|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Workfile: $
// $Date: $
// $NoKeywords: $
//=============================================================================//
#include <stdio.h>
#include <math.h>
#include <string.h>
typedef unsigned char byte; #pragma warning(disable:4244)
#include "tier0/dbg.h"
#include "mathlib/vector.h"
#include "keyframe.h"
#include "mathlib/mathlib.h"
#include "rope_shared.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
//
// Implementation of keyframe.h interface
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Key Frames
//-----------------------------------------------------------------------------
#define HIGHEST_KEYFRAME 3
#define LOWEST_KEYFRAME -3
#define TOTAL_KEYFRAMES (HIGHEST_KEYFRAME - LOWEST_KEYFRAME + 1)
//
struct KeyFrame_t { Vector vPos; Quaternion qRot; };
KeyFrame_t g_KeyFrames[ TOTAL_KEYFRAMES ]; KeyFrame_t *g_KeyFramePtr = &g_KeyFrames[ -LOWEST_KEYFRAME ]; // points to the middle keyframe, keyframe 0
bool Motion_SetKeyAngles( int keyNum, Quaternion &quatAngles ) { if ( keyNum > HIGHEST_KEYFRAME || keyNum < LOWEST_KEYFRAME ) return false;
g_KeyFramePtr[keyNum].qRot = quatAngles; return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Time Modifier function enumeration & implementation
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
typedef float (*TimeModifierFunc_t)(float);
typedef struct { char *szName; TimeModifierFunc_t pFunc;
} TimeModifier_t;
float TimeModifierFunc_Linear( float time ) { return time; }
float TimeModifierFunc_Cosine( float time ) { return ( cos((time+1) * M_PI) * 0.5 ) + 0.5; }
float TimeModifierFunc_TimeSquared( float time ) { return (time * time); }
TimeModifier_t g_TimeModifiers[] = { { "Linear", TimeModifierFunc_Linear }, { "Accel/Deaccel (cosine)", TimeModifierFunc_Cosine }, { "Accel (time*time)", TimeModifierFunc_TimeSquared }, };
int Motion_GetNumberOfTimeModifiers( void ) { return ARRAYSIZE(g_TimeModifiers); }
bool Motion_GetTimeModifierDetails( int timeInterpNum, char **outName ) { if ( timeInterpNum < 0 || timeInterpNum >= Motion_GetNumberOfTimeModifiers() ) { return false; }
if ( !g_TimeModifiers[0].szName || !g_TimeModifiers[0].pFunc ) { return false; }
if ( outName ) *outName = g_TimeModifiers[0].szName;
return true; }
//-----------------------------------------------------------------------------
// Purpose:
// Input : time -
// timeModifierFuncNum -
// *outNewTime -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool Motion_CalculateModifiedTime( float time, int timeModifierFuncNum, float *outNewTime ) { *outNewTime = g_TimeModifiers[timeModifierFuncNum].pFunc( time ); return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Position interpolator function enumeration & implementation
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// ------------------------------------------------------------------------------------ //
// Linear position interpolator.
// ------------------------------------------------------------------------------------ //
class CPositionInterpolator_Linear : public IPositionInterpolator { public: virtual void Release(); virtual void GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq ); virtual void SetKeyPosition( int keyNum, Vector const &vPos ); virtual void InterpolatePosition( float time, Vector &vOut ); virtual bool ProcessKey( char const *pName, char const *pValue ) { return false; } };
CPositionInterpolator_Linear g_LinearInterpolator;
IPositionInterpolator* GetLinearInterpolator() { return &g_LinearInterpolator; }
void CPositionInterpolator_Linear::Release() { }
void CPositionInterpolator_Linear::GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq ) { *outName = "Linear"; *outMinKeyReq = 0; *outMaxKeyReq = 1; }
void CPositionInterpolator_Linear::SetKeyPosition( int keyNum, Vector const &vPos ) { Assert ( keyNum <= HIGHEST_KEYFRAME && keyNum >= LOWEST_KEYFRAME ); VectorCopy( vPos, g_KeyFramePtr[keyNum].vPos ); }
void CPositionInterpolator_Linear::InterpolatePosition( float time, Vector &vOut ) { VectorLerp( g_KeyFramePtr[0].vPos, g_KeyFramePtr[1].vPos, time, vOut ); }
// ------------------------------------------------------------------------------------ //
// Catmull-Rom position interpolator.
