|
|
//====== Copyright � 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $NoKeywords: $
//
// A growable array class that maintains a free list and keeps elements
// in the same location
//=============================================================================//
#ifndef UTLVECTOR_H
#define UTLVECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include <string.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier0/threadtools.h"
#include "tier1/utlmemory.h"
#include "tier1/utlblockmemory.h"
#include "tier1/strtools.h"
#include <algorithm>
#define FOR_EACH_VEC( vecName, iteratorName ) \
for ( int iteratorName = 0; (vecName).IsUtlVector && iteratorName < (vecName).Count(); iteratorName++ ) #define FOR_EACH_VEC_BACK( vecName, iteratorName ) \
for ( int iteratorName = (vecName).Count()-1; (vecName).IsUtlVector && iteratorName >= 0; iteratorName-- )
// UtlVector derives from this so we can do the type check above
struct base_vector_t { public: enum { IsUtlVector = true }; // Used to match this at compiletime
};
//-----------------------------------------------------------------------------
// The CUtlVector class:
// A growable array class which doubles in size by default.
// It will always keep all elements consecutive in memory, and may move the
// elements around in memory (via a PvRealloc) when elements are inserted or
// removed. Clients should therefore refer to the elements of the vector
// by index (they should *never* maintain pointers to elements in the vector).
//-----------------------------------------------------------------------------
template< class T, class A = CUtlMemory<T> > class CUtlVector : public base_vector_t { typedef A CAllocator; public: typedef T ElemType_t; typedef T* iterator; typedef const T* const_iterator;
// Set the growth policy and initial capacity. Count will always be zero. This is different from std::vector
// where the constructor sets count as well as capacity.
// growSize of zero implies the default growth pattern which is exponential.
explicit CUtlVector( int growSize = 0, int initialCapacity = 0 );
// Initialize with separately allocated buffer, setting the capacity and count.
// The container will not be growable.
CUtlVector( T* pMemory, int initialCapacity, int initialCount = 0 ); ~CUtlVector(); // Copy the array.
CUtlVector<T, A>& operator=( const CUtlVector<T, A> &other );
// element access
T& operator[]( int i ); const T& operator[]( int i ) const; T& Element( int i ); const T& Element( int i ) const; T& Head(); const T& Head() const; T& Tail(); const T& Tail() const;
// STL compatible member functions. These allow easier use of std::sort
// and they are forward compatible with the C++ 11 range-based for loops.
iterator begin() { return Base(); } const_iterator begin() const { return Base(); } iterator end() { return Base() + Count(); } const_iterator end() const { return Base() + Count(); }
// Gets the base address (can change when adding elements!)
T* Base() { return m_Memory.Base(); } const T* Base() const { return m_Memory.Base(); }
// Returns the number of elements in the vector
int Count() const; /// are there no elements? For compatibility with lists.
inline bool IsEmpty( void ) const { return ( Count() == 0 ); }
// Is element index valid?
bool IsValidIndex( int i ) const; static int InvalidIndex();
// Adds an element, uses default constructor
int AddToHead(); int AddToTail(); T *AddToTailGetPtr(); int InsertBefore( int elem ); int InsertAfter( int elem );
// Adds an element, uses copy constructor
int AddToHead( const T& src ); int AddToTail( const T& src ); int InsertBefore( int elem, const T& src ); int InsertAfter( int elem, const T& src );
// Adds multiple elements, uses default constructor
int AddMultipleToHead( int num ); int AddMultipleToTail( int num ); int AddMultipleToTail( int num, const T *pToCopy ); int InsertMultipleBefore( int elem, int num ); int InsertMultipleBefore( int elem, int num, const T *pToCopy ); int InsertMultipleAfter( int elem, int num );
// Calls RemoveAll() then AddMultipleToTail.
// SetSize is a synonym for SetCount
void SetSize( int size ); // SetCount deletes the previous contents of the container and sets the
// container to have this many elements.
