|
|
// FastDelegate.h
// Efficient delegates in C++ that generate only two lines of asm code!
// Documentation is found at http://www.codeproject.com/cpp/FastDelegate.asp
//
// - Don Clugston, Mar 2004.
// Major contributions were made by Jody Hagins.
// History:
// 24-Apr-04 1.0 * Submitted to CodeProject.
// 28-Apr-04 1.1 * Prevent most unsafe uses of evil static function hack.
// * Improved syntax for horrible_cast (thanks Paul Bludov).
// * Tested on Metrowerks MWCC and Intel ICL (IA32)
// * Compiled, but not run, on Comeau C++ and Intel Itanium ICL.
// 27-Jun-04 1.2 * Now works on Borland C++ Builder 5.5
// * Now works on /clr "managed C++" code on VC7, VC7.1
// * Comeau C++ now compiles without warnings.
// * Prevent the virtual inheritance case from being used on
// VC6 and earlier, which generate incorrect code.
// * Improved warning and error messages. Non-standard hacks
// now have compile-time checks to make them safer.
// * implicit_cast used instead of static_cast in many cases.
// * If calling a const member function, a const class pointer can be used.
// * UtlMakeDelegate() global helper function added to simplify pass-by-value.
// * Added fastdelegate.Clear()
// 16-Jul-04 1.2.1* Workaround for gcc bug (const member function pointers in templates)
// 30-Oct-04 1.3 * Support for (non-void) return values.
// * No more workarounds in client code!
// MSVC and Intel now use a clever hack invented by John Dlugosz:
// - The FASTDELEGATEDECLARE workaround is no longer necessary.
// - No more warning messages for VC6
// * Less use of macros. Error messages should be more comprehensible.
// * Added include guards
// * Added FastDelegate::IsEmpty() to test if invocation is safe (Thanks Neville Franks).
// * Now tested on VS 2005 Express Beta, PGI C++
// 24-Dec-04 1.4 * Added CUtlAbstractDelegate, to allow collections of disparate delegates.
// * <,>,<=,>= comparison operators to allow storage in ordered containers.
// * Substantial reduction of code size, especially the 'Closure' class.
// * Standardised all the compiler-specific workarounds.
// * MFP conversion now works for CodePlay (but not yet supported in the full code).
// * Now compiles without warnings on _any_ supported compiler, including BCC 5.5.1
// * New syntax: FastDelegate< int (char *, double) >.
// 14-Feb-05 1.4.1* Now treats =0 as equivalent to .Clear(), ==0 as equivalent to .IsEmpty(). (Thanks elfric).
// * Now tested on Intel ICL for AMD64, VS2005 Beta for AMD64 and Itanium.
// 30-Mar-05 1.5 * Safebool idiom: "if (dg)" is now equivalent to "if (!dg.IsEmpty())"
// * Fully supported by CodePlay VectorC
// * Bugfix for Metrowerks: IsEmpty() was buggy because a valid MFP can be 0 on MWCC!
// * More optimal assignment,== and != operators for static function pointers.
// 22-Jul-10 xxx * Reformatted + renamed to match valve coding standards
// * Added UtlMakeDelegate for static functions
#ifndef UTLDELEGATEIMPL_H
#define UTLDELEGATEIMPL_H
#pragma once
#include "tier0/platform.h"
// use #pragma warning push/pop to contain the pragmas in utldelegateimpl so they don't spill out into other code.
#ifdef _MSC_VER
#pragma warning( push )
#endif
////////////////////////////////////////////////////////////////////////////////
// Configuration options
//
////////////////////////////////////////////////////////////////////////////////
// Uncomment the following #define for optimally-sized delegates.
// In this case, the generated asm code is almost identical to the code you'd get
// if the compiler had native support for delegates.
// It will not work on systems where sizeof(dataptr) < sizeof(codeptr).
// Thus, it will not work for DOS compilers using the medium model.
// It will also probably fail on some DSP systems.
#define FASTDELEGATE_USESTATICFUNCTIONHACK
// Uncomment the next line to allow function declarator syntax.
// It is automatically enabled for those compilers where it is known to work.
//#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
////////////////////////////////////////////////////////////////////////////////
// Compiler identification for workarounds
//
////////////////////////////////////////////////////////////////////////////////
// Compiler identification. It's not easy to identify Visual C++ because
// many vendors fraudulently define Microsoft's identifiers.
#if defined(_MSC_VER) && !defined(__MWERKS__) && !defined(__VECTOR_C) && !defined(__ICL) && !defined(__BORLANDC__)
#define FASTDLGT_ISMSVC
#if (_MSC_VER <1300) // Many workarounds are required for VC6.
#define FASTDLGT_VC6
#pragma warning(disable:4786) // disable this ridiculous warning
#endif
#endif
// Does the compiler uses Microsoft's member function pointer structure?
// If so, it needs special treatment.
// Metrowerks CodeWarrior, Intel, and CodePlay fraudulently define Microsoft's
// identifier, _MSC_VER. We need to filter Metrowerks out.
#if defined(_MSC_VER) && !defined(__MWERKS__)
#define FASTDLGT_MICROSOFT_MFP
#if !defined(__VECTOR_C)
// CodePlay doesn't have the __single/multi/virtual_inheritance keywords
#define FASTDLGT_HASINHERITANCE_KEYWORDS
#endif
#endif
// Does it allow function declarator syntax? The following compilers are known to work:
#if defined(FASTDLGT_ISMSVC) && (_MSC_VER >=1310) // VC 7.1
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif
// Gcc(2.95+), and versions of Digital Mars, Intel and Comeau in common use.
#if defined (__DMC__) || defined(__GNUC__) || defined(__ICL) || defined(__COMO__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif
// It works on Metrowerks MWCC 3.2.2. From boost.Config it should work on earlier ones too.