// ------------------------------------------------------------------------------------ //
class CPositionInterpolator_CatmullRom : public IPositionInterpolator { public: virtual void Release(); virtual void GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq ); virtual void SetKeyPosition( int keyNum, Vector const &vPos ); virtual void InterpolatePosition( float time, Vector &vOut ); virtual bool ProcessKey( char const *pName, char const *pValue ) { return false; } };
CPositionInterpolator_CatmullRom g_CatmullRomInterpolator;
IPositionInterpolator* GetCatmullRomInterpolator() { return &g_CatmullRomInterpolator; }
void CPositionInterpolator_CatmullRom::Release() { }
void CPositionInterpolator_CatmullRom::GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq ) { *outName = "Catmull-Rom Spline"; *outMinKeyReq = -1; *outMaxKeyReq = 2; }
void CPositionInterpolator_CatmullRom::SetKeyPosition( int keyNum, Vector const &vPos ) { Assert ( keyNum <= HIGHEST_KEYFRAME && keyNum >= LOWEST_KEYFRAME ); VectorCopy( vPos, g_KeyFramePtr[keyNum].vPos ); }
void CPositionInterpolator_CatmullRom::InterpolatePosition( float time, Vector &vOut ) { Catmull_Rom_Spline( g_KeyFramePtr[-1].vPos, g_KeyFramePtr[0].vPos, g_KeyFramePtr[1].vPos, g_KeyFramePtr[2].vPos, time, vOut ); }
// ------------------------------------------------------------------------------------ //
// Rope interpolator.
// ------------------------------------------------------------------------------------ //
#include "rope_physics.h"
class CRopeDelegate : public CSimplePhysics::IHelper { public: virtual void GetNodeForces( CSimplePhysics::CNode *pNodes, int iNode, Vector *pAccel ); virtual void ApplyConstraints( CSimplePhysics::CNode *pNodes, int nNodes );
public: Vector m_CurEndPoints[2]; };
void CRopeDelegate::GetNodeForces( CSimplePhysics::CNode *pNodes, int iNode, Vector *pAccel ) { // Gravity.
pAccel->Init( 0, 0, -1500 ); }
void CRopeDelegate::ApplyConstraints( CSimplePhysics::CNode *pNodes, int nNodes ) { if( nNodes >= 2 ) { pNodes[0].m_vPos = m_CurEndPoints[0]; pNodes[nNodes-1].m_vPos = m_CurEndPoints[1]; } }
class CPositionInterpolator_Rope : public IPositionInterpolator { public: CPositionInterpolator_Rope();
virtual void Release(); virtual void GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq ); virtual void SetKeyPosition( int keyNum, Vector const &vPos ); virtual void InterpolatePosition( float time, Vector &vOut ); virtual bool ProcessKey( char const *pName, char const *pValue );
private: CRopePhysics<10> m_RopePhysics; CRopeDelegate m_Delegate;
float m_flSlack; // Extra length of rope.
bool m_bChange; int m_nSegments; };
IPositionInterpolator* GetRopeInterpolator() { return new CPositionInterpolator_Rope; }
CPositionInterpolator_Rope::CPositionInterpolator_Rope() { m_flSlack = 0; m_bChange = false; m_nSegments = 5;
for( int i=0; i < 2; i++ ) m_Delegate.m_CurEndPoints[i] = Vector( 1e24, 1e24, 1e24 ); }
void CPositionInterpolator_Rope::Release() { delete this; }
void CPositionInterpolator_Rope::GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq ) { *outName = "Rope"; *outMinKeyReq = 0; *outMinKeyReq = 1; }
void CPositionInterpolator_Rope::SetKeyPosition( int keyNum, Vector const &vPos ) { if( keyNum == 0 || keyNum == 1 ) { if( vPos != m_Delegate.m_CurEndPoints[keyNum] ) m_bChange = true;
m_Delegate.m_CurEndPoints[keyNum] = vPos; } }
void CPositionInterpolator_Rope::InterpolatePosition( float time, Vector &vOut ) { // Check if we need to resimulate..
if( m_bChange ) { m_RopePhysics.SetNumNodes( m_nSegments );
// Init all the nodes.
for( int i=0; i < m_RopePhysics.NumNodes(); i++ ) m_RopePhysics.GetNode(i)->m_vPos = m_RopePhysics.GetNode(i)->m_vPrevPos = m_Delegate.m_CurEndPoints[0];
float flDist = (m_Delegate.m_CurEndPoints[0] - m_Delegate.m_CurEndPoints[1]).Length(); flDist += m_flSlack;
m_RopePhysics.Restart(); m_RopePhysics.SetupSimulation( flDist / (m_RopePhysics.NumNodes() - 1), &m_Delegate );
// Run the simulation for a while to let the rope settle down..
