|
|
//====== Copyright 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#ifndef TIER1_STRTOOLS_H
#define TIER1_STRTOOLS_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/basetypes.h"
#include <stdio.h>
#include "color.h"
#include <ctype.h>
#if POSIX
#include <wchar.h>
#include <math.h>
#include <wctype.h>
#endif
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
class CUtlBuffer;
#ifdef _WIN64
#define str_size unsigned int
#else
#define str_size size_t
#endif
/// 3d memcpy. Copy (up-to) 3 dimensional data with arbitrary source and destination
/// strides. Optimizes to just a single memcpy when possible. For 2d data, set numslices to 1.
void CopyMemory3D( void *pDestAdr, void const *pSrcAdr, int nNumCols, int nNumRows, int nNumSlices, // dimensions of copy
int nSrcBytesPerRow, int nSrcBytesPerSlice, // strides for source.
int nDestBytesPerRow, int nDestBytesPerSlice // strides for dest
);
#define USE_FAST_CASE_CONVERSION 1
#if USE_FAST_CASE_CONVERSION
/// Faster conversion of an ascii char to upper case. This function does not obey locale or any language
/// setting. It should not be used to convert characters for printing, but it is a better choice
/// for internal strings such as used for hash table keys, etc. It's meant to be inlined and used
/// in places like the various dictionary classes. Not obeying locale also protects you from things
/// like your hash values being different depending on the locale setting.
#define FastASCIIToUpper( c ) ( ( ( (c) >= 'a' ) && ( (c) <= 'z' ) ) ? ( (c) - 32 ) : (c) )
/// similar to FastASCIIToLower
#define FastASCIIToLower( c ) ( ( ( (c) >= 'A' ) && ( (c) <= 'Z' ) ) ? ( (c) + 32 ) : (c) )
#else
#define FastASCIIToLower tolower
#define FastASCIIToUpper toupper
#endif
template< class T, class I > class CUtlMemory; template< class T, class A > class CUtlVector;
extern const char *nexttoken(char *token, const char *str, char sep);
#ifdef OSX
size_t strnlen( const char *s, size_t n ); #endif
//-----------------------------------------------------------------------------
// Portable versions of standard string functions
//-----------------------------------------------------------------------------
void _V_memset( void *dest, int fill, int count ); void _V_memcpy( void *dest, const void *src, int count ); void _V_memmove( void *dest, const void *src, int count ); int _V_memcmp( const void *m1, const void *m2, int count ); int _V_strlen( const char *str ); int _V_strnlen( const char *str, int count ); void _V_strcpy( char *dest, const char *src ); char* _V_strrchr( const char *s, char c ); int _V_strcmp( const char *s1, const char *s2 ); int _V_wcscmp( const wchar_t *s1, const wchar_t *s2 ); int _V_stricmp( const char *s1, const char *s2 ); char* _V_strstr( const char *s1, const char *search ); char* _V_strupr( char *start ); char* _V_strlower( char *start ); int _V_wcslen( const wchar_t *pwch ); wchar_t* _V_wcslower ( wchar_t *start); wchar_t* _V_wcsupr ( wchar_t *start);
// Compatibility with Source2
#define V_strlower_fast _V_strlower
#ifdef POSIX
inline char *strupr( char *start ) { char *str = start; while( str && *str ) { *str = (char)toupper(*str); str++; } return start; }
inline char *strlwr( char *start ) { char *str = start; while( str && *str ) { *str = (char)tolower(*str); str++; } return start; }
inline wchar_t *_wcslwr( wchar_t *start ) { wchar_t *str = start; while( str && *str ) { *str = (wchar_t)towlower(static_cast<wint_t>(*str)); str++; } return start; };
inline wchar_t *_wcsupr( wchar_t *start ) { wchar_t *str = start; while( str && *str ) { *str = (wchar_t)towupper(static_cast<wint_t>(*str)); str++; } return start; };
#endif // POSIX
// there are some users of these via tier1 templates in used in tier0. but tier0 can't depend on vstdlib which means in tier0 we always need the inlined ones
#if ( !defined( TIER0_DLL_EXPORT ) )
#if !defined( _DEBUG ) && defined( _PS3 )
#include "tier1/strtools_inlines.h"
// To avoid cross-prx calls, making the V_* fucntions that don't do anything but debug checks and call through to the non V_* function
// go ahead and call the non-V_* functions directly.
#define V_memset(dest, fill, count) memset ((dest), (fill), (count))
#define V_memcpy(dest, src, count) memcpy ((dest), (src), (count))
#define V_memmove(dest, src, count) memmove ((dest), (src), (count))
#define V_memcmp(m1, m2, count) memcmp ((m1), (m2), (count))
#define V_strcpy(dest, src) strcpy ((dest), (src))
#define V_strcmp(s1, s2) strcmp ((s1), (s2))
#define V_strupr(start) strupr ((start))
#define V_strlower(start) strlwr ((start))
#define V_wcslen(pwch) wcslen ((pwch))
#define V_wcsupr(start) _wcsupr ((start))
#define V_wcslower(start) _wcslwr ((start))
// To avoid cross-prx calls, using inline versions of these custom functions:
#define V_strlen(str) _V_strlen_inline ((str))
#define V_strrchr(s, c) _V_strrchr_inline ((s), (c))
#define V_wcscmp(s1, s2) _V_wcscmp_inline ((s1), (s2))
#define V_stricmp(s1, s2 ) _V_stricmp_inline ((s1), (s2) )
#define V_strstr(s1, search ) _V_strstr_inline ((s1), (search) )
#else
#define V_memset(dest, fill, count) _V_memset ((dest), (fill), static_cast<int>(count))
#define V_memcpy(dest, src, count) _V_memcpy ((dest), (src), static_cast<int>(count))
#define V_memmove(dest, src, count) _V_memmove ((dest), (src), static_cast<int>(count))
#define V_memcmp(m1, m2, count) _V_memcmp ((m1), (m2), static_cast<int>(count))
#define V_strlen(str) _V_strlen ((str))
#define V_strnlen(str, count) _V_strnlen ((str), static_cast<int>(count))
#define V_strcpy(dest, src) _V_strcpy ((dest), (src))
#define V_strrchr(s, c) _V_strrchr ((s), (c))
#define V_strcmp(s1, s2) _V_strcmp ((s1), (s2))
#define V_wcscmp(s1, s2) _V_wcscmp ((s1), (s2))
#define V_stricmp(s1, s2 ) _V_stricmp ((s1), (s2) )
#define V_stricmp_fast(s1, s2 ) _V_stricmp ((s1), (s2) )
#define V_strstr(s1, search ) _V_strstr ((s1), (search) )
#define V_strupr(start) _V_strupr ((start))
#define V_strupper(start) _V_strupr ((start))
#define V_strlower(start) _V_strlower ((start))
#define V_wcslen(pwch) _V_wcslen ((pwch))
#define V_wcsupr(start) _V_wcsupr ((start))
#define V_wcslower(start) _V_wcslower ((start))
#endif
#else
inline void V_memset(void *dest, int fill, int count) { memset( dest, fill, count ); } inline void V_memcpy(void *dest, const void *src, int count) { memcpy( dest, src, count ); } inline void V_memmove(void *dest, const void *src, int count) { memmove( dest, src, count ); } inline int V_memcmp(const void *m1, const void *m2, int count) { return memcmp( m1, m2, count ); } inline int V_strlen(const char *str) { return (int) strlen ( str ); } inline int V_strnlen(const char *str, int count ) { return (int) strnlen ( str, count ); } inline void V_strcpy(char *dest, const char *src) { strcpy( dest, src ); } inline int V_wcslen(const wchar_t *pwch) { return (int)wcslen(pwch); } inline char* V_strrchr(const char *s, char c) { return (char*)strrchr( s, c ); } inline int V_strcmp(const char *s1, const char *s2) { return strcmp( s1, s2 ); } inline int V_wcscmp(const wchar_t *s1, const wchar_t *s2) { return wcscmp( s1, s2 ); } inline int V_stricmp( const char *s1, const char *s2 ) { return stricmp( s1, s2 ); } inline char* V_strstr( const char *s1, const char *search ) { return (char*)strstr( s1, search ); } #ifndef COMPILER_PS3