// Use GetCount to retrieve the current count.
void SetCount( int count ); void SetCountNonDestructively( int count ); //sets count by adding or removing elements to tail TODO: This should probably be the default behavior for SetCount
// Calls SetSize and copies each element.
void CopyArray( const T *pArray, int size );
// Fast swap
void Swap( CUtlVector< T, A > &vec ); // Add the specified array to the tail.
int AddVectorToTail( CUtlVector<T, A> const &src );
// Finds an element (element needs operator== defined)
int Find( const T& src ) const; void FillWithValue( const T& src );
bool HasElement( const T& src ) const;
// Makes sure we have enough memory allocated to store a requested # of elements
// Use NumAllocated() to retrieve the current capacity.
void EnsureCapacity( int num );
// Makes sure we have at least this many elements
// Use GetCount to retrieve the current count.
void EnsureCount( int num );
// Element removal
void FastRemove( int elem ); // doesn't preserve order
void Remove( int elem ); // preserves order, shifts elements
bool FindAndRemove( const T& src ); // removes first occurrence of src, preserves order, shifts elements
bool FindAndFastRemove( const T& src ); // removes first occurrence of src, doesn't preserve order
void RemoveMultiple( int elem, int num ); // preserves order, shifts elements
void RemoveMultipleFromHead(int num); // removes num elements from tail
void RemoveMultipleFromTail(int num); // removes num elements from tail
void RemoveAll(); // doesn't deallocate memory
// Memory deallocation
void Purge();
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements();
// Compacts the vector to the number of elements actually in use
void Compact();
// Set the size by which it grows when it needs to allocate more memory.
void SetGrowSize( int size ) { m_Memory.SetGrowSize( size ); }
int NumAllocated() const; // Only use this if you really know what you're doing!
void Sort( int (__cdecl *pfnCompare)(const T *, const T *) );
// Call this to quickly sort non-contiguously allocated vectors
void InPlaceQuickSort( int (__cdecl *pfnCompare)(const T *, const T *) ); // reverse the order of elements
void Reverse( );
#ifdef DBGFLAG_VALIDATE
void Validate( CValidator &validator, char *pchName ); // Validate our internal structures
#endif // DBGFLAG_VALIDATE
int SortedFindLessOrEqual( const T& search, bool( __cdecl *pfnLessFunc )( const T& src1, const T& src2, void *pCtx ), void *pLessContext ) const; int SortedInsert( const T& src, bool( __cdecl *pfnLessFunc )( const T& src1, const T& src2, void *pCtx ), void *pLessContext );
/// sort using std:: and expecting a "<" function to be defined for the type
void Sort( void );
/// sort using std:: with a predicate. e.g. [] -> bool ( T &a, T &b ) { return a < b; }
template <class F> void SortPredicate( F &&predicate );
protected: // Can't copy this unless we explicitly do it!
CUtlVector( CUtlVector const& vec ) { Assert(0); }
// Grows the vector
void GrowVector( int num = 1 );
// Shifts elements....
void ShiftElementsRight( int elem, int num = 1 ); void ShiftElementsLeft( int elem, int num = 1 );
CAllocator m_Memory; int m_Size;
#ifndef _X360
// For easier access to the elements through the debugger
// it's in release builds so this can be used in libraries correctly
T *m_pElements;
inline void ResetDbgInfo() { m_pElements = Base(); } #else
inline void ResetDbgInfo() {} #endif
private: void InPlaceQuickSort_r( int (__cdecl *pfnCompare)(const T *, const T *), int nLeft, int nRight ); };
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T > class CUtlBlockVector : public CUtlVector< T, CUtlBlockMemory< T, int > > { public: explicit CUtlBlockVector( int growSize = 0, int initSize = 0 ) : CUtlVector< T, CUtlBlockMemory< T, int > >( growSize, initSize ) {} };
//-----------------------------------------------------------------------------
// The CUtlVectorMT class:
// An array class with spurious mutex protection. Nothing is actually protected
// unless you call Lock and Unlock. Also, the Mutex_t is actually not a type
// but a member which probably isn't used.