#if defined (__MWERKS__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif
#ifdef __GNUC__ // Workaround GCC bug #8271
// At present, GCC doesn't recognize constness of MFPs in templates
#define FASTDELEGATE_GCC_BUG_8271
#endif
////////////////////////////////////////////////////////////////////////////////
// General tricks used in this code
//
// (a) Error messages are generated by typdefing an array of negative size to
// generate compile-time errors.
// (b) Warning messages on MSVC are generated by declaring unused variables, and
// enabling the "variable XXX is never used" warning.
// (c) Unions are used in a few compiler-specific cases to perform illegal casts.
// (d) For Microsoft and Intel, when adjusting the 'this' pointer, it's cast to
// (char *) first to ensure that the correct number of *bytes* are added.
//
////////////////////////////////////////////////////////////////////////////////
// Helper templates
//
////////////////////////////////////////////////////////////////////////////////
namespace detail // we'll hide the implementation details in a nested namespace.
{
// implicit_cast< >
// I believe this was originally going to be in the C++ standard but
// was left out by accident. It's even milder than static_cast.
// I use it instead of static_cast<> to emphasize that I'm not doing
// anything nasty.
// Usage is identical to static_cast<>
template <class OutputClass, class InputClass> inline OutputClass implicit_cast(InputClass input) { return input; }
// horrible_cast< >
// This is truly evil. It completely subverts C++'s type system, allowing you
// to cast from any class to any other class. Technically, using a union
// to perform the cast is undefined behaviour (even in C). But we can see if
// it is OK by checking that the union is the same size as each of its members.
// horrible_cast<> should only be used for compiler-specific workarounds.
// Usage is identical to reinterpret_cast<>.
// This union is declared outside the horrible_cast because BCC 5.5.1
// can't inline a function with a nested class, and gives a warning.
template <class OutputClass, class InputClass> union horrible_union { OutputClass out; InputClass in; };
template <class OutputClass, class InputClass> inline OutputClass horrible_cast(const InputClass input) { horrible_union<OutputClass, InputClass> u; // Cause a compile-time error if in, out and u are not the same size.
// If the compile fails here, it means the compiler has peculiar
// unions which would prevent the cast from working.
typedef int ERROR_CantUseHorrible_cast[sizeof(InputClass)==sizeof(u) && sizeof(InputClass)==sizeof(OutputClass) ? 1 : -1]; u.in = input; return u.out; }
////////////////////////////////////////////////////////////////////////////////
// Workarounds
//
////////////////////////////////////////////////////////////////////////////////
// Backwards compatibility: This macro used to be necessary in the virtual inheritance
// case for Intel and Microsoft. Now it just forward-declares the class.
#define FASTDELEGATEDECLARE(CLASSNAME) class CLASSNAME;
// Prevent use of the static function hack with the DOS medium model.
#ifdef __MEDIUM__
#undef FASTDELEGATE_USESTATICFUNCTIONHACK
#endif
// DefaultVoid - a workaround for 'void' templates in VC6.
//
// (1) VC6 and earlier do not allow 'void' as a default template argument.
// (2) They also doesn't allow you to return 'void' from a function.
//
// Workaround for (1): Declare a dummy type 'DefaultVoid' which we use
// when we'd like to use 'void'. We convert it into 'void' and back
// using the templates DefaultVoidToVoid<> and VoidToDefaultVoid<>.
// Workaround for (2): On VC6, the code for calling a void function is
// identical to the code for calling a non-void function in which the
// return value is never used, provided the return value is returned
// in the EAX register, rather than on the stack.
// This is true for most fundamental types such as int, enum, void *.
// Const void * is the safest option since it doesn't participate
// in any automatic conversions. But on a 16-bit compiler it might
// cause extra code to be generated, so we disable it for all compilers
// except for VC6 (and VC5).
#ifdef FASTDLGT_VC6
// VC6 workaround
typedef const void * DefaultVoid; #else
// On any other compiler, just use a normal void.
typedef void DefaultVoid; #endif
// Translate from 'DefaultVoid' to 'void'.
// Everything else is unchanged
template <class T> struct DefaultVoidToVoid { typedef T type; };
template <> struct DefaultVoidToVoid<DefaultVoid> { typedef void type; };
// Translate from 'void' into 'DefaultVoid'
// Everything else is unchanged
template <class T> struct VoidToDefaultVoid { typedef T type; };
template <> struct VoidToDefaultVoid<void> { typedef DefaultVoid type; };
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 1:
//
// Conversion of member function pointer to a standard form
//
////////////////////////////////////////////////////////////////////////////////
// GenericClass is a fake class, ONLY used to provide a type.
// It is vitally important that it is never defined, so that the compiler doesn't
// think it can optimize the invocation. For example, Borland generates simpler
// code if it knows the class only uses single inheritance.
// Compilers using Microsoft's structure need to be treated as a special case.
#ifdef FASTDLGT_MICROSOFT_MFP
#ifdef FASTDLGT_HASINHERITANCE_KEYWORDS
// For Microsoft and Intel, we want to ensure that it's the most efficient type of MFP
// (4 bytes), even when the /vmg option is used. Declaring an empty class
// would give 16 byte pointers in this case....
class __single_inheritance GenericClass; #endif
// ...but for Codeplay, an empty class *always* gives 4 byte pointers.
// If compiled with the /clr option ("managed C++"), the JIT compiler thinks
// it needs to load GenericClass before it can call any of its functions,
// (compiles OK but crashes at runtime!), so we need to declare an
// empty class to make it happy.
// Codeplay and VC4 can't cope with the unknown_inheritance case either.
class GenericClass {}; #else
class GenericClass; #endif
// The size of a single inheritance member function pointer.
const int SINGLE_MEMFUNCPTR_SIZE = sizeof(void (GenericClass::*)());
// SimplifyMemFunc< >::Convert()
//
// A template function that converts an arbitrary member function pointer into the
// simplest possible form of member function pointer, using a supplied 'this' pointer.
// According to the standard, this can be done legally with reinterpret_cast<>.