inline char* V_strupr(char *start) { return strupr( start ); } inline char* V_strlower(char *start) { return strlwr( start ); } inline wchar_t* V_wcsupr (wchar_t *start) { return _wcsupr( start ); } inline wchar_t* V_wcslower(wchar_t *start) { return _wcslwr( start ); } #endif
#endif
int V_strncmp (const char *s1, const char *s2, int count); int V_strcasecmp (const char *s1, const char *s2); int V_strncasecmp (const char *s1, const char *s2, int n); int V_strnicmp (const char *s1, const char *s2, int n); int V_atoi (const char *str); int64 V_atoi64(const char *str); uint64 V_atoui64(const char *str); int64 V_strtoi64( const char *nptr, char **endptr, int base ); uint64 V_strtoui64( const char *nptr, char **endptr, int base ); float V_atof(const char *str); double V_atod(const char *str); char* V_stristr( char* pStr, const char* pSearch ); const char* V_stristr( const char* pStr, const char* pSearch ); const char* V_strnistr( const char* pStr, const char* pSearch, int n ); const char* V_strnchr( const char* pStr, char c, int n ); wchar_t* V_wcsistr( wchar_t* pStr, const wchar_t* pSearch ); const wchar_t* V_wcsistr( const wchar_t* pStr, const wchar_t* pSearch ); void V_qsort_s( void *base, size_t num, size_t width, int ( __cdecl *compare )(void *, const void *, const void *), void *context );
#define V_strncmp_fast V_strncmp
#define V_strnicmp_fast V_strnicmp
#define V_stristr_fast V_stristr
#define V_strupper_fast V_strupper
// returns string immediately following prefix, (ie str+strlen(prefix)) or NULL if prefix not found
const char *StringAfterPrefix ( const char *str, const char *prefix ); const char *StringAfterPrefixCaseSensitive( const char *str, const char *prefix ); inline bool StringHasPrefix ( const char *str, const char *prefix ) { return StringAfterPrefix ( str, prefix ) != NULL; } inline bool StringHasPrefixCaseSensitive( const char *str, const char *prefix ) { return StringAfterPrefixCaseSensitive( str, prefix ) != NULL; }
template< bool CASE_SENSITIVE > inline bool _V_strEndsWithInner( const char *pStr, const char *pSuffix ) { int nSuffixLen = V_strlen( pSuffix ); int nStringLen = V_strlen( pStr ); if ( nSuffixLen == 0 ) return true; // All strings end with the empty string (matches Java & .NET behaviour)
if ( nStringLen < nSuffixLen ) return false; pStr += nStringLen - nSuffixLen; if ( CASE_SENSITIVE ) return !V_strcmp( pStr, pSuffix ); else return !V_stricmp( pStr, pSuffix ); }
// Does 'pStr' end with 'pSuffix'? (case sensitive/insensitive variants)
inline bool V_strEndsWith( const char *pStr, const char *pSuffix ) { return _V_strEndsWithInner<TRUE>( pStr, pSuffix ); } inline bool V_striEndsWith( const char *pStr, const char *pSuffix ) { return _V_strEndsWithInner<FALSE>( pStr, pSuffix ); }
#define StringIsEmpty( pchString ) ( pchString[ 0 ] == '\0' )
// Normalizes a float string in place.
// (removes leading zeros, trailing zeros after the decimal point, and the decimal point itself where possible)
void V_normalizeFloatString( char* pFloat );
// this is locale-unaware and therefore faster version of standard isdigit()
// It also avoids sign-extension errors.
inline bool V_isdigit( char c ) { return c >= '0' && c <= '9'; }
inline bool V_iswdigit( int c ) { return ( ( (uint)( c - '0' ) ) < 10 ); }
inline bool V_isempty( const char* pszString ) { return !pszString || !pszString[ 0 ]; }
// The islower/isdigit/etc. functions all expect a parameter that is either
// 0-0xFF or EOF. It is easy to violate this constraint simply by passing
// 'char' to these functions instead of unsigned char.
// The V_ functions handle the char/unsigned char mismatch by taking a
// char parameter and casting it to unsigned char so that chars with the
// sign bit set will be zero extended instead of sign extended.
// Not that EOF cannot be passed to these functions.
//
// These functions could also be used for optimizations if locale
// considerations make some of the CRT functions slow.
#undef isdigit // In case this is implemented as a macro
#define isdigit use_V_isdigit_instead_of_isdigit
inline bool V_isalpha(char c) { return isalpha( (unsigned char)c ) != 0; } #undef isalpha
#define isalpha use_V_isalpha_instead_of_isalpha
inline bool V_isalnum(char c) { return isalnum( (unsigned char)c ) != 0; } #undef isalnum
#define isalnum use_V_isalnum_instead_of_isalnum
inline bool V_isprint(char c) { return isprint( (unsigned char)c ) != 0; } #undef isprint
#define isprint use_V_isprint_instead_of_isprint
inline bool V_isxdigit(char c) { return isxdigit( (unsigned char)c ) != 0; } #undef isxdigit
#define isxdigit use_V_isxdigit_instead_of_isxdigit
inline bool V_ispunct(char c) { return ispunct( (unsigned char)c ) != 0; } #undef ispunct
#define ispunct use_V_ispunct_instead_of_ispunct
inline bool V_isgraph(char c) { return isgraph( (unsigned char)c ) != 0; } #undef isgraph
#define isgraph use_V_isgraph_instead_of_isgraph
inline bool V_isupper(char c) { return isupper( (unsigned char)c ) != 0; } #undef isupper
#define isupper use_V_isupper_instead_of_isupper
inline bool V_islower(char c) { return islower( (unsigned char)c ) != 0; } #undef islower
#define islower use_V_islower_instead_of_islower
inline bool V_iscntrl(char c) { return iscntrl( (unsigned char)c ) != 0; } #undef iscntrl
#define iscntrl use_V_iscntrl_instead_of_iscntrl
inline bool V_isspace(int c) { // The standard white-space characters are the following: space, tab, carriage-return, newline, vertical tab, and form-feed. In the C locale, V_isspace() returns true only for the standard white-space characters.
//return c == ' ' || c == 9 /*horizontal tab*/ || c == '\r' || c == '\n' || c == 11 /*vertical tab*/ || c == '\f';
// codes of whitespace symbols: 9 HT, 10 \n, 11 VT, 12 form feed, 13 \r, 32 space
// easy to understand version, validated:
// return ((1 << (c-1)) & 0x80001F00) != 0 && ((c-1)&0xE0) == 0;
// 5% faster on Core i7, 35% faster on Xbox360, no branches, validated:
#ifdef _X360
return ((1 << (c-1)) & 0x80001F00 & ~(-int((c-1)&0xE0))) != 0; #else
// this is 11% faster on Core i7 than the previous, VC2005 compiler generates a seemingly unbalanced search tree that's faster
switch(c) { case ' ': case 9: case '\r': case '\n': case 11: case '\f': return true; default: return false; } #endif
} #undef isspace
#define isspace use_V_isspace_instead_of_isspace
// Returns true if V_isspace returns true for any character in the string
inline bool V_containsWhitespace( const char *pStr ) { if ( pStr ) { while( *pStr ) { if ( V_isspace( *pStr++ ) ) return true; } } return false; }
//-----------------------------------------------------------------------------
// Purpose: returns true if it's a valid hex string
//-----------------------------------------------------------------------------
inline bool V_isvalidhex( char const *in, int inputchars ) { if ( inputchars < 2 ) return false; if ( inputchars % 2 == 1 ) return false;
for ( int i = 0; i < inputchars; i++ ) { char c = in[i]; if ( !( (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F') ) ) { return false; }
} return true; }
//-----------------------------------------------------------------------------
// Purpose: Checks if the string is lower case
// NOTE: Only works with ASCII strings
//-----------------------------------------------------------------------------
inline bool V_isstrlower( const char *pch ) { const char *pCurrent = pch; while ( *pCurrent != '\0' ) { if ( *pCurrent >= 'A' && *pCurrent <= 'Z' ) return false;
pCurrent++; }
return true; }
// These are versions of functions that guarantee NULL termination.