//-----------------------------------------------------------------------------
template< class BASE_UTLVECTOR, class MUTEX_TYPE = CThreadFastMutex > class CUtlVectorMT : public BASE_UTLVECTOR, public MUTEX_TYPE { typedef BASE_UTLVECTOR BaseClass; public: // MUTEX_TYPE Mutex_t;
// constructor, destructor
explicit CUtlVectorMT( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorMT( typename BaseClass::ElemType_t* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} };
//-----------------------------------------------------------------------------
// The CUtlVectorFixed class:
// A array class with a fixed allocation scheme
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE > class CUtlVectorFixed : public CUtlVector< T, CUtlMemoryFixed<T, MAX_SIZE > > { typedef CUtlVector< T, CUtlMemoryFixed<T, MAX_SIZE > > BaseClass; public:
// constructor, destructor
explicit CUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} };
//-----------------------------------------------------------------------------
// The CUtlVectorFixedGrowable class:
// A array class with a fixed allocation scheme backed by a dynamic one
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE > class CUtlVectorFixedGrowable : public CUtlVector< T, CUtlMemoryFixedGrowable<T, MAX_SIZE > > { typedef CUtlVector< T, CUtlMemoryFixedGrowable<T, MAX_SIZE > > BaseClass;
public: // constructor, destructor
explicit CUtlVectorFixedGrowable( int growSize = 0 ) : BaseClass( growSize, MAX_SIZE ) {} };
// A fixed growable vector that's castable to CUtlVector
template< class T, size_t FIXED_SIZE > class CUtlVectorFixedGrowableCompat : public CUtlVector< T > { typedef CUtlVector< T > BaseClass;
public: // constructor, destructor
CUtlVectorFixedGrowableCompat(int growSize = 0) : BaseClass(nullptr, FIXED_SIZE, growSize) { this->m_Memory.m_pMemory = m_FixedMemory.Base(); }
AlignedByteArray_t< FIXED_SIZE, T > m_FixedMemory; };
//-----------------------------------------------------------------------------
// The CUtlVectorConservative class:
// A array class with a conservative allocation scheme
//-----------------------------------------------------------------------------
template< class T > class CUtlVectorConservative : public CUtlVector< T, CUtlMemoryConservative<T> > { typedef CUtlVector< T, CUtlMemoryConservative<T> > BaseClass; public:
// constructor, destructor
explicit CUtlVectorConservative( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorConservative( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} };
//-----------------------------------------------------------------------------
// The CUtlVectorUltra Conservative class:
// A array class with a very conservative allocation scheme, with customizable allocator
// Especialy useful if you have a lot of vectors that are sparse, or if you're
// carefully packing holders of vectors
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable : 4200) // warning C4200: nonstandard extension used : zero-sized array in struct/union
#pragma warning(disable : 4815 ) // warning C4815: 'staticData' : zero-sized array in stack object will have no elements
class CUtlVectorUltraConservativeAllocator { public: static void *Alloc( size_t nSize ) { return malloc( nSize ); }
static void *Realloc( void *pMem, size_t nSize ) { return realloc( pMem, nSize ); }
static void Free( void *pMem ) { free( pMem ); }
static size_t GetSize( void *pMem ) { return mallocsize( pMem ); }
};
template <typename T, typename A = CUtlVectorUltraConservativeAllocator > class CUtlVectorUltraConservative : private A { public: // Don't inherit from base_vector_t because multiple-inheritance increases
// class size!
enum { IsUtlVector = true }; // Used to match this at compiletime
CUtlVectorUltraConservative() { m_pData = StaticData(); }
~CUtlVectorUltraConservative() { RemoveAll(); }
int Count() const { return m_pData->m_Size; }
static int InvalidIndex() { return -1; }
inline bool IsValidIndex( int i ) const { return (i >= 0) && (i < Count()); }
T& operator[]( int i ) { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; }
const T& operator[]( int i ) const { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; }
T& Element( int i ) { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; }
const T& Element( int i ) const { Assert( IsValidIndex( i ) ); return m_pData->m_Elements[i]; }
void EnsureCapacity( int num ) { int nCurCount = Count(); if ( num <= nCurCount ) { return; } if ( m_pData == StaticData() ) { m_pData = (Data_t *)A::Alloc( sizeof(Data_t) + ( num * sizeof(T) ) ); m_pData->m_Size = 0; } else { int nNeeded = sizeof(Data_t) + ( num * sizeof(T) ); int nHave = A::GetSize( m_pData ); if ( nNeeded > nHave ) { m_pData = (Data_t *)A::Realloc( m_pData, nNeeded ); } } }
int AddToTail( const T& src ) { int iNew = Count(); EnsureCapacity( Count() + 1 ); m_pData->m_Elements[iNew] = src; m_pData->m_Size++; return iNew; }