// For (non-standard) compilers which use member function pointers which vary in size
// depending on the class, we need to use knowledge of the internal structure of a
// member function pointer, as used by the compiler. Template specialization is used
// to distinguish between the sizes. Because some compilers don't support partial
// template specialisation, I use full specialisation of a wrapper struct.
// general case -- don't know how to convert it. Force a compile failure
template <int N> struct SimplifyMemFunc { template <class X, class XFuncType, class GenericMemFuncType> inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { // Unsupported member function type -- force a compile failure.
// (it's illegal to have a array with negative size).
typedef char ERROR_Unsupported_member_function_pointer_on_this_compiler[N-100]; return 0; } };
// For compilers where all member func ptrs are the same size, everything goes here.
// For non-standard compilers, only single_inheritance classes go here.
template <> struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE> { template <class X, class XFuncType, class GenericMemFuncType> inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { #if defined __DMC__
// Digital Mars doesn't allow you to cast between abitrary PMF's,
// even though the standard says you can. The 32-bit compiler lets you
// static_cast through an int, but the DOS compiler doesn't.
bound_func = horrible_cast<GenericMemFuncType>(function_to_bind); #else
bound_func = reinterpret_cast<GenericMemFuncType>(function_to_bind); #endif
return reinterpret_cast<GenericClass *>(pthis); } };
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 1b:
//
// Workarounds for Microsoft and Intel
//
////////////////////////////////////////////////////////////////////////////////
// Compilers with member function pointers which violate the standard (MSVC, Intel, Codeplay),
// need to be treated as a special case.
#ifdef FASTDLGT_MICROSOFT_MFP
// We use unions to perform horrible_casts. I would like to use #pragma pack(push, 1)
// at the start of each function for extra safety, but VC6 seems to ICE
// intermittently if you do this inside a template.
// __multiple_inheritance classes go here
// Nasty hack for Microsoft and Intel (IA32 and Itanium)
// The size of __multiple_inheritance + __virtual_inheritance are the same on MSVC64
// We can use the __virtual_inheritance code for multiple_inheritance, though, so let's do that!
#ifndef COMPILER_MSVC64
template<> struct SimplifyMemFunc< SINGLE_MEMFUNCPTR_SIZE + sizeof(int) > { template <class X, class XFuncType, class GenericMemFuncType> inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { // We need to use a horrible_cast to do this conversion.
// In MSVC, a multiple inheritance member pointer is internally defined as:
union { XFuncType func; struct { GenericMemFuncType funcaddress; // points to the actual member function
int delta; // #BYTES to be added to the 'this' pointer
}s; } u; // Check that the horrible_cast will work
typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.s)? 1 : -1]; u.func = function_to_bind; bound_func = u.s.funcaddress; return reinterpret_cast<GenericClass *>(reinterpret_cast<char *>(pthis) + u.s.delta); } };
#endif
// virtual inheritance is a real nuisance. It's inefficient and complicated.
// On MSVC and Intel, there isn't enough information in the pointer itself to
// enable conversion to a closure pointer. Earlier versions of this code didn't
// work for all cases, and generated a compile-time error instead.
// But a very clever hack invented by John M. Dlugosz solves this problem.
// My code is somewhat different to his: I have no asm code, and I make no
// assumptions about the calling convention that is used.
// In VC++ and ICL, a virtual_inheritance member pointer
// is internally defined as:
struct virtual_inheritance_struct { void (GenericClass::*codeptr)(); // points to the actual member function
int delta; // #bytes to be added to the 'this' pointer
int vtable_index; // or 0 if no virtual inheritance
}; // The CRUCIAL feature of Microsoft/Intel MFPs which we exploit is that the
// m_codeptr member is *always* called, regardless of the values of the other
// members. (This is *not* true for other compilers, eg GCC, which obtain the
// function address from the vtable if a virtual function is being called).
// Dlugosz's trick is to make the codeptr point to a probe function which
// returns the 'this' pointer that was used.
// Define a generic class that uses virtual inheritance.
// It has a trival member function that returns the value of the 'this' pointer.
struct GenericVirtualClass : virtual public GenericClass { typedef GenericVirtualClass * (GenericVirtualClass::*ProbePtrType)(); GenericVirtualClass * GetThis() { return this; } };
// __virtual_inheritance classes go here
template <> struct SimplifyMemFunc< sizeof( virtual_inheritance_struct ) > { template <class X, class XFuncType, class GenericMemFuncType> inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { #ifdef COMPILER_MSVC64
class __multiple_inheritance TestMultiClass; class __virtual_inheritance TestVirtualClass; COMPILE_TIME_ASSERT( sizeof(void (TestMultiClass::*)()) == sizeof(void (TestVirtualClass::*)()) ); #endif
// This exists entirely so we can have an assert about it below.
struct legacy_virtual_inheritance_struct { GenericMemFuncType codeptr; // points to the actual member function
int delta; // #bytes to be added to the 'this' pointer
int vtable_index; // or 0 if no virtual inheritance
};
COMPILE_TIME_ASSERT( sizeof( legacy_virtual_inheritance_struct ) == sizeof( virtual_inheritance_struct ) );
union { XFuncType func; GenericClass* (X::*ProbeFunc)(); virtual_inheritance_struct s; } u; u.func = function_to_bind; bound_func = reinterpret_cast<GenericMemFuncType>(u.s.codeptr); union { GenericVirtualClass::ProbePtrType virtfunc; virtual_inheritance_struct s; } u2; // Check that the horrible_cast<>s will work
// WARNING: If this assert goes off, check that someone isn't doing this type:
// #pragma pointers_to_members( full_generality, virtual_inheritance )
// On x64 that code will cause sizeof(u2.virtfunc) to ==24, instead of 16.