m_RopePhysics.Simulate( 5 ); m_bChange = false; }
// Ok, now we have all the nodes setup..
float flNode = time * (m_RopePhysics.NumNodes()-1); int iNode = (int)( flNode ); VectorLerp( m_RopePhysics.GetNode(iNode)->m_vPredicted, m_RopePhysics.GetNode(iNode+1)->m_vPredicted, flNode - iNode, vOut ); }
bool CPositionInterpolator_Rope::ProcessKey( char const *pName, char const *pValue ) { if( stricmp( pName, "Slack" ) == 0 ) { m_flSlack = atof( pValue ) + ROPESLACK_FUDGEFACTOR; m_bChange = true; return true; } else if( stricmp( pName, "Type" ) == 0 ) { int iType = atoi( pValue ); if( iType == 0 ) m_nSegments = ROPE_MAX_SEGMENTS; else if( iType == 1 ) m_nSegments = ROPE_TYPE1_NUMSEGMENTS; else m_nSegments = ROPE_TYPE2_NUMSEGMENTS;
m_bChange = true; return true; }
return false; }
// ------------------------------------------------------------------------------------ //
// The global table of all the position interpolators.
// ------------------------------------------------------------------------------------ //
typedef IPositionInterpolator* (*PositionInterpolatorCreateFn)(); PositionInterpolatorCreateFn g_PositionInterpolatorCreateFns[] = { GetLinearInterpolator, GetCatmullRomInterpolator, GetRopeInterpolator };
int Motion_GetNumberOfPositionInterpolators( void ) { return ARRAYSIZE(g_PositionInterpolatorCreateFns); }
IPositionInterpolator* Motion_GetPositionInterpolator( int interpNum ) { Assert( interpNum >= 0 && interpNum < Motion_GetNumberOfPositionInterpolators() ); return g_PositionInterpolatorCreateFns[clamp( interpNum, 0, Motion_GetNumberOfPositionInterpolators() - 1 )](); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Rotation interpolator function enumeration & implementation
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
typedef void (*RotationInterpolatorFunc_t)(float time, Quaternion &outRot);
typedef struct { char *szName; RotationInterpolatorFunc_t pFunc;
// defines the range of keys this interpolator needs to function
int iMinReqKeyFrame; int iMaxReqKeyFrame;
} RotationInterpolator_t;
void RotationInterpolatorFunc_Linear( float time, Quaternion &outRot ) { // basic 4D spherical linear interpolation
QuaternionSlerp( g_KeyFramePtr[0].qRot, g_KeyFramePtr[1].qRot, time, outRot ); }
RotationInterpolator_t g_RotationInterpolators[] = { { "Linear", RotationInterpolatorFunc_Linear, 0, 1 }, };
int Motion_GetNumberOfRotationInterpolators( void ) { return ARRAYSIZE(g_RotationInterpolators); }
bool Motion_GetRotationInterpolatorDetails( int rotInterpNum, char **outName, int *outMinKeyReq, int *outMaxKeyReq ) { if ( rotInterpNum < 0 || rotInterpNum >= Motion_GetNumberOfRotationInterpolators() ) { return false; }
if ( !g_RotationInterpolators[rotInterpNum].szName || !g_RotationInterpolators[rotInterpNum].pFunc ) { return false; }
if ( outName ) *outName = g_RotationInterpolators[rotInterpNum].szName;
if ( outMinKeyReq ) *outMinKeyReq = g_RotationInterpolators[rotInterpNum].iMinReqKeyFrame;
if ( outMaxKeyReq ) *outMaxKeyReq = g_RotationInterpolators[rotInterpNum].iMaxReqKeyFrame;
return true; }
//-----------------------------------------------------------------------------
// Purpose: Interpolates a rotation
// Time is assumed to have already been modified by the TimeModifyFunc (above)
// Requires the keyframes be already set
// Input : time - value from 0..1
// interpFuncNum -
// *outQuatRotation - result in quaternion form
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool Motion_InterpolateRotation( float time, int interpFuncNum, Quaternion &outQuatRotation ) { if ( time < 0.0f || time > 1.0f ) return false;
g_RotationInterpolators[interpFuncNum].pFunc( time, outQuatRotation ); return true; }
|