T * AddToTailGetPtr() { return &Element( AddToTail() ); }
void RemoveAll() { if ( Count() ) { for (int i = m_pData->m_Size; --i >= 0; ) { // Global scope to resolve conflict with Scaleform 4.0
::Destruct(&m_pData->m_Elements[i]); } } if ( m_pData != StaticData() ) { A::Free( m_pData ); m_pData = StaticData();
} }
void PurgeAndDeleteElements() { if ( m_pData != StaticData() ) { for( int i=0; i < m_pData->m_Size; i++ ) { delete Element(i); } RemoveAll(); } }
void FastRemove( int elem ) { Assert( IsValidIndex(elem) );
// Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) ); if (Count() > 0) { if ( elem != m_pData->m_Size -1 ) memcpy( &Element(elem), &Element(m_pData->m_Size-1), sizeof(T) ); --m_pData->m_Size; } if ( !m_pData->m_Size ) { A::Free( m_pData ); m_pData = StaticData(); } }
void Remove( int elem ) { // Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) ); ShiftElementsLeft(elem); --m_pData->m_Size; if ( !m_pData->m_Size ) { A::Free( m_pData ); m_pData = StaticData(); } }
int Find( const T& src ) const { int nCount = Count(); for ( int i = 0; i < nCount; ++i ) { if (Element(i) == src) return i; } return -1; }
bool FindAndRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { Remove( elem ); return true; } return false; }
bool FindAndFastRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { FastRemove( elem ); return true; } return false; }
bool DebugCompileError_ANonVectorIsUsedInThe_FOR_EACH_VEC_Macro( void ) const { return true; }
struct Data_t { int m_Size; T m_Elements[]; };
Data_t *m_pData; private: void ShiftElementsLeft( int elem, int num = 1 ) { int Size = Count(); Assert( IsValidIndex(elem) || ( Size == 0 ) || ( num == 0 )); int numToMove = Size - elem - num; if ((numToMove > 0) && (num > 0)) { Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) );
#ifdef _DEBUG
Q_memset( &Element(Size-num), 0xDD, num * sizeof(T) ); #endif
} }
static Data_t *StaticData() { static Data_t staticData; Assert( staticData.m_Size == 0 ); return &staticData; } };
#pragma warning(pop)
// Make sure nobody adds multiple inheritance and makes this class bigger.
COMPILE_TIME_ASSERT( sizeof(CUtlVectorUltraConservative<int>) == sizeof(void*) );
//-----------------------------------------------------------------------------
// The CCopyableUtlVector class:
// A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers)
// WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens
// Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap)
//-----------------------------------------------------------------------------
template< class T > class CCopyableUtlVector : public CUtlVector< T, CUtlMemory<T> > { typedef CUtlVector< T, CUtlMemory<T> > BaseClass; public: explicit CCopyableUtlVector( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CCopyableUtlVector( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} virtual ~CCopyableUtlVector() {} CCopyableUtlVector( CCopyableUtlVector const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); } CCopyableUtlVector( CUtlVector<T> const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); } };
//-----------------------------------------------------------------------------
// The CCopyableUtlVector class:
// A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers)
// WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens
// Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap)
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE > class CCopyableUtlVectorFixed : public CUtlVectorFixed< T, MAX_SIZE > { typedef CUtlVectorFixed< T, MAX_SIZE > BaseClass; public: explicit CCopyableUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CCopyableUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} virtual ~CCopyableUtlVectorFixed() {} CCopyableUtlVectorFixed( CCopyableUtlVectorFixed const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); } };
// TODO (Ilya): It seems like all the functions in CUtlVector are simple enough that they should be inlined.
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template< typename T, class A > inline CUtlVector<T, A>::CUtlVector( int growSize, int initSize ) : m_Memory(growSize, initSize), m_Size(0) { ResetDbgInfo(); }
template< typename T, class A > inline CUtlVector<T, A>::CUtlVector( T* pMemory, int allocationCount, int numElements ) : m_Memory(pMemory, allocationCount), m_Size(numElements) { ResetDbgInfo(); }
template< typename T, class A > inline CUtlVector<T, A>::~CUtlVector() { Purge(); }
template< typename T, class A > inline CUtlVector<T, A>& CUtlVector<T, A>::operator=( const CUtlVector<T, A> &other ) { int nCount = other.Count(); SetSize( nCount ); for ( int i = 0; i < nCount; i++ ) { (*this)[ i ] = other[ i ]; } return *this; }
//-----------------------------------------------------------------------------
// element access