//
// The size of a pointer to member is sensitive to whether the pointed-to class
// has virtual function, virtual bases or multiple inheritance (or all of the
// above). See #pragma pointers_to_members and command-line compiler options
// /vmg, /vmb.
typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.s) ? 1 : -1]; typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.ProbeFunc) ? 1 : -1]; typedef int ERROR_CantUsehorrible_cast[sizeof(u2.virtfunc)==sizeof(u2.s) ? 1 : -1];
// Unfortunately, taking the address of a MF prevents it from being inlined, so
// this next line can't be completely optimised away by the compiler.
u2.virtfunc = &GenericVirtualClass::GetThis; u.s.codeptr = u2.s.codeptr; return (pthis->*u.ProbeFunc)(); } };
#if (_MSC_VER <1300)
// Nasty hack for Microsoft Visual C++ 6.0
// unknown_inheritance classes go here
// There is a compiler bug in MSVC6 which generates incorrect code in this case!!
template <> struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3*sizeof(int) > { template <class X, class XFuncType, class GenericMemFuncType> inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { // There is an apalling but obscure compiler bug in MSVC6 and earlier:
// vtable_index and 'vtordisp' are always set to 0 in the
// unknown_inheritance case!
// This means that an incorrect function could be called!!!
// Compiling with the /vmg option leads to potentially incorrect code.
// This is probably the reason that the IDE has a user interface for specifying
// the /vmg option, but it is disabled - you can only specify /vmg on
// the command line. In VC1.5 and earlier, the compiler would ICE if it ever
// encountered this situation.
// It is OK to use the /vmg option if /vmm or /vms is specified.
// Fortunately, the wrong function is only called in very obscure cases.
// It only occurs when a derived class overrides a virtual function declared
// in a virtual base class, and the member function
// points to the *Derived* version of that function. The problem can be
// completely averted in 100% of cases by using the *Base class* for the
// member fpointer. Ie, if you use the base class as an interface, you'll
// stay out of trouble.
// Occasionally, you might want to point directly to a derived class function
// that isn't an override of a base class. In this case, both vtable_index
// and 'vtordisp' are zero, but a virtual_inheritance pointer will be generated.
// We can generate correct code in this case. To prevent an incorrect call from
// ever being made, on MSVC6 we generate a warning, and call a function to
// make the program crash instantly.
typedef char ERROR_VC6CompilerBug[-100]; return 0; } };
#else
// In VC++ and ICL, an unknown_inheritance member pointer
// is internally defined as:
struct unknown_inheritance_struct { typedef void (detail::GenericClass::*FuncAddress_t)(); // arbitrary MFP.
FuncAddress_t funcaddress; // points to the actual member function
int delta; // #bytes to be added to the 'this' pointer
int vtordisp; // #bytes to add to 'this' to find the vtable
int vtable_index; // or 0 if no virtual inheritance
};
// Nasty hack for Microsoft and Intel (IA32 and Itanium)
// unknown_inheritance classes go here
// This is probably the ugliest bit of code I've ever written. Look at the casts!
// There is a compiler bug in MSVC6 which prevents it from using this code.
template <> struct SimplifyMemFunc< sizeof( unknown_inheritance_struct ) > { template <class X, class XFuncType, class GenericMemFuncType> inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { // This exists entirely so we can have an assert about it below.
struct legacy_unknown_inheritance_struct { GenericMemFuncType funcaddress; int delta; int vtordisp; int vtable_index; };
COMPILE_TIME_ASSERT( sizeof( legacy_unknown_inheritance_struct ) == sizeof( unknown_inheritance_struct ) );
// The member function pointer is 16 bytes long. We can't use a normal cast, but
// we can use a union to do the conversion.
union { XFuncType func; unknown_inheritance_struct s; } u; // Check that the horrible_cast will work
typedef int ERROR_CantUsehorrible_cast[sizeof(XFuncType)==sizeof(u.s)? 1 : -1]; u.func = function_to_bind; bound_func = u.s.funcaddress; int virtual_delta = 0; if (u.s.vtable_index) { // Virtual inheritance is used
// First, get to the vtable.
// It is 'vtordisp' bytes from the start of the class.
const int * vtable = *reinterpret_cast<const int *const*>( reinterpret_cast<const char *>(pthis) + u.s.vtordisp );
// 'vtable_index' tells us where in the table we should be looking.
virtual_delta = u.s.vtordisp + *reinterpret_cast<const int *>( reinterpret_cast<const char *>(vtable) + u.s.vtable_index); } // The int at 'virtual_delta' gives us the amount to add to 'this'.
// Finally we can add the three components together. Phew!
return reinterpret_cast<GenericClass *>( reinterpret_cast<char *>(pthis) + u.s.delta + virtual_delta); }; }; #endif // MSVC 7 and greater
#endif // MS/Intel hacks
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 2:
//
// Define the delegate storage, and cope with static functions
//
////////////////////////////////////////////////////////////////////////////////
// CUtlAbstractDelegate -- an opaque structure which can hold an arbitary delegate.
// It knows nothing about the calling convention or number of arguments used by
// the function pointed to.
// It supplies comparison operators so that it can be stored in STL collections.
// It cannot be set to anything other than null, nor invoked directly:
// it must be converted to a specific delegate.
// Implementation:
// There are two possible implementations: the Safe method and the Evil method.
// CUtlAbstractDelegate - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// A static function pointer is stored inside the class.
// Here are the valid values:
// +-- Static pointer --+--pThis --+-- pMemFunc-+-- Meaning------+
// | 0 | 0 | 0 | Empty |
// | !=0 |(dontcare)| Invoker | Static function|
// | 0 | !=0 | !=0* | Method call |
// +--------------------+----------+------------+----------------+
// * For Metrowerks, this can be 0. (first virtual function in a
// single_inheritance class).
// When stored stored inside a specific delegate, the 'dontcare' entries are replaced
// with a reference to the delegate itself. This complicates the = and == operators
// for the delegate class.
// CUtlAbstractDelegate - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is
// possible to store the function pointer in the this pointer, using another
// horrible_cast. In this case the CUtlAbstractDelegate implementation is simple:
// +--pThis --+-- pMemFunc-+-- Meaning---------------------+
// | 0 | 0 | Empty |
// | !=0 | !=0* | Static function or method call|
// +----------+------------+-------------------------------+
// * For Metrowerks, this can be 0. (first virtual function in a
// single_inheritance class).
