if !HARDWAREFOGBLEND && !DOPIXELFOG { #if ( SEAMLESS ) { flVertexFogFactor = i.SeamlessTexCoord_fogFactorW.w; } #else { flVertexFogFactor = i.baseTexCoord_fogFactorZ.z; } #endif } #endif
HALF fogFactor = CalcPixelFogFactorSupportsVertexFog( PIXELFOGTYPE, g_FogParams, g_EyePos.xyz, worldPos, i.worldPos_projPosZ.w, flVertexFogFactor ); #if WRITEWATERFOGTODESTALPHA && (PIXELFOGTYPE == PIXEL_FOG_TYPE_HEIGHT) alpha = fogFactor; #endif
float4_color_return_type vOutput = FinalOutputHalf( HALF4( result.rgb, alpha ), fogFactor, PIXELFOGTYPE, TONEMAP_SCALE_LINEAR, bWriteDepthToAlpha, i.worldPos_projPosZ.w );
#if ( defined( _X360 ) ) { vOutput.xyz += ScreenSpaceOrderedDither( i.vScreenPos ); } #endif
return vOutput; } #endif }
|