//
// maxLen is the maximum number of bytes in the destination string.
// pDest[maxLen-1] is always NULL terminated if pSrc's length is >= maxLen.
//
// This means the last parameter can usually be a sizeof() of a string.
void V_strncpy( char *pDest, const char *pSrc, int maxLenInChars ); // Ultimate safe strcpy function, for arrays only -- buffer size is inferred by the compiler
template <size_t maxLenInChars> void V_strcpy_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], const char *pSrc ) { V_strncpy( pDest, pSrc, static_cast<int>(maxLenInChars) ); }
// A function which duplicates a string using new[] to allocate the new string.
inline char *V_strdup( const char *pSrc ) { int nLen = V_strlen( pSrc ); char *pResult = new char [ nLen+1 ]; V_memcpy( pResult, pSrc, nLen+1 ); return pResult; }
// Returns the number of characters printed (not including the NULL), or maxLenInChars if truncation occurs.
// pDest is always null-terminated.
int V_snprintf( OUT_Z_CAP(maxLenInChars) char *pDest, int maxLenInChars, PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 3, 4 ); int V_vsnprintf( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params );
// gcc insists on only having format annotations on declarations, not definitions, which is why I have both.
template <size_t maxLenInChars> int V_sprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 2, 3 ); template <size_t maxLenInChars> int V_sprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInChars], const char *pFormat, ... ) { va_list params; va_start( params, pFormat ); int result = V_vsnprintf( pDest, maxLenInChars, pFormat, params ); va_end( params ); return result; }
// gcc insists on only having format annotations on declarations, not definitions, which is why I have both.
// Append formatted text to an array in a safe manner -- always null-terminated, truncation rather than buffer overrun.
template <size_t maxLenInChars> int V_sprintfcat_safe( INOUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 2, 3 ); template <size_t maxLenInChars> int V_sprintfcat_safe( INOUT_Z_ARRAY char (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const char *pFormat, ... ) { va_list params; va_start( params, pFormat ); size_t usedLength = V_strlen(pDest); // This code is here to check against buffer overruns when uninitialized arrays are passed in.
// It should never be executed. Unfortunately we can't assert in this header file.
if ( usedLength >= maxLenInChars ) usedLength = 0; int result = V_vsnprintf( pDest + usedLength, maxLenInChars - usedLength, pFormat, params ); va_end( params ); return result; }
void V_wcsncpy( OUT_Z_BYTECAP(maxLenInBytes) wchar_t *pDest, wchar_t const *pSrc, int maxLenInBytes ); template <size_t maxLenInChars> void V_wcscpy_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars], wchar_t const *pSrc ) { V_wcsncpy( pDest, pSrc, maxLenInChars * sizeof(*pDest) ); }
#define COPY_ALL_CHARACTERS -1
char *V_strncat( INOUT_Z_CAP(maxLenInBytes) char *, const char *, size_t maxLenInBytes, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ); template <size_t cchDest> char *V_strcat_safe( INOUT_Z_ARRAY char (&pDest)[cchDest], const char *pSrc, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ) { return V_strncat( pDest, pSrc, static_cast<int>(cchDest), nMaxCharsToCopy ); }
wchar_t *V_wcsncat( INOUT_Z_BYTECAP(maxLenInBytes) wchar_t *, const wchar_t *, int maxLenInBytes, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ); template <size_t cchDest> wchar_t *V_wcscat_safe( INOUT_Z_ARRAY wchar_t (&pDest)[cchDest], const wchar_t *pSrc, int nMaxCharsToCopy=COPY_ALL_CHARACTERS ) { return V_wcsncat( pDest, pSrc, static_cast<int>(cchDest), nMaxCharsToCopy ); } char *V_strnlwr(char *, size_t);
// Unicode string conversion policies - what to do if an illegal sequence is encountered
enum EStringConvertErrorPolicy { _STRINGCONVERTFLAG_SKIP = 1, _STRINGCONVERTFLAG_FAIL = 2, _STRINGCONVERTFLAG_ASSERT = 4,
STRINGCONVERT_REPLACE = 0, STRINGCONVERT_SKIP = _STRINGCONVERTFLAG_SKIP, STRINGCONVERT_FAIL = _STRINGCONVERTFLAG_FAIL,
STRINGCONVERT_ASSERT_REPLACE = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_REPLACE, STRINGCONVERT_ASSERT_SKIP = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_SKIP, STRINGCONVERT_ASSERT_FAIL = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_FAIL, };
// Unicode (UTF-8, UTF-16, UTF-32) fundamental conversion functions.
bool Q_IsValidUChar32( uchar32 uValue ); int Q_UChar32ToUTF8Len( uchar32 uValue ); int Q_UChar32ToUTF8( uchar32 uValue, char *pOut ); int Q_UChar32ToUTF16Len( uchar32 uValue ); int Q_UChar32ToUTF16( uchar32 uValue, uchar16 *pOut );
// Validate that a Unicode string is well-formed and contains only valid code points
bool Q_UnicodeValidate( const char *pUTF8 ); bool Q_UnicodeValidate( const uchar16 *pUTF16 ); bool Q_UnicodeValidate( const uchar32 *pUTF32 ); #define V_UnicodeValidate Q_UnicodeValidate
// Returns length of string in Unicode code points (printed glyphs or non-printing characters)
int Q_UnicodeLength( const char *pUTF8 ); int Q_UnicodeLength( const uchar16 *pUTF16 ); int Q_UnicodeLength( const uchar32 *pUTF32 );
#define V_UnicodeLength Q_UnicodeLength
// Returns length of string in elements, not characters! These are analogous to Q_strlen and Q_wcslen
inline int Q_strlen16( const uchar16 *puc16 ) { int nElems = 0; while ( puc16[nElems] ) ++nElems; return nElems; } inline int Q_strlen32( const uchar32 *puc32 ) { int nElems = 0; while ( puc32[nElems] ) ++nElems; return nElems; }
// Repair invalid Unicode strings by dropping truncated characters and fixing improperly-double-encoded UTF-16 sequences.
// Unlike conversion functions which replace with '?' by default, a repair operation assumes that you know that something
// is wrong with the string (eg, mid-sequence truncation) and you just want to do the best possible job of cleaning it up.
// You can pass a REPLACE or FAIL policy if you would prefer to replace characters with '?' or clear the entire string.
// Returns nonzero on success, or 0 if the policy is FAIL and an invalid sequence was found.
int Q_UnicodeRepair( char *pUTF8, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP ); int Q_UnicodeRepair( uchar16 *pUTF16, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP ); int Q_UnicodeRepair( uchar32 *pUTF32, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP );
// Advance pointer forward by N Unicode code points (printed glyphs or non-printing characters), stopping at terminating null if encountered.
char *Q_UnicodeAdvance( char *pUTF8, int nCharacters ); uchar16 *Q_UnicodeAdvance( uchar16 *pUTF16, int nCharactersnCharacters ); uchar32 *Q_UnicodeAdvance( uchar32 *pUTF32, int nChars ); inline const char *Q_UnicodeAdvance( const char *pUTF8, int nCharacters ) { return Q_UnicodeAdvance( (char*) pUTF8, nCharacters ); } inline const uchar16 *Q_UnicodeAdvance( const uchar16 *pUTF16, int nCharacters ) { return Q_UnicodeAdvance( (uchar16*) pUTF16, nCharacters ); } inline const uchar32 *Q_UnicodeAdvance( const uchar32 *pUTF32, int nCharacters ) { return Q_UnicodeAdvance( (uchar32*) pUTF32, nCharacters ); } #define V_UnicodeAdvance Q_UnicodeAdvance
// Truncate to maximum of N Unicode code points (printed glyphs or non-printing characters)
inline void Q_UnicodeTruncate( char *pUTF8, int nCharacters ) { *Q_UnicodeAdvance( pUTF8, nCharacters ) = 0; } inline void Q_UnicodeTruncate( uchar16 *pUTF16, int nCharacters ) { *Q_UnicodeAdvance( pUTF16, nCharacters ) = 0; } inline void Q_UnicodeTruncate( uchar32 *pUTF32, int nCharacters ) { *Q_UnicodeAdvance( pUTF32, nCharacters ) = 0; } #define V_UnicodeTruncate Q_UnicodeTruncate
// Conversion between Unicode string types (UTF-8, UTF-16, UTF-32). Deals with bytes, not element counts,
// to minimize harm from the programmer mistakes which continue to plague our wide-character string code.