// Note that the Sun C++ and MSVC documentation explicitly state that they
// support static_cast between void * and function pointers.
class CUtlAbstractDelegate { protected: // the data is protected, not private, because many
// compilers have problems with template friends.
typedef void (detail::GenericClass::*GenericMemFuncType)(); // arbitrary MFP.
detail::GenericClass *m_pthis; GenericMemFuncType m_pFunction;
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
typedef void (*GenericFuncPtr)(); // arbitrary code pointer
GenericFuncPtr m_pStaticFunction; #endif
public: #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
CUtlAbstractDelegate() : m_pthis(0), m_pFunction(0), m_pStaticFunction(0) {}; void Clear() { m_pthis=0; m_pFunction=0; m_pStaticFunction=0; } #else
CUtlAbstractDelegate() : m_pthis(0), m_pFunction(0) {}; void Clear() { m_pthis=0; m_pFunction=0; } #endif
public: #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
inline bool IsEqual (const CUtlAbstractDelegate &x) const { // We have to cope with the static function pointers as a special case
if (m_pFunction!=x.m_pFunction) return false; // the static function ptrs must either both be equal, or both be 0.
if (m_pStaticFunction!=x.m_pStaticFunction) return false; if (m_pStaticFunction!=0) return m_pthis==x.m_pthis; else return true; } #else // Evil Method
inline bool IsEqual (const CUtlAbstractDelegate &x) const { return m_pthis==x.m_pthis && m_pFunction==x.m_pFunction; } #endif
// Provide a strict weak ordering for DelegateMementos.
inline bool IsLess(const CUtlAbstractDelegate &right) const { // deal with static function pointers first
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
if (m_pStaticFunction !=0 || right.m_pStaticFunction!=0) return m_pStaticFunction < right.m_pStaticFunction; #endif
if (m_pthis !=right.m_pthis) return m_pthis < right.m_pthis; // There are no ordering operators for member function pointers,
// but we can fake one by comparing each byte. The resulting ordering is
// arbitrary (and compiler-dependent), but it permits storage in ordered STL containers.
return memcmp(&m_pFunction, &right.m_pFunction, sizeof(m_pFunction)) < 0;
} // BUGFIX (Mar 2005):
// We can't just compare m_pFunction because on Metrowerks,
// m_pFunction can be zero even if the delegate is not empty!
inline bool operator ! () const // Is it bound to anything?
{ return m_pthis==0 && m_pFunction==0; } inline bool IsEmpty() const // Is it bound to anything?
{ return m_pthis==0 && m_pFunction==0; } public: CUtlAbstractDelegate & operator = (const CUtlAbstractDelegate &right) { SetMementoFrom(right); return *this; } inline bool operator <(const CUtlAbstractDelegate &right) { return IsLess(right); } inline bool operator >(const CUtlAbstractDelegate &right) { return right.IsLess(*this); } CUtlAbstractDelegate (const CUtlAbstractDelegate &right) : m_pFunction(right.m_pFunction), m_pthis(right.m_pthis) #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
, m_pStaticFunction (right.m_pStaticFunction) #endif
{}
// Only use this if you really know what you're doing.
// It's used in cases where I've cached off a delegate previously
void UnsafeThisPointerSlam( void *pThis ) { m_pthis = (detail::GenericClass*)( pThis ); }
const void *UnsafeGetThisPtr() const { return m_pthis; }
void *UnsafeGetThisPtr() { return m_pthis; }
protected: void SetMementoFrom(const CUtlAbstractDelegate &right) { m_pFunction = right.m_pFunction; m_pthis = right.m_pthis; #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = right.m_pStaticFunction; #endif
} };
// ClosurePtr<>
//
// A private wrapper class that adds function signatures to CUtlAbstractDelegate.
// It's the class that does most of the actual work.
// The signatures are specified by:
// GenericMemFunc: must be a type of GenericClass member function pointer.
// StaticFuncPtr: must be a type of function pointer with the same signature
// as GenericMemFunc.
// UnvoidStaticFuncPtr: is the same as StaticFuncPtr, except on VC6
// where it never returns void (returns DefaultVoid instead).
// An outer class, FastDelegateN<>, handles the invoking and creates the
// necessary typedefs.
// This class does everything else.
namespace detail {
template < class GenericMemFunc, class StaticFuncPtr, class UnvoidStaticFuncPtr> class ClosurePtr : public CUtlAbstractDelegate { public: // These functions are for setting the delegate to a member function.
// Here's the clever bit: we convert an arbitrary member function into a
// standard form. XMemFunc should be a member function of class X, but I can't
// enforce that here. It needs to be enforced by the wrapper class.
template < class X, class XMemFunc > inline void bindmemfunc(X *pthis, XMemFunc function_to_bind ) { m_pthis = SimplifyMemFunc< sizeof(function_to_bind) > ::Convert(pthis, function_to_bind, m_pFunction); #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = 0; #endif
} // For const member functions, we only need a const class pointer.
// Since we know that the member function is const, it's safe to
// remove the const qualifier from the 'this' pointer with a const_cast.
// VC6 has problems if we just overload 'bindmemfunc', so we give it a different name.
template < class X, class XMemFunc> inline void bindconstmemfunc(const X *pthis, XMemFunc function_to_bind) { m_pthis= SimplifyMemFunc< sizeof(function_to_bind) > ::Convert(const_cast<X*>(pthis), function_to_bind, m_pFunction); #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = 0; #endif
} #ifdef FASTDELEGATE_GCC_BUG_8271 // At present, GCC doesn't recognize constness of MFPs in templates
template < class X, class XMemFunc> inline void bindmemfunc(const X *pthis, XMemFunc function_to_bind) { bindconstmemfunc(pthis, function_to_bind); #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = 0; #endif
} #endif
// These functions are required for invoking the stored function
inline GenericClass *GetClosureThis() const { return m_pthis; } inline GenericMemFunc GetClosureMemPtr() const { return reinterpret_cast<GenericMemFunc>(m_pFunction); }
// There are a few ways of dealing with static function pointers.