//-----------------------------------------------------------------------------
template< typename T, class A > inline T& CUtlVector<T, A>::operator[]( int i ) { Assert( i < m_Size ); return m_Memory[ i ]; }
template< typename T, class A > inline const T& CUtlVector<T, A>::operator[]( int i ) const { Assert( i < m_Size ); return m_Memory[ i ]; }
template< typename T, class A > inline T& CUtlVector<T, A>::Element( int i ) { Assert( i < m_Size ); return m_Memory[ i ]; }
template< typename T, class A > inline const T& CUtlVector<T, A>::Element( int i ) const { Assert( i < m_Size ); return m_Memory[ i ]; }
template< typename T, class A > inline T& CUtlVector<T, A>::Head() { Assert( m_Size > 0 ); return m_Memory[ 0 ]; }
template< typename T, class A > inline const T& CUtlVector<T, A>::Head() const { Assert( m_Size > 0 ); return m_Memory[ 0 ]; }
template< typename T, class A > inline T& CUtlVector<T, A>::Tail() { Assert( m_Size > 0 ); return m_Memory[ m_Size - 1 ]; }
template< typename T, class A > inline const T& CUtlVector<T, A>::Tail() const { Assert( m_Size > 0 ); return m_Memory[ m_Size - 1 ]; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Reverse - reverse the order of elements, akin to std::vector<>::reverse()
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::Reverse( ) { for ( int i = 0; i < m_Size / 2; i++ ) { V_swap( m_Memory[ i ], m_Memory[ m_Size - 1 - i ] ); #if defined( UTLVECTOR_TRACK_STACKS )
if ( bTrackingEnabled ) { V_swap( m_pElementStackStatsIndices[ i ], m_pElementStackStatsIndices[ m_Size - 1 - i ] ); } #endif
} }
// Count
//-----------------------------------------------------------------------------
template< typename T, class A > inline int CUtlVector<T, A>::Count() const { return m_Size; }
//-----------------------------------------------------------------------------
// Is element index valid?
//-----------------------------------------------------------------------------
template< typename T, class A > inline bool CUtlVector<T, A>::IsValidIndex( int i ) const { return (i >= 0) && (i < m_Size); }
//-----------------------------------------------------------------------------
// Returns in invalid index
//-----------------------------------------------------------------------------
template< typename T, class A > inline int CUtlVector<T, A>::InvalidIndex() { return -1; }
//-----------------------------------------------------------------------------
// Grows the vector
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::GrowVector( int num ) { if (m_Size + num > m_Memory.NumAllocated()) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.Grow( m_Size + num - m_Memory.NumAllocated() ); }
m_Size += num; ResetDbgInfo(); }
//-----------------------------------------------------------------------------
// finds a particular element
// You must sort the list before using or your results will be wrong
//-----------------------------------------------------------------------------
template< typename T, class A > int CUtlVector<T, A>::SortedFindLessOrEqual( const T& search, bool (__cdecl *pfnLessFunc)( const T& src1, const T& src2, void *pCtx ), void *pLessContext ) const { int start = 0, end = Count() - 1; while (start <= end) { int mid = (start + end) >> 1; if ( pfnLessFunc( Element(mid), search, pLessContext ) ) { start = mid + 1; } else if ( pfnLessFunc( search, Element(mid), pLessContext ) ) { end = mid - 1; } else { return mid; } } return end; }
template< typename T, class A > int CUtlVector<T, A>::SortedInsert( const T& src, bool (__cdecl *pfnLessFunc)( const T& src1, const T& src2, void *pCtx ), void *pLessContext ) { int pos = SortedFindLessOrEqual( src, pfnLessFunc, pLessContext ) + 1; GrowVector(); ShiftElementsRight(pos); CopyConstruct<T>( &Element(pos), src ); //UTLVECTOR_STACK_STATS_ALLOCATED_SINGLE( pos );
return pos; }
//-----------------------------------------------------------------------------
// Sorts the vector
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::Sort( int (__cdecl *pfnCompare)(const T *, const T *) ) { typedef int (__cdecl *QSortCompareFunc_t)(const void *, const void *); if ( Count() <= 1 ) return;
if ( Base() ) { qsort( Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare) ); } else { Assert( 0 ); // this path is untested
// if you want to sort vectors that use a non-sequential memory allocator,
// you'll probably want to patch in a quicksort algorithm here
// I just threw in this bubble sort to have something just in case...
for ( int i = m_Size - 1; i >= 0; --i ) { for ( int j = 1; j <= i; ++j ) { if ( pfnCompare( &Element( j - 1 ), &Element( j ) ) < 0 ) { V_swap( Element( j - 1 ), Element( j ) ); } } } } }
//----------------------------------------------------------------------------------------------
// Private function that does the in-place quicksort for non-contiguously allocated vectors.