// Returns the number of bytes written to the output, or if output is NULL, the number of bytes required.
int Q_UTF8ToUTF16( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF8ToUTF32( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16ToUTF8( const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16ToUTF32( const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32ToUTF8( const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32ToUTF16( const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
// This is disgusting and exist only easily to facilitate having 16-bit and 32-bit wchar_t's on different platforms
int Q_UTF32ToUTF32( const uchar32 *pUTF32Source, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32Dest, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
// Conversion between count-limited UTF-n character arrays, including any potential NULL characters.
// Output has a terminating NULL for safety; strip the last character if you want an unterminated string.
// Returns the number of bytes written to the output, or if output is NULL, the number of bytes required.
int Q_UTF8CharsToUTF16( const char *pUTF8, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); #define V_UTF8CharsToUTF16 Q_UTF8CharsToUTF16
int Q_UTF8CharsToUTF32( const char *pUTF8, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16CharsToUTF8( const uchar16 *pUTF16, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF16CharsToUTF32( const uchar16 *pUTF16, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32CharsToUTF8( const uchar32 *pUTF32, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE ); int Q_UTF32CharsToUTF16( const uchar32 *pUTF32, int nElements, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes, EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE );
// Decode a single UTF-8 character to a uchar32, returns number of UTF-8 bytes parsed
int Q_UTF8ToUChar32( const char *pUTF8_, uchar32 &uValueOut, bool &bErrorOut ); #define V_UTF8ToUChar32 Q_UTF8ToUChar32
// Decode a single UTF-16 character to a uchar32, returns number of UTF-16 characters (NOT BYTES) consumed
int Q_UTF16ToUChar32( const uchar16 *pUTF16, uchar32 &uValueOut, bool &bErrorOut );
// NOTE: WString means either UTF32 or UTF16 depending on the platform and compiler settings.
#if defined( _MSC_VER ) || defined( _WIN32 )
#define Q_UTF8ToWString Q_UTF8ToUTF16
#define Q_UTF8CharsToWString Q_UTF8CharsToUTF16
#define Q_UTF32ToWString Q_UTF32ToUTF16
#define Q_WStringToUTF8 Q_UTF16ToUTF8
#define Q_WStringCharsToUTF8 Q_UTF16CharsToUTF8
#define Q_WStringToUTF32 Q_UTF16ToUTF32
#else
#define Q_UTF8ToWString Q_UTF8ToUTF32
#define Q_UTF8CharsToWString Q_UTF8CharsToUTF32
#define Q_UTF32ToWString Q_UTF32ToUTF32
#define Q_WStringToUTF8 Q_UTF32ToUTF8
#define Q_WStringCharsToUTF8 Q_UTF32CharsToUTF8
#define Q_WStringToUTF32 Q_UTF32ToUTF32
#endif
// UNDONE: Find a non-compiler-specific way to do this
#ifdef _WIN32
#ifndef _VA_LIST_DEFINED
#ifdef _M_ALPHA
struct va_list { char *a0; /* pointer to first homed integer argument */ int offset; /* byte offset of next parameter */ };
#else // !_M_ALPHA
typedef char * va_list;
#endif // !_M_ALPHA
#define _VA_LIST_DEFINED
#endif // _VA_LIST_DEFINED
#elif POSIX
#include <stdarg.h>
#endif
#ifdef _WIN32
#define CORRECT_PATH_SEPARATOR '\\'
#define CORRECT_PATH_SEPARATOR_S "\\"
#define INCORRECT_PATH_SEPARATOR '/'
#define INCORRECT_PATH_SEPARATOR_S "/"
#define CHARACTERS_WHICH_SEPARATE_DIRECTORY_COMPONENTS_IN_PATHNAMES ":/\\"
#define PATHSEPARATOR(c) ((c) == '\\' || (c) == '/')
#elif POSIX || defined( _PS3 )
#define CORRECT_PATH_SEPARATOR '/'
#define CORRECT_PATH_SEPARATOR_S "/"
#define INCORRECT_PATH_SEPARATOR '\\'
#define INCORRECT_PATH_SEPARATOR_S "\\"
#define CHARACTERS_WHICH_SEPARATE_DIRECTORY_COMPONENTS_IN_PATHNAMES "/"
#define PATHSEPARATOR(c) ((c) == '/')
#endif
int V_vsnprintf( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params ); template <size_t maxLenInCharacters> int V_vsprintf_safe( OUT_Z_ARRAY char (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const char *pFormat, va_list params ) { return V_vsnprintf( pDest, maxLenInCharacters, pFormat, params ); } int V_vsnwprintf( OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params ); template <size_t maxLenInCharacters> int V_vswprintf_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params ) { return V_vsnwprintf( pDest, maxLenInCharacters, pFormat, params ); } int V_vsnprintfRet( OUT_Z_CAP(maxLenInCharacters) char *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated ); template <size_t maxLenInCharacters> int V_vsprintfRet_safe( OUT_Z_ARRAY char (&pDest)[maxLenInCharacters], PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated ) { return V_vsnprintfRet( pDest, maxLenInCharacters, pFormat, params, pbTruncated ); }
// FMTFUNCTION can only be used on ASCII functions, not wide-char functions.
int V_snwprintf( OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest, int maxLenInCharacters, PRINTF_FORMAT_STRING const wchar_t *pFormat, ... ); template <size_t maxLenInChars> int V_swprintf_safe( OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars], PRINTF_FORMAT_STRING const wchar_t *pFormat, ... ) { va_list params; va_start( params, pFormat ); int result = V_vsnwprintf( pDest, maxLenInChars, pFormat, params ); va_end( params ); return result; }
int V_vsnprintfRet( OUT_Z_CAP(maxLen) char *pDest, int maxLen, PRINTF_FORMAT_STRING const char *pFormat, va_list params, bool *pbTruncated );
// Prints out a pretified memory counter string value ( e.g., 7,233.27 Mb, 1,298.003 Kb, 127 bytes )
char *V_pretifymem( float value, int digitsafterdecimal = 2, bool usebinaryonek = false );
// Prints out a pretified integer with comma separators (eg, 7,233,270,000)
char *V_pretifynum( int64 value );
// Prints out a memory dump where stuff that's ascii is human readable, etc.
class CUtlString; void V_LogMultiline( bool input, char const *label, const char *data, size_t len, CUtlString &output );
// conversion functions wchar_t <-> char, returning the number of characters converted
int _V_UTF8ToUnicode( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pwchDest, int cubDestSizeInBytes ); template< typename T > inline int V_UTF8ToUnicode( const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pwchDest, T cubDestSizeInBytes ) { return _V_UTF8ToUnicode( pUTF8, pwchDest, static_cast<int>(cubDestSizeInBytes) ); }
int _V_UnicodeToUTF8( const wchar_t *pUnicode, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes ); template< typename T > inline int V_UnicodeToUTF8( const wchar_t *pUnicode, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, T cubDestSizeInBytes ) { return _V_UnicodeToUTF8( pUnicode, pUTF8, static_cast<int>(cubDestSizeInBytes) ); }
int _V_UCS2ToUnicode( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode, int cubDestSizeInBytes ); template< typename T > inline int V_UCS2ToUnicode( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode, T cubDestSizeInBytes ) { return _V_UCS2ToUnicode( pUCS2, pUnicode, static_cast<int>(cubDestSizeInBytes) ); }
int _V_UCS2ToUTF8( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes ); template< typename T > inline int V_UCS2ToUTF8( const ucs2 *pUCS2, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, T cubDestSizeInBytes ) { return _V_UCS2ToUTF8( pUCS2, pUTF8, static_cast<int>(cubDestSizeInBytes) ); }
int _V_UnicodeToUCS2( const wchar_t *pUnicode, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2, int cubDestSizeInBytes ); template< typename T, typename U > inline int V_UnicodeToUCS2( const wchar_t *pUnicode, T cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2, U cubDestSizeInBytes ) { return _V_UnicodeToUCS2( pUnicode, static_cast<int>(cubSrcInBytes), pUCS2, static_cast<int>(cubDestSizeInBytes) ); }
int _V_UTF8ToUCS2( const char *pUTF8, int cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2, int cubDestSizeInBytes ); template< typename T, typename U > inline int V_UTF8ToUCS2( const char *pUTF8, T cubSrcInBytes, OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2, U cubDestSizeInBytes ) { return _V_UTF8ToUCS2( pUTF8, static_cast<int>(cubSrcInBytes), pUCS2, static_cast<int>(cubDestSizeInBytes) ); }
// Functions for converting hexidecimal character strings back into binary data etc.