// There's a standard-compliant, but tricky method.
// There's also a straightforward hack, that won't work on DOS compilers using the
// medium memory model. It's so evil that I can't recommend it, but I've
// implemented it anyway because it produces very nice asm code.
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
// ClosurePtr<> - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// I store the function pointer inside the class, and the delegate then
// points to itself. Whenever the delegate is copied, these self-references
// must be transformed, and this complicates the = and == operators.
public: // The next two functions are for operator ==, =, and the copy constructor.
// We may need to convert the m_pthis pointers, so that
// they remain as self-references.
template< class DerivedClass > inline void CopyFrom (DerivedClass *pParent, const CUtlAbstractDelegate &x) { SetMementoFrom(x); if (m_pStaticFunction!=0) { // transform self references...
m_pthis=reinterpret_cast<GenericClass *>(pParent); } } // For static functions, the 'static_function_invoker' class in the parent
// will be called. The parent then needs to call GetStaticFunction() to find out
// the actual function to invoke.
template < class DerivedClass, class ParentInvokerSig > inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker, StaticFuncPtr function_to_bind ) { if (function_to_bind==0) { // cope with assignment to 0
m_pFunction=0; } else { bindmemfunc(pParent, static_function_invoker); } m_pStaticFunction=reinterpret_cast<GenericFuncPtr>(function_to_bind); } inline UnvoidStaticFuncPtr GetStaticFunction() const { return reinterpret_cast<UnvoidStaticFuncPtr>(m_pStaticFunction); } #else
// ClosurePtr<> - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is
// possible to store the function pointer in the this pointer, using another
// horrible_cast. Invocation isn't any faster, but it saves 4 bytes, and
// speeds up comparison and assignment. If C++ provided direct language support
// for delegates, they would produce asm code that was almost identical to this.
// Note that the Sun C++ and MSVC documentation explicitly state that they
// support static_cast between void * and function pointers.
template< class DerivedClass > inline void CopyFrom (DerivedClass *pParent, const CUtlAbstractDelegate &right) { (void)pParent; SetMementoFrom(right); } // For static functions, the 'static_function_invoker' class in the parent
// will be called. The parent then needs to call GetStaticFunction() to find out
// the actual function to invoke.
// ******** EVIL, EVIL CODE! *******
template < class DerivedClass, class ParentInvokerSig> inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker, StaticFuncPtr function_to_bind) { if (function_to_bind==0) { // cope with assignment to 0
m_pFunction=0; } else { // We'll be ignoring the 'this' pointer, but we need to make sure we pass
// a valid value to bindmemfunc().
bindmemfunc(pParent, static_function_invoker); }
// WARNING! Evil hack. We store the function in the 'this' pointer!
// Ensure that there's a compilation failure if function pointers
// and data pointers have different sizes.
// If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK.
typedef int ERROR_CantUseEvilMethod[sizeof(GenericClass *)==sizeof(function_to_bind) ? 1 : -1]; m_pthis = horrible_cast<GenericClass *>(function_to_bind); // MSVC, SunC++ and DMC accept the following (non-standard) code:
// m_pthis = static_cast<GenericClass *>(static_cast<void *>(function_to_bind));
// BCC32, Comeau and DMC accept this method. MSVC7.1 needs __int64 instead of long
// m_pthis = reinterpret_cast<GenericClass *>(reinterpret_cast<long>(function_to_bind));
} // ******** EVIL, EVIL CODE! *******
// This function will be called with an invalid 'this' pointer!!
// We're just returning the 'this' pointer, converted into
// a function pointer!
inline UnvoidStaticFuncPtr GetStaticFunction() const { // Ensure that there's a compilation failure if function pointers
// and data pointers have different sizes.
// If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK.
typedef int ERROR_CantUseEvilMethod[sizeof(UnvoidStaticFuncPtr)==sizeof(this) ? 1 : -1]; return horrible_cast<UnvoidStaticFuncPtr>(this); } #endif // !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
// Does the closure contain this static function?
inline bool IsEqualToStaticFuncPtr(StaticFuncPtr funcptr) { if (funcptr==0) return IsEmpty(); // For the Evil method, if it doesn't actually contain a static function, this will return an arbitrary
// value that is not equal to any valid function pointer.
else return funcptr==reinterpret_cast<StaticFuncPtr>(GetStaticFunction()); } };
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 3:
//
// Wrapper classes to ensure type safety
//
////////////////////////////////////////////////////////////////////////////////
// Once we have the member function conversion templates, it's easy to make the
// wrapper classes. So that they will work with as many compilers as possible,
// the classes are of the form
// FastDelegate3<int, char *, double>
// They can cope with any combination of parameters. The max number of parameters
// allowed is 8, but it is trivial to increase this limit.
// Note that we need to treat const member functions seperately.
// All this class does is to enforce type safety, and invoke the delegate with
// the correct list of parameters.
// Because of the weird rule about the class of derived member function pointers,
// you sometimes need to apply a downcast to the 'this' pointer.
// This is the reason for the use of "implicit_cast<X*>(pthis)" in the code below.
// If CDerivedClass is derived from CBaseClass, but doesn't override SimpleVirtualFunction,
// without this trick you'd need to write:
// MyDelegate(static_cast<CBaseClass *>(&d), &CDerivedClass::SimpleVirtualFunction);
// but with the trick you can write
// MyDelegate(&d, &CDerivedClass::SimpleVirtualFunction);
// RetType is the type the compiler uses in compiling the template. For VC6,
// it cannot be void. DesiredRetType is the real type which is returned from
// all of the functions. It can be void.
// Implicit conversion to "bool" is achieved using the safe_bool idiom,
// using member data pointers (MDP). This allows "if (dg)..." syntax
// Because some compilers (eg codeplay) don't have a unique value for a zero
// MDP, an extra padding member is added to the SafeBool struct.