//----------------------------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::InPlaceQuickSort_r( int (__cdecl *pfnCompare)(const T *, const T *), int nLeft, int nRight ) { int nPivot; int nLeftIdx = nLeft; int nRightIdx = nRight;
if ( nRight - nLeft > 0 ) { nPivot = ( nLeft + nRight ) / 2;
while ( ( nLeftIdx <= nPivot ) && ( nRightIdx >= nPivot ) ) { while ( ( pfnCompare( &Element( nLeftIdx ), &Element( nPivot ) ) < 0 ) && ( nLeftIdx <= nPivot ) ) { nLeftIdx++; }
while ( ( pfnCompare( &Element( nRightIdx ), &Element( nPivot ) ) > 0 ) && ( nRightIdx >= nPivot ) ) { nRightIdx--; }
V_swap( Element( nLeftIdx ), Element( nRightIdx ) );
nLeftIdx++; nRightIdx--;
if ( ( nLeftIdx - 1 ) == nPivot ) { nPivot = nRightIdx = nRightIdx + 1; } else if ( nRightIdx + 1 == nPivot ) { nPivot = nLeftIdx = nLeftIdx - 1; } }
InPlaceQuickSort_r( pfnCompare, nLeft, nPivot - 1 ); InPlaceQuickSort_r( pfnCompare, nPivot + 1, nRight ); } }
//----------------------------------------------------------------------------------------------
// Call this to quickly sort non-contiguously allocated vectors. Sort uses a slower bubble sort.
//----------------------------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::InPlaceQuickSort( int (__cdecl *pfnCompare)(const T *, const T *) ) { InPlaceQuickSort_r( pfnCompare, 0, Count() - 1 ); }
template< typename T, class A > void CUtlVector<T, A>::Sort( void ) { //STACK STATS TODO: Do we care about allocation tracking precision enough to match element origins across a sort?
std::sort( Base(), Base() + Count() ); }
template< typename T, class A > template <class F> void CUtlVector<T, A>::SortPredicate( F &&predicate ) { std::sort( Base(), Base() + Count(), predicate ); }
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::EnsureCapacity( int num ) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.EnsureCapacity(num); ResetDbgInfo(); }
//-----------------------------------------------------------------------------
// Makes sure we have at least this many elements
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::EnsureCount( int num ) { if (Count() < num) { AddMultipleToTail( num - Count() ); } }
//-----------------------------------------------------------------------------
// Shifts elements
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::ShiftElementsRight( int elem, int num ) { Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) Q_memmove( &Element(elem+num), &Element(elem), numToMove * sizeof(T) ); }
template< typename T, class A > void CUtlVector<T, A>::ShiftElementsLeft( int elem, int num ) { Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) { Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) );
#ifdef _DEBUG
Q_memset( &Element(m_Size-num), 0xDD, num * sizeof(T) ); #endif
} }
//-----------------------------------------------------------------------------
// Adds an element, uses default constructor
//-----------------------------------------------------------------------------
template< typename T, class A > inline int CUtlVector<T, A>::AddToHead() { return InsertBefore(0); }
template< typename T, class A > inline int CUtlVector<T, A>::AddToTail() { return InsertBefore( m_Size ); }
template< typename T, class A > inline T *CUtlVector<T, A>::AddToTailGetPtr() { return &Element( AddToTail() ); }
template< typename T, class A > inline int CUtlVector<T, A>::InsertAfter( int elem ) { return InsertBefore( elem + 1 ); }
template< typename T, class A > int CUtlVector<T, A>::InsertBefore( int elem ) { // Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector(); ShiftElementsRight(elem); Construct( &Element(elem) ); return elem; }
//-----------------------------------------------------------------------------
// Adds an element, uses copy constructor
//-----------------------------------------------------------------------------
template< typename T, class A > inline int CUtlVector<T, A>::AddToHead( const T& src ) { // Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( 0, src ); }
template< typename T, class A > inline int CUtlVector<T, A>::AddToTail( const T& src ) { // Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( m_Size, src ); }
template< typename T, class A > inline int CUtlVector<T, A>::InsertAfter( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( elem + 1, src ); }
template< typename T, class A > int CUtlVector<T, A>::InsertBefore( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) );
// Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector(); ShiftElementsRight(elem); CopyConstruct( &Element(elem), src ); return elem; }