//
// e.g.,
// int output;
// V_hextobinary( "ffffffff", 8, &output, sizeof( output ) );
// would make output == 0xfffffff or -1
// Similarly,
// char buffer[ 9 ];
// V_binarytohex( &output, sizeof( output ), buffer, sizeof( buffer ) );
// would put "ffffffff" into buffer (note null terminator!!!)
void V_hextobinary( char const *in, int numchars, OUT_Z_CAP(maxoutputbytes) byte *out, int maxoutputbytes ); void V_binarytohex( const byte *in, int inputbytes, char *out, int outsize );
// Tools for working with filenames
// Extracts the base name of a file (no path, no extension, assumes '/' or '\' as path separator)
void V_FileBase( const char *in, OUT_Z_CAP(maxlen) char *out,int maxlen ); // Remove the final characters of ppath if it's '\' or '/'.
void V_StripTrailingSlash( char *ppath );
// Remove the final characters of ppline if they are whitespace (uses V_isspace)
void V_StripTrailingWhitespace( char *ppline );
// Remove the initial characters of ppline if they are whitespace (uses V_isspace)
void V_StripLeadingWhitespace( char *ppline );
// Remove the initial/final characters of ppline if they are " quotes
void V_StripSurroundingQuotes( char *ppline );
// Remove any extension from in and return resulting string in out
void V_StripExtension( const char *in, char *out, int outLen ); // Make path end with extension if it doesn't already have an extension
void V_DefaultExtension( char *path, const char *extension, int pathStringLength ); // Strips any current extension from path and ensures that extension is the new extension.
// NOTE: extension string MUST include the . character
void V_SetExtension( char *path, const char *extension, int pathStringLength ); // Removes any filename from path ( strips back to previous / or \ character )
void V_StripFilename( char *path ); // Remove the final directory from the path
bool V_StripLastDir( char *dirName, int maxlen ); // Returns a pointer to the unqualified file name (no path) of a file name
const char * V_UnqualifiedFileName( const char * in ); // Given a path and a filename, composes "path\filename", inserting the (OS correct) separator if necessary
void V_ComposeFileName( const char *path, const char *filename, char *dest, int destSize );
// Copy out the path except for the stuff after the final pathseparator
bool V_ExtractFilePath( const char *path, char *dest, int destSize ); // Copy out the file extension into dest
void V_ExtractFileExtension( const char *path, char *dest, int destSize );
// Returns a pointer to the file extension or NULL if one doesn't exist
const char *V_GetFileExtension( const char *path );
// (everything after the last path seperator)
const char *V_GetFileExtensionSafe( const char *path );
// Dear branch integrator: V_GetFileName was removed! It was identical to V_UnqualifiedFileName.
inline const char *V_GetFileName( const char * path ) { return V_UnqualifiedFileName( path ); }
// This removes "./" and "../" from the pathname. pFilename should be a full pathname.
// Returns false if it tries to ".." past the root directory in the drive (in which case
// it is an invalid path).
bool V_RemoveDotSlashes( char *pFilename, char separator = CORRECT_PATH_SEPARATOR );
// If pPath is a relative path, this function makes it into an absolute path
// using the current working directory as the base, or pStartingDir if it's non-NULL.
// Returns false if it runs out of room in the string, or if pPath tries to ".." past the root directory.
#if defined(_MSC_VER) && _MSC_VER >= 1900
bool #else
void #endif
V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir = NULL ); inline void V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir, bool bLowercaseName ) { V_MakeAbsolutePath( pOut, outLen, pPath, pStartingDir ); if ( bLowercaseName ) { V_strlower( pOut ); } }
// Creates a relative path given two full paths
// The first is the full path of the file to make a relative path for.
// The second is the full path of the directory to make the first file relative to
// Returns false if they can't be made relative (on separate drives, for example)
bool V_MakeRelativePath( const char *pFullPath, const char *pDirectory, char *pRelativePath, int nBufLen );
// Fixes up a file name, replacing ' ' with '_'
void V_FixupPathSpaceToUnderscore( char *pPath );
// Fixes up a file name, removing dot slashes, fixing slashes, converting to lowercase, etc.
void V_FixupPathName( OUT_Z_CAP(nOutLen) char *pOut, int nOutLen, IN_Z const char *pPath );
// Adds a path separator to the end of the string if there isn't one already and the string is not empty.
// Triggers a fatal error if it would run out of space.
void V_AppendSlash( INOUT_Z_CAP(strSize) char *pStr, int strSize, char separator = CORRECT_PATH_SEPARATOR );
// Returns true if the path is an absolute path.
bool V_IsAbsolutePath( IN_Z const char *pPath );
// Scans pIn and replaces all occurences of pMatch with pReplaceWith.
// Writes the result to pOut.
// Returns true if it completed successfully.
// If it would overflow pOut, it fills as much as it can and returns false.
bool V_StrSubst( IN_Z const char *pIn, IN_Z const char *pMatch, IN_Z const char *pReplaceWith, OUT_Z_CAP(outLen) char *pOut, int outLen, bool bCaseSensitive=false );
// Split the specified string on the specified separator.
// Returns a list of strings separated by pSeparator.
// You are responsible for freeing the contents of outStrings (call outStrings.PurgeAndDeleteElements).
// You can pass in a CUtlStringList to hold the results, and it will automatically free the strings,
// but it does this in the destructor so if you make multiple calls to V_SplitString with the same
// object you must call outStrings.PurgeAndDeleteElements between each call.
// If you copy and retain pointers to any of the strings you must zero them before calling
// PurgeAndDeleteElements to avoid having a pointer to freed memory.
void V_SplitString( IN_Z const char *pString, IN_Z const char *pSeparator, CUtlVector<char*, CUtlMemory<char*, int> > &outStrings );
void V_SplitString( const char *pString, const char *pSeparator, CUtlVector< CUtlString, CUtlMemory<CUtlString, int> > &outStrings, bool bIncludeEmptyStrings = false );
// Just like V_SplitString, but it can use multiple possible separators.
void V_SplitString2( const char *pString, const char **pSeparators, int nSeparators, CUtlVector<char*, CUtlMemory<char*, int> > &outStrings );
// Split string for wide character strings
void V_SplitWString( const wchar_t *pString, const wchar_t *pSeparator, CUtlVector<wchar_t*, CUtlMemory<wchar_t*, int> > &outStrings );
// Just like V_SplitString, but for wide character strings
void V_SplitWString2( const wchar_t *pString, const wchar_t **pSeparators, int nSeparators, CUtlVector<wchar_t*, CUtlMemory<wchar_t*, int> > &outStrings );
// Returns false if the buffer is not large enough to hold the working directory name.
bool V_GetCurrentDirectory( char *pOut, int maxLen );
// Set the working directory thus.
bool V_SetCurrentDirectory( const char *pDirName );
typedef enum { PATTERN_NONE = 0x00000000, PATTERN_DIRECTORY = 0x00000001 } TStringPattern; // String matching using wildcards (*) for partial matches.
bool V_StringMatchesPattern( const char* szString, const char* szPattern, int flags = 0 );
// This function takes a slice out of pStr and stores it in pOut.
// It follows the Python slice convention:
// Negative numbers wrap around the string (-1 references the last character).