// Some compilers (eg VC6) won't implicitly convert from 0 to an MDP, so
// in that case the static function constructor is not made explicit; this
// allows "if (dg==0) ..." to compile.
//N=0
template<class RetType=detail::DefaultVoid> class FastDelegate0 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(); typedef RetType (*UnvoidStaticFunctionPtr)(); typedef RetType (detail::GenericClass::*GenericMemFn)(); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate0 type;
// Construction and comparison functions
FastDelegate0() { Clear(); } FastDelegate0(const FastDelegate0 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate0 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate0 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate0 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate0 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate0 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate0(Y *pthis, DesiredRetType (X::* function_to_bind)() ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)()) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate0(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate0(DesiredRetType (*function_to_bind)() ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)() ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)()) { m_Closure.bindstaticfunc(this, &FastDelegate0::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() () const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction() const { return (*(m_Closure.GetStaticFunction()))(); } };
//N=1
template<class Param1, class RetType=detail::DefaultVoid> class FastDelegate1 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate1 type;
// Construction and comparison functions
FastDelegate1() { Clear(); } FastDelegate1(const FastDelegate1 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate1 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate1 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate1 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate1 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate1 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate1(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate1(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate1(DesiredRetType (*function_to_bind)(Param1 p1) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1)) { m_Closure.bindstaticfunc(this, &FastDelegate1::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1) const { return (*(m_Closure.GetStaticFunction()))(p1); } };
//N=2
template<class Param1, class Param2, class RetType=detail::DefaultVoid> class FastDelegate2 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate2 type;
// Construction and comparison functions
FastDelegate2() { Clear(); } FastDelegate2(const FastDelegate2 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate2 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate2 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate2 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate2 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate2 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate2(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate2(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate2(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) { m_Closure.bindstaticfunc(this, &FastDelegate2::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2) const { return (*(m_Closure.GetStaticFunction()))(p1, p2); } };
//N=3
template<class Param1, class Param2, class Param3, class RetType=detail::DefaultVoid> class FastDelegate3 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate3 type;
// Construction and comparison functions
FastDelegate3() { Clear(); } FastDelegate3(const FastDelegate3 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate3 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate3 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate3 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate3 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate3 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate3(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate3(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate3(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) { m_Closure.bindstaticfunc(this, &FastDelegate3::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2, Param3 p3) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3); } };
//N=4
template<class Param1, class Param2, class Param3, class Param4, class RetType=detail::DefaultVoid> class FastDelegate4 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate4 type;
// Construction and comparison functions
FastDelegate4() { Clear(); } FastDelegate4(const FastDelegate4 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate4 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate4 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate4 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate4 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate4 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate4(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate4(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate4(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { m_Closure.bindstaticfunc(this, &FastDelegate4::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4); } };
//N=5
template<class Param1, class Param2, class Param3, class Param4, class Param5, class RetType=detail::DefaultVoid> class FastDelegate5 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate5 type;
// Construction and comparison functions
FastDelegate5() { Clear(); } FastDelegate5(const FastDelegate5 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate5 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate5 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate5 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate5 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate5 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate5(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate5(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate5(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { m_Closure.bindstaticfunc(this, &FastDelegate5::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5); } };
//N=6
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType=detail::DefaultVoid> class FastDelegate6 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate6 type;
// Construction and comparison functions
FastDelegate6() { Clear(); } FastDelegate6(const FastDelegate6 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate6 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate6 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate6 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate6 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate6 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate6(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate6(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate6(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { m_Closure.bindstaticfunc(this, &FastDelegate6::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6); } };
//N=7
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType=detail::DefaultVoid> class FastDelegate7 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate7 type;
// Construction and comparison functions
FastDelegate7() { Clear(); } FastDelegate7(const FastDelegate7 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate7 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate7 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate7 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate7 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate7 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate7(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate7(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate7(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { m_Closure.bindstaticfunc(this, &FastDelegate7::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7); } };
//N=8
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType=detail::DefaultVoid> class FastDelegate8 { private: typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8); typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8); typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming
typedef FastDelegate8 type;
// Construction and comparison functions
FastDelegate8() { Clear(); } FastDelegate8(const FastDelegate8 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate8 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate8 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate8 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate8 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate8 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions
template < class X, class Y > FastDelegate8(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); } // Binding to const member functions.
template < class X, class Y > FastDelegate8(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) { m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind); } // Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate8(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary
void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { m_Closure.bindstaticfunc(this, &FastDelegate8::InvokeStaticFunction, function_to_bind); } // Invoke the delegate
RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7, p8); } // Implicit conversion to "bool" using the safe_bool idiom
private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything?
return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} // Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate & GetAbstractDelegate() const { return m_Closure; } void SetAbstractDelegate(const CUtlAbstractDelegate &any) { m_Closure.CopyFrom(this, any); }
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7, p8); } };
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 4:
//
// CUtlDelegate<> class (Original author: Jody Hagins)
// Allows boost::function style syntax like:
// CUtlDelegate< double (int, long) >
// instead of:
// FastDelegate2< int, long, double >
//
////////////////////////////////////////////////////////////////////////////////
#ifdef FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
// Declare CUtlDelegate as a class template. It will be specialized
// later for all number of arguments.