//-----------------------------------------------------------------------------
// Adds multiple elements, uses default constructor
//-----------------------------------------------------------------------------
template< typename T, class A > inline int CUtlVector<T, A>::AddMultipleToHead( int num ) { return InsertMultipleBefore( 0, num ); }
template< typename T, class A > inline int CUtlVector<T, A>::AddMultipleToTail( int num ) { return InsertMultipleBefore( m_Size, num ); }
template< typename T, class A > inline int CUtlVector<T, A>::AddMultipleToTail( int num, const T *pToCopy ) { // Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || !pToCopy || (pToCopy + num <= Base()) || (pToCopy >= (Base() + Count()) ) );
return InsertMultipleBefore( m_Size, num, pToCopy ); }
template< typename T, class A > int CUtlVector<T, A>::InsertMultipleAfter( int elem, int num ) { return InsertMultipleBefore( elem + 1, num ); }
template< typename T, class A > void CUtlVector<T, A>::SetCount( int count ) { RemoveAll(); AddMultipleToTail( count ); }
template< typename T, class A > inline void CUtlVector<T, A>::SetSize( int size ) { SetCount( size ); }
template< typename T, class A > void CUtlVector<T, A>::SetCountNonDestructively( int count ) { int delta = count - m_Size; if(delta > 0) AddMultipleToTail( delta ); else if(delta < 0) RemoveMultipleFromTail( -delta ); }
template< typename T, class A > void CUtlVector<T, A>::CopyArray( const T *pArray, int size ) { // Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || !pArray || (Base() >= (pArray + size)) || (pArray >= (Base() + Count()) ) );
SetSize( size ); for( int i=0; i < size; i++ ) { (*this)[i] = pArray[i]; } }
template< typename T, class A > void CUtlVector<T, A>::Swap( CUtlVector< T, A > &vec ) { m_Memory.Swap( vec.m_Memory ); V_swap( m_Size, vec.m_Size ); #ifndef _X360
V_swap( m_pElements, vec.m_pElements ); #endif
}
template< typename T, class A > int CUtlVector<T, A>::AddVectorToTail( CUtlVector const &src ) { Assert( &src != this );
int base = Count(); // Make space.
int nSrcCount = src.Count(); EnsureCapacity( base + nSrcCount );
// Copy the elements.
m_Size += nSrcCount; for ( int i=0; i < nSrcCount; i++ ) { CopyConstruct( &Element(base+i), src[i] ); } return base; }
template< typename T, class A > inline int CUtlVector<T, A>::InsertMultipleBefore( int elem, int num ) { if( num == 0 ) return elem;
// Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector(num); ShiftElementsRight( elem, num );
// Invoke default constructors
for (int i = 0; i < num; ++i ) { Construct( &Element( elem+i ) ); }
return elem; }
template< typename T, class A > inline int CUtlVector<T, A>::InsertMultipleBefore( int elem, int num, const T *pToInsert ) { if( num == 0 ) return elem; // Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector(num); ShiftElementsRight( elem, num );
// Invoke default constructors
if ( !pToInsert ) { for (int i = 0; i < num; ++i ) { Construct( &Element( elem+i ) ); } } else { for ( int i=0; i < num; i++ ) { CopyConstruct( &Element( elem+i ), pToInsert[i] ); } }
return elem; }
//-----------------------------------------------------------------------------
// Finds an element (element needs operator== defined)
//-----------------------------------------------------------------------------
template< typename T, class A > int CUtlVector<T, A>::Find( const T& src ) const { for ( int i = 0; i < Count(); ++i ) { if (Element(i) == src) return i; } return -1; }
template< typename T, class A > void CUtlVector<T, A>::FillWithValue( const T& src ) { for ( int i = 0; i < Count(); i++ ) { Element(i) = src; } }
template< typename T, class A > bool CUtlVector<T, A>::HasElement( const T& src ) const { return ( Find(src) >= 0 ); }
//-----------------------------------------------------------------------------
// Element removal
//-----------------------------------------------------------------------------
template< typename T, class A > void CUtlVector<T, A>::FastRemove( int elem ) { Assert( IsValidIndex(elem) );
// Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) ); if (m_Size > 0) { if ( elem != m_Size -1 ) memcpy( &Element(elem), &Element(m_Size-1), sizeof(T) ); --m_Size; } }
template< typename T, class A > void CUtlVector<T, A>::Remove( int elem ) { // Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) ); ShiftElementsLeft(elem); --m_Size; }
template< typename T, class A > bool CUtlVector<T, A>::FindAndRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { Remove( elem ); return true; } return false; }