// Large numbers are clamped to the end of the string.
void V_StrSlice( const char *pStr, int firstChar, int lastCharNonInclusive, char *pOut, int outSize );
// Chop off the left nChars of a string.
void V_StrLeft( const char *pStr, int nChars, char *pOut, int outSize );
// Chop off the right nChars of a string.
void V_StrRight( const char *pStr, int nChars, char *pOut, int outSize );
// change "special" characters to have their c-style backslash sequence. like \n, \r, \t, ", etc.
// returns a pointer to a newly allocated string, which you must delete[] when finished with.
char *V_AddBackSlashesToSpecialChars( char const *pSrc );
// Force slashes of either type to be = separator character
void V_FixSlashes( char *pname, char separator = CORRECT_PATH_SEPARATOR );
// This function fixes cases of filenames like materials\\blah.vmt or somepath\otherpath\\ and removes the extra double slash.
void V_FixDoubleSlashes( char *pStr );
// Check if 2 paths are the same, works if slashes are different.
bool V_PathsMatch( const char *pPath1, const char *pPath2 );
// Convert multibyte to wchar + back
// Specify -1 for nInSize for null-terminated string
void V_strtowcs( const char *pString, int nInSize, wchar_t *pWString, int nOutSize ); void V_wcstostr( const wchar_t *pWString, int nInSize, char *pString, int nOutSize );
// buffer-safe strcat
inline void V_strcat( INOUT_Z_CAP(cchDest) char *dest, const char *src, int cchDest ) { V_strncat( dest, src, cchDest, COPY_ALL_CHARACTERS ); }
// Buffer safe wcscat
inline void V_wcscat( INOUT_Z_CAP(cchDest) wchar_t *dest, const wchar_t *src, int cchDest ) { V_wcsncat( dest, src, cchDest, COPY_ALL_CHARACTERS ); }
// Convert from a string to an array of integers.
// Returns the actual # of ints converted
int V_StringToIntArray( OUT_CAP(count) int *pVector, int count, const char *pString );
// Convert from a string to an array of floats.
// Returns the actual # of floats converted
int V_StringToFloatArray( OUT_CAP(count) float *pVector, int count, const char *pString );
// Convert from a string to a vector3 type
void V_StringToVector( OUT_CAP(3) float *pVector, const char *pString );
// Convert from a string to a 4 byte color value.
void V_StringToColor32( color32 *color, const char *pString );
// Convert \r\n (Windows linefeeds) to \n (Unix linefeeds).
void V_TranslateLineFeedsToUnix( char *pStr );
/// Given two file paths, return the length of the common starting substring containing matching components. Case insensitive, and treats slash and backslash the same
/// Assert( LengthOfMatchingPaths( "d:/a/b", "d:/a/b" ) == 6 );
/// Assert( LengthOfMatchingPaths( "d:/a/b", "d:/a/" ) == 5 );
/// Assert( LengthOfMatchingPaths( "d:/a/b", "d:/a" ) == 5 );
/// Assert( LengthOfMatchingPaths( "d:/a/ba", "d:/a/b" ) == 5 );
int LengthOfMatchingPaths( char const *pFilenamePath, char const *pMatchPath );
inline void V_RemoveFormatSpecifications( const char *pszFrom, char *pszTo, size_t sizeDest ) { while ( *pszFrom && --sizeDest ) { if ( *pszFrom == '%' ) { if ( --sizeDest ) { *pszTo++ = '%'; } else { break; } }
*pszTo++ = *pszFrom++; } *pszTo = 0; }
// If pBreakCharacters == NULL, then the tokenizer will split tokens at the following characters:
// { } ( ) ' :
// White-space, '//' comments, and quoted strings are always handled.
char const *V_ParseToken( char const *pStrIn, OUT_Z_CAP(bufsize) char *pToken, int bufsize, bool *pbOverflowed = NULL, struct characterset_t *pTokenBreakCharacters = NULL );
// Parses a single line, does not trim any whitespace from start or end. Does not include the final '\n'.
char const *V_ParseLine( char const *pStrIn, OUT_Z_CAP(bufsize) char *pToken, int bufsize, bool *pbOverflowed = NULL );
// Returns true if additional data is waiting to be processed on this line
bool V_TokenWaiting( const char *buffer );
// Performs boyer moore search, returns offset of first occurrence of needle in haystack, or -1 on failure. Note that haystack and the needle can be binary (non-text) data
int V_BoyerMooreSearch( const byte *pNeedle, int nNeedleLength, const byte *pHayStack, int nHayStackLength );
// Creates a random ascii string (alphanumeric only) of specified length
CUtlString V_RandomString( int nLength );
// Encode a string for display as HTML -- this only encodes ' " & < >, which are the important ones to encode for
// security and ensuring HTML display doesn't break. Other special chars like the ? sign and so forth will not
// be encoded
//
// Returns false if there was not enough room in pDest to encode the entire source string, otherwise true
bool V_BasicHtmlEntityEncode( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize, bool bPreserveWhitespace = false );
// Decode a string with htmlentities HTML -- this should handle all special chars, not just the ones Q_BasicHtmlEntityEncode uses.
//
// Returns false if there was not enough room in pDest to decode the entire source string, otherwise true
bool V_HtmlEntityDecodeToUTF8( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize );
// strips HTML from a string. Should call Q_HTMLEntityDecodeToUTF8 afterward.
void V_StripAndPreserveHTML( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, uint cMaxResultSize ); void V_StripAndPreserveHTMLCore( CUtlBuffer *pbuffer, const char *pchHTML, const char **rgszPreserveTags, uint cPreserveTags, const char **rgszNoCloseTags, uint cNoCloseTags, uint cMaxResultSize );
// Extracts the domain from a URL
bool V_ExtractDomainFromURL( const char *pchURL, OUT_Z_CAP( cchDomain ) char *pchDomain, int cchDomain );
// returns true if the url passed in is on the specified domain
bool V_URLContainsDomain( const char *pchURL, const char *pchDomain );
//-----------------------------------------------------------------------------
// returns true if the character is allowed in a URL, false otherwise
//-----------------------------------------------------------------------------
bool V_IsValidURLCharacter( const char *pch, int *pAdvanceBytes );
//-----------------------------------------------------------------------------
// returns true if the character is allowed in a DNS doman name, false otherwise
//-----------------------------------------------------------------------------
bool V_IsValidDomainNameCharacter( const char *pch, int *pAdvanceBytes );
// Converts BBCode tags to HTML tags
bool V_BBCodeToHTML( OUT_Z_CAP( nDestSize ) char *pDest, const int nDestSize, char const *pIn, const int nInSize );
// helper to identify "mean" spaces, which we don't like in visible identifiers
// such as player Name
bool V_IsMeanSpaceW( wchar_t wch );
// helper to identify characters which are deprecated in Unicode,
// and we simply don't accept
bool V_IsDeprecatedW( wchar_t wch );
//-----------------------------------------------------------------------------
// generic unique name helper functions
//-----------------------------------------------------------------------------
// returns -1 if no match, nDefault if pName==prefix, and N if pName==prefix+N
inline int V_IndexAfterPrefix( const char *pName, const char *prefix, int nDefault = 0 ) { if ( !pName || !prefix ) return -1;
const char *pIndexStr = StringAfterPrefix( pName, prefix ); if ( !pIndexStr ) return -1;
if ( !*pIndexStr ) return nDefault;
return atoi( pIndexStr ); }
// returns startindex if none found, 2 if "prefix" found, and n+1 if "prefixn" found
template < class NameArray > int V_GenerateUniqueNameIndex( const char *prefix, const NameArray &nameArray, int startindex = 0 ) { if ( !prefix ) return 0;
int freeindex = startindex;
int nNames = nameArray.Count(); for ( int i = 0; i < nNames; ++i ) { int index = V_IndexAfterPrefix( nameArray[ i ], prefix, 1 ); // returns -1 if no match, 0 for exact match, N for
if ( index >= freeindex ) { // TODO - check that there isn't more junk after the index in pElementName
freeindex = index + 1; } }
return freeindex; }
template < class NameArray > bool V_GenerateUniqueName( char *name, int memsize, const char *prefix, const NameArray &nameArray ) { if ( name == NULL || memsize == 0 ) return false;
if ( prefix == NULL ) { name[ 0 ] = '\0'; return false; }
int prefixLength = V_strlen( prefix ); if ( prefixLength + 1 > memsize ) { name[ 0 ] = '\0'; return false; }
int i = V_GenerateUniqueNameIndex( prefix, nameArray ); if ( i <= 0 ) { V_strncpy( name, prefix, memsize ); return true; }
int newlen = prefixLength + ( int )log10( ( float )i ) + 1; if ( newlen + 1 > memsize ) { V_strncpy( name, prefix, memsize ); return false; }
V_snprintf( name, memsize, "%s%d", prefix, i ); return true; }
extern bool V_StringToBin( const char*pString, void *pBin, uint nBinSize ); extern bool V_BinToString( char*pString, void *pBin, uint nBinSize );
template<typename T> struct BinString_t { BinString_t(){} explicit BinString_t( const char *pStr ) { V_strncpy( m_string, pStr, sizeof(m_string) ); ToBin(); } explicit BinString_t( const T & that ) { m_bin = that; ToString(); } bool ToBin() { return V_StringToBin( m_string, &m_bin, sizeof( m_bin ) ); } void ToString() { V_BinToString( m_string, &m_bin, sizeof( m_bin ) ); } T m_bin; char m_string[sizeof(T)*2+2]; // 0-terminated string representing the binary data in hex
};
template <typename T> inline BinString_t<T> MakeBinString( const T& that ) { return BinString_t<T>( that ); }
// Encodes a string (or binary data) in URL encoding format, see rfc1738 section 2.2.