template <typename Signature> class CUtlDelegate;
//N=0
// Specialization to allow use of
// CUtlDelegate< R ( ) >
// instead of
// FastDelegate0 < R >
template<typename R> class CUtlDelegate< R ( ) > // Inherit from FastDelegate0 so that it can be treated just like a FastDelegate0
: public FastDelegate0 < R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate0 < R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=1
// Specialization to allow use of
// CUtlDelegate< R ( Param1 ) >
// instead of
// FastDelegate1 < Param1, R >
template<typename R, class Param1> class CUtlDelegate< R ( Param1 ) > // Inherit from FastDelegate1 so that it can be treated just like a FastDelegate1
: public FastDelegate1 < Param1, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate1 < Param1, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=2
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2 ) >
// instead of
// FastDelegate2 < Param1, Param2, R >
template<typename R, class Param1, class Param2> class CUtlDelegate< R ( Param1, Param2 ) > // Inherit from FastDelegate2 so that it can be treated just like a FastDelegate2
: public FastDelegate2 < Param1, Param2, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate2 < Param1, Param2, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=3
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3 ) >
// instead of
// FastDelegate3 < Param1, Param2, Param3, R >
template<typename R, class Param1, class Param2, class Param3> class CUtlDelegate< R ( Param1, Param2, Param3 ) > // Inherit from FastDelegate3 so that it can be treated just like a FastDelegate3
: public FastDelegate3 < Param1, Param2, Param3, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate3 < Param1, Param2, Param3, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=4
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4 ) >
// instead of
// FastDelegate4 < Param1, Param2, Param3, Param4, R >
template<typename R, class Param1, class Param2, class Param3, class Param4> class CUtlDelegate< R ( Param1, Param2, Param3, Param4 ) > // Inherit from FastDelegate4 so that it can be treated just like a FastDelegate4
: public FastDelegate4 < Param1, Param2, Param3, Param4, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate4 < Param1, Param2, Param3, Param4, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=5
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) >
// instead of
// FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5> class CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) > // Inherit from FastDelegate5 so that it can be treated just like a FastDelegate5
: public FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=6
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) >
// instead of
// FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6> class CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) > // Inherit from FastDelegate6 so that it can be treated just like a FastDelegate6
: public FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=7
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >
// instead of
// FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7> class CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) > // Inherit from FastDelegate7 so that it can be treated just like a FastDelegate7
: public FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
//N=8
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >
// instead of
// FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8> class CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) > // Inherit from FastDelegate8 so that it can be treated just like a FastDelegate8
: public FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R > { public: // Make using the base type a bit easier via typedef.
typedef FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R > BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() { }
template < class X, class Y > CUtlDelegate(Y * pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 )) : BaseType(pthis, function_to_bind) { }
template < class X, class Y > CUtlDelegate(const Y *pthis, R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) const) : BaseType(pthis, function_to_bind) { }
CUtlDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 )) : BaseType(function_to_bind) { }
void operator = (const BaseType &x) { *static_cast<BaseType*>(this) = x; } };
#endif //FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 5:
//
// UtlMakeDelegate() helper function
//
// UtlMakeDelegate(&x, &X::func) returns a fastdelegate of the type
// necessary for calling x.func() with the correct number of arguments.
// This makes it possible to eliminate many typedefs from user code.
//
////////////////////////////////////////////////////////////////////////////////
// Also declare overloads of a UtlMakeDelegate() global function to
// reduce the need for typedefs.
// We need seperate overloads for const and non-const member functions.
// Also, because of the weird rule about the class of derived member function pointers,
// implicit downcasts may need to be applied later to the 'this' pointer.
// That's why two classes (X and Y) appear in the definitions. Y must be implicitly
// castable to X.
// Workaround for VC6. VC6 needs void return types converted into DefaultVoid.
// GCC 3.2 and later won't compile this unless it's preceded by 'typename',
// but VC6 doesn't allow 'typename' in this context.
// So, I have to use a macro.
#ifdef FASTDLGT_VC6
#define FASTDLGT_RETTYPE detail::VoidToDefaultVoid<RetType>::type
#else
#define FASTDLGT_RETTYPE RetType
#endif
//N=0
template <class X, class Y, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( ) > UtlMakeDelegate(Y* x, RetType (X::*func)()) { return CUtlDelegate< FASTDLGT_RETTYPE ( ) >(x, func); }
template <class X, class Y, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( ) > UtlMakeDelegate(Y* x, RetType (X::*func)() const) { return CUtlDelegate< FASTDLGT_RETTYPE ( ) >(x, func); }
template < class RetType > CUtlDelegate< FASTDLGT_RETTYPE ( ) > UtlMakeDelegate( RetType (*func)()) { return CUtlDelegate< FASTDLGT_RETTYPE ( ) >( func ); }
//N=1
template <class X, class Y, class Param1, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1 ) >(x, func); }
template <class X, class Y, class Param1, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1 ) >(x, func); }
template < class Param1, class RetType > CUtlDelegate< FASTDLGT_RETTYPE ( Param1 ) > UtlMakeDelegate( RetType (*func)(Param1 p1)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1 ) >( func ); }
//N=2
template <class X, class Y, class Param1, class Param2, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2 ) >(x, func); }
template <class Param1, class Param2, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2 ) > UtlMakeDelegate( RetType (*func)(Param1 p1, Param2 p2)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2 ) >(func); }
//N=3
template <class X, class Y, class Param1, class Param2, class Param3, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class Param3, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3 ) >(x, func); }
template <class Param1, class Param2, class Param3, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3 ) > UtlMakeDelegate( RetType (*func)(Param1 p1, Param2 p2, Param3 p3)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3 ) >(func); }
//N=4
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4 ) >(x, func); }
template <class Param1, class Param2, class Param3, class Param4, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4 ) > UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4 ) >(func); }
//N=5
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5 ) >(x, func); }
template <class Param1, class Param2, class Param3, class Param4, class Param5, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5 ) > UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5 ) >(func); }
//N=6
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6 ) >(x, func); }
template <class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6 ) > UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6 ) >(func); }
//N=7
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >(x, func); }
template <class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) > UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >(func); }
//N=8
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >(x, func); }
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) > UtlMakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >(x, func); }
template <class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType> CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) > UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { return CUtlDelegate< FASTDLGT_RETTYPE ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >(func); }
// clean up after ourselves...
#undef FASTDLGT_RETTYPE
#ifdef _MSC_VER
#pragma warning( pop )
#endif
#endif // !defined(UTLDELEGATEIMPL_H)
|