template< typename T, class A > bool CUtlVector<T, A>::FindAndFastRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { FastRemove( elem ); return true; } return false; }
template< typename T, class A > void CUtlVector<T, A>::RemoveMultiple( int elem, int num ) { Assert( elem >= 0 ); Assert( elem + num <= Count() );
// Global scope to resolve conflict with Scaleform 4.0
for (int i = elem + num; --i >= elem; ) ::Destruct(&Element(i));
ShiftElementsLeft(elem, num); m_Size -= num; }
template< typename T, class A > void CUtlVector<T, A>::RemoveMultipleFromHead( int num ) { Assert( num <= Count() );
// Global scope to resolve conflict with Scaleform 4.0
for (int i = num; --i >= 0; ) ::Destruct(&Element(i));
ShiftElementsLeft(0, num); m_Size -= num; }
template< typename T, class A > void CUtlVector<T, A>::RemoveMultipleFromTail( int num ) { Assert( num <= Count() );
// Global scope to resolve conflict with Scaleform 4.0
for (int i = m_Size-num; i < m_Size; i++) ::Destruct(&Element(i));
m_Size -= num; }
template< typename T, class A > void CUtlVector<T, A>::RemoveAll() { for (int i = m_Size; --i >= 0; ) { // Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(i)); }
m_Size = 0; }
//-----------------------------------------------------------------------------
// Memory deallocation
//-----------------------------------------------------------------------------
template< typename T, class A > inline void CUtlVector<T, A>::Purge() { RemoveAll(); m_Memory.Purge(); ResetDbgInfo(); }
template< typename T, class A > inline void CUtlVector<T, A>::PurgeAndDeleteElements() { for( int i=0; i < m_Size; i++ ) { delete Element(i); } Purge(); }
template< typename T, class A > inline void CUtlVector<T, A>::Compact() { m_Memory.Purge(m_Size); }
template< typename T, class A > inline int CUtlVector<T, A>::NumAllocated() const { return m_Memory.NumAllocated(); }
//-----------------------------------------------------------------------------
// Data and memory validation
//-----------------------------------------------------------------------------
#ifdef DBGFLAG_VALIDATE
template< typename T, class A > void CUtlVector<T, A>::Validate( CValidator &validator, char *pchName ) { validator.Push( typeid(*this).name(), this, pchName );
m_Memory.Validate( validator, "m_Memory" );
validator.Pop(); } #endif // DBGFLAG_VALIDATE
// A vector class for storing pointers, so that the elements pointed to by the pointers are deleted
// on exit.
template<class T> class CUtlVectorAutoPurge : public CUtlVector< T, CUtlMemory< T, int> > { public: ~CUtlVectorAutoPurge( void ) { this->PurgeAndDeleteElements(); }
};
// easy string list class with dynamically allocated strings. For use with V_SplitString, etc.
// Frees the dynamic strings in destructor.
class CUtlStringList : public CUtlVectorAutoPurge< char *> { public: void CopyAndAddToTail( char const *pString ) // clone the string and add to the end
{ char *pNewStr = new char[1 + strlen( pString )]; V_strcpy( pNewStr, pString ); AddToTail( pNewStr ); }
static int __cdecl SortFunc( char * const * sz1, char * const * sz2 ) { return strcmp( *sz1, *sz2 ); }
CUtlStringList(){}
CUtlStringList( char const *pString, char const *pSeparator ) { SplitString( pString, pSeparator ); }
CUtlStringList( char const *pString, const char **pSeparators, int nSeparators ) { SplitString2( pString, pSeparators, nSeparators ); }
void SplitString( char const *pString, char const *pSeparator ) { V_SplitString( pString, pSeparator, *this ); }
void SplitString2( char const *pString, const char **pSeparators, int nSeparators ) { V_SplitString2( pString, pSeparators, nSeparators, *this ); } private: CUtlStringList( const CUtlStringList &other ); // copying directly will cause double-release of the same strings; maybe we need to do a deep copy, but unless and until such need arises, this will guard against double-release
};
// <Sergiy> placing it here a few days before Cert to minimize disruption to the rest of codebase
class CSplitString: public CUtlVector<char*, CUtlMemory<char*, int> > { public: CSplitString(); CSplitString(const char *pString, const char *pSeparator); CSplitString(const char *pString, const char **pSeparators, int nSeparators); ~CSplitString();
void Set(const char *pString, const char **pSeparators, int nSeparators);
//
// NOTE: If you want to make Construct() public and implement Purge() here, you'll have to free m_szBuffer there
//
private: void Construct(const char *pString, const char **pSeparators, int nSeparators); void PurgeAndDeleteElements(); private: char *m_szBuffer; // a copy of original string, with '\0' instead of separators
};
#endif // CCVECTOR_H
|