// Dest buffer should be 3 times the size of source buffer to guarantee it has room to encode.
void Q_URLEncodeRaw( OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen, const char *pchSource, int nSourceLen );
// Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// Dest buffer should be at least as large as source buffer to gurantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//
// Returns the amount of space actually used in the output buffer.
size_t Q_URLDecodeRaw( OUT_CAP(nDecodeDestLen) char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen );
// Encodes a string (or binary data) in URL encoding format, this isn't the strict rfc1738 format, but instead uses + for spaces.
// This is for historical reasons and HTML spec foolishness that lead to + becoming a de facto standard for spaces when encoding form data.
// Dest buffer should be 3 times the size of source buffer to guarantee it has room to encode.
void Q_URLEncode( OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen, const char *pchSource, int nSourceLen );
// Decodes a string (or binary data) in URL encoding format, this isn't the strict rfc1738 format, but instead uses + for spaces.
// This is for historical reasons and HTML spec foolishness that lead to + becoming a de facto standard for spaces when encoding form data.
// Dest buffer should be at least as large as source buffer to gurantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//
// Returns the amount of space actually used in the output buffer.
size_t Q_URLDecode( OUT_CAP(nDecodeDestLen) char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen );
//-----------------------------------------------------------------------------
// Purpose: Utility class to allow parsing of various types of data
//-----------------------------------------------------------------------------
template< class V > struct TypeParser_t { static int ComputeMaxStringSize( const V *pValue ) { return 1; } static bool WriteToString( const V *pValue, OUT_Z_CAP(nBufLen) char *pBuf, int nBufLen ) { *pBuf = 0; return false; } static bool ParseFromString( const char *pString, V *pValue ) { return false; } };
// Used to put TypeParser_t function calls in arrays w/ common prototypes
template< class V > struct TypeParserAdapter_t { static bool WriteToString( const void *pValue, OUT_Z_CAP(nBufLen) char *pBuf, int nBufLen ) { return TypeParser_t<V>::WriteToString( ( const V* )pValue, pBuf, nBufLen ); } static int ComputeMaxStringSize( const void *pValue ) { return TypeParser_t<V>::ComputeMaxStringSize( ( const V* )pValue ); } static bool ParseFromString( const char *pString, void *pValue ) { return TypeParser_t<V>::ParseFromString( pString, ( V* )pValue ); } };
template <> struct TypeParser_t< bool > { static int ComputeMaxStringSize( const bool *pValue ) { return 6; } //"false"
static bool WriteToString( const bool *pValue, OUT_Z_CAP(nBufLen) char *pBuf, int nBufLen ) { int nLenWritten = V_snprintf( pBuf, ( int )nBufLen, (*pValue) ? "true" : "false" ); return ( nLenWritten < nBufLen ); }
static bool ParseFromString( const char *pString, bool *pValue ) { if ( !V_stricmp( pString, "true" ) ) { *pValue = true; return true; } if ( !V_stricmp( pString, "false" ) ) { *pValue = false; return true; } int nValue; if ( sscanf( pString, "%d", &nValue ) != 1 ) return false; if ( nValue != 0 && nValue != 1 ) return false; *pValue = ( nValue == 1 ); return true; } };
#define DECLARE_POD_TYPE_PARSE_BASE( type, formatspecifier, maxstringdigits, SCAN ) \
template <> struct TypeParser_t< type > \ { \ static int ComputeMaxStringSize( const type *pValue ) { return maxstringdigits; } \ \ static bool WriteToString( const type *pValue, OUT_Z_CAP(nBufLen) char *pBuf, int nBufLen ) \ { \ int nLenWritten = V_snprintf( pBuf, nBufLen, formatspecifier, *pValue ); \ return ( nLenWritten < nBufLen ); \ } \ static bool ParseFromString( const char *pString, type *pValue ) \ { \ SCAN \ } \ };
#define DECLARE_POD_TYPE_PARSE( type, formatspecifier, maxstringdigits ) DECLARE_POD_TYPE_PARSE_BASE( type, formatspecifier, maxstringdigits, { return ( sscanf( pString, formatspecifier, pValue ) == 1 ); } )
#define DECLARE_POD_TYPE_PARSE_SMALLINT( type, formatspecifier, maxstringdigits, BIGINT ) DECLARE_POD_TYPE_PARSE_BASE( type, formatspecifier, maxstringdigits, { BIGINT nScannedValue; if( sscanf( pString, formatspecifier, &nScannedValue ) == 1 ) { *pValue = ( type )nScannedValue; return true; } else return false; } )
// NOTE: MS compiler won't allow sscanf of a 1-byte int, and will override memory if you try to sscanf( %d, int8 )
DECLARE_POD_TYPE_PARSE_SMALLINT( int8, "%d", 5, int ); // -127
DECLARE_POD_TYPE_PARSE_SMALLINT( uint8, "%u", 5, uint );
DECLARE_POD_TYPE_PARSE_SMALLINT( int16, "%d", 7, int ); // -32767
DECLARE_POD_TYPE_PARSE_SMALLINT( uint16, "%u", 7, uint );
DECLARE_POD_TYPE_PARSE( int32, "%d", 12 );//MIN_INT
DECLARE_POD_TYPE_PARSE( uint32, "%u", 12 );//UINT_MAX
DECLARE_POD_TYPE_PARSE( int64, "%lld", 21 ); // 18446744073709551615 -9223372036854775808
DECLARE_POD_TYPE_PARSE( uint64, "%llu", 21 );
DECLARE_POD_TYPE_PARSE( float32, "%f", 48 ); // -FLT32_MAX
DECLARE_POD_TYPE_PARSE( float64, "%lf", 318 ); // -FLOAT64_MAX (it's got a lot of zeros)
template <> struct TypeParser_t< Color > { static int ComputeMaxStringSize( const Color *pValue ) { return 18; } //{255 255 255 255}
static bool WriteToString( const Color *pValue, OUT_Z_CAP(nBufLen) char *pBuf, int nBufLen ) { int nLenWritten = V_snprintf( pBuf, ( int )nBufLen, "{%d %d %d %d}", pValue->r(), pValue->g(), pValue->b(), pValue->a() ); return ( nLenWritten < nBufLen ); }
static bool ParseFromString( const char *pString, Color *pValue ) { int r, g, b, a; if ( sscanf( pString, "{%d %d %d %d}", &r, &g, &b, &a ) != 4 ) return false; if ( r < 0 || r > 255 || g < 0 || g > 255 || b < 0 || b > 255 || a < 0 || a > 255 ) return false; pValue->SetColor( r, g, b, a ); return true; } };
//---------------------------------------------------------------------------------------------------------------------------------------------------
// This will return a char* valid for the current expression that will make a number comma separated:
// Log_Msg( LOG_VFXC, "%s", V_FormatNumber( -1234567 ) );
// will output:
// -1,234,567
//---------------------------------------------------------------------------------------------------------------------------------------------------
#define V_FormatNumber( nNum ) ( CFormatNumber_DontUseDirectly_UseFormatNumberMacro( ( nNum ) ).AsString() )
class CFormatNumber_DontUseDirectly_UseFormatNumberMacro { public: CFormatNumber_DontUseDirectly_UseFormatNumberMacro() { m_szBuf[0] = '\0'; pString = m_szBuf; }
// Standard C formatting
void FormatNumberInternal( uint64 nNum ) { pString = m_szBuf + sizeof( m_szBuf ) - 1; *pString-- = '\0';
if ( nNum == 0 ) { *pString-- = '0'; }
for ( uint64 j = 0; nNum > 0; nNum /= 10, j++ ) { // Add comma
if ( j && !( j % 3 ) ) { *pString-- = ','; }
// Add digit
*pString-- = '0' + char( nNum % 10 ); }
pString++; }
void FormatNumberInternal64( int64 nNum ) { bool bIsNegative = ( nNum < ( int64 )0 ); uint64 nUnsigned = ( bIsNegative ) ? ( uint64 )( -nNum ) : ( uint64 )( nNum ); FormatNumberInternal( ( uint64 )nUnsigned ); if ( bIsNegative ) { pString--; *pString = '-'; } } CFormatNumber_DontUseDirectly_UseFormatNumberMacro( int64 nNum ) { FormatNumberInternal64( ( int64 )nNum ); } CFormatNumber_DontUseDirectly_UseFormatNumberMacro( int32 nNum ) { FormatNumberInternal64( ( int64 )nNum ); } CFormatNumber_DontUseDirectly_UseFormatNumberMacro( int16 nNum ) { FormatNumberInternal64( ( int64 )nNum ); }
void FormatNumberInternalU64( uint64 nNum ) { FormatNumberInternal( nNum ); } CFormatNumber_DontUseDirectly_UseFormatNumberMacro( uint64 nNum ) { FormatNumberInternalU64( ( uint64 )nNum ); } CFormatNumber_DontUseDirectly_UseFormatNumberMacro( uint32 nNum ) { FormatNumberInternalU64( ( uint64 )nNum ); } CFormatNumber_DontUseDirectly_UseFormatNumberMacro( uint16 nNum ) { FormatNumberInternalU64( ( uint64 )nNum ); }
// Use for access
operator const char *() const { return pString; } const char *AsString() { return pString; }
private: char m_szBuf[64]; char *pString; };
// trim right whitespace
inline char* TrimRight( char *pString ) { char *pEnd = pString + V_strlen( pString ); // trim
while ( pString < ( pEnd-- ) ) { if ( uint( *pEnd ) <= uint( ' ' ) ) { *pEnd = '\0'; } else break; } return pString; }
inline const char * SkipBlanks( const char *pString ) { const char *p = pString; while ( *p && uint( *p ) <= uint( ' ' ) ) { p++; } return p; }
inline int V_strcspn( const char *s1, const char *search ) { return (int)( strcspn( s1, search ) ); }
// NOTE: This is for backward compatability!
// We need to DLL-export the Q methods in vstdlib but not link to them in other projects
#if !defined( VSTDLIB_BACKWARD_COMPAT )
#define Q_memset V_memset
#define Q_memcpy V_memcpy
#define Q_memmove V_memmove
#define Q_memcmp V_memcmp
#define Q_strlen V_strlen
#define Q_strcpy V_strcpy
#define Q_strrchr V_strrchr
#define Q_strcmp V_strcmp
#define Q_wcscmp V_wcscmp
#define Q_stricmp V_stricmp
#define Q_strstr V_strstr
#define Q_strupr V_strupr
#define Q_strlower V_strlower
#define Q_wcslen V_wcslen
#define Q_strncmp V_strncmp
#define Q_strcasecmp V_strcasecmp
#define Q_strncasecmp V_strncasecmp
#define Q_strnicmp V_strnicmp
#define Q_atoi V_atoi
#define Q_atoi64 V_atoi64
#define Q_atoui64 V_atoui64
#define Q_atof V_atof
#define Q_stristr V_stristr
#define Q_strnistr V_strnistr
#define Q_strnchr V_strnchr
#define Q_normalizeFloatString V_normalizeFloatString
#define Q_strncpy V_strncpy
#define Q_wcsncpy V_wcsncpy
#define Q_snprintf V_snprintf
#define Q_snwprintf V_snwprintf
#define Q_wcsncpy V_wcsncpy
#define Q_strncat V_strncat
#define Q_wcsncat V_wcsncat
#define Q_strnlwr V_strnlwr
#define Q_vsnprintf V_vsnprintf
#define Q_vsnprintfRet V_vsnprintfRet
#define Q_pretifymem V_pretifymem
#define Q_pretifynum V_pretifynum
#define Q_UTF8ToUnicode V_UTF8ToUnicode
#define Q_UnicodeToUTF8 V_UnicodeToUTF8
#define Q_hextobinary V_hextobinary
#define Q_binarytohex V_binarytohex
#define Q_FileBase V_FileBase
#define Q_StripTrailingSlash V_StripTrailingSlash
#define Q_StripExtension V_StripExtension
#define Q_DefaultExtension V_DefaultExtension
#define Q_SetExtension V_SetExtension
#define Q_StripFilename V_StripFilename
#define Q_StripLastDir V_StripLastDir
#define Q_UnqualifiedFileName V_UnqualifiedFileName
#define Q_ComposeFileName V_ComposeFileName
#define Q_ExtractFilePath V_ExtractFilePath
#define Q_ExtractFileExtension V_ExtractFileExtension
#define Q_GetFileExtension V_GetFileExtension
#define Q_RemoveDotSlashes V_RemoveDotSlashes
#define Q_MakeAbsolutePath V_MakeAbsolutePath
#define Q_AppendSlash V_AppendSlash
#define Q_IsAbsolutePath V_IsAbsolutePath
#define Q_StrSubst V_StrSubst
#define Q_SplitString V_SplitString
#define Q_SplitString2 V_SplitString2
#define Q_StrSlice V_StrSlice
#define Q_StrLeft V_StrLeft
#define Q_StrRight V_StrRight
#define Q_FixSlashes V_FixSlashes
#define Q_strtowcs V_strtowcs
#define Q_wcstostr V_wcstostr
#define Q_strcat V_strcat
#define Q_wcscat V_wcscat
#define Q_MakeRelativePath V_MakeRelativePath
#define Q_FixupPathName V_FixupPathName
#define Q_qsort_s V_qsort_s
#endif // !defined( VSTDLIB_DLL_EXPORT )
#if defined(_PS3) || defined(POSIX)
#define PRI_WS_FOR_WS L"%ls"
#define PRI_WS_FOR_S "%ls"
#define PRI_S_FOR_WS L"%s"
#define PRI_S_FOR_S "%s"
#else
#define PRI_WS_FOR_WS L"%s"
#define PRI_WS_FOR_S "%S"
#define PRI_S_FOR_WS L"%S"
#define PRI_S_FOR_S "%s"
#endif
namespace AsianWordWrap { // Functions used by Asian language line wrapping to determine if a character can end a line, begin a line, or be broken up when repeated (eg: "...")
bool CanEndLine( wchar_t wcCandidate ); bool CanBeginLine( wchar_t wcCandidate ); bool CanBreakRepeated( wchar_t wcCandidate );
// Used to determine if we can break a line between the first two characters passed; calls the above functions on each character
bool CanBreakAfter( const wchar_t* wsz ); }
// We use this function to determine where it is permissible to break lines
// of text while wrapping them. On most platforms, the native iswspace() function
// returns FALSE for the "non-breaking space" characters 0x00a0 and 0x202f, and so we don't
// break on them. On the 360, however, iswspace returns TRUE for them. So, on that
// platform, we work around it by defining this wrapper which returns false
// for and calls through to the library function for everything else.
int isbreakablewspace( wchar_t ch );
// Strip white space at the beginning and end of a string
int V_StrTrim( char *pStr );
#endif // TIER1_STRTOOLS_H
|