|
|
//===== Copyright � 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: Public interfaces to vphysics DLL
//
// $NoKeywords: $
//===========================================================================//
#ifndef VPHYSICS_INTERFACE_H
#define VPHYSICS_INTERFACE_H
#ifdef _WIN32
#pragma once
#endif
#include "tier1/interface.h"
#include "appframework/iappsystem.h"
#include "mathlib/vector.h"
#include "mathlib/vector4d.h"
#include "vcollide.h"
#include "tier3/tier3.h"
#include "SoundEmitterSystem/isoundemittersystembase.h"
// ------------------------------------------------------------------------------------
// UNITS:
// ------------------------------------------------------------------------------------
// NOTE: Coordinates are in HL units. 1 unit == 1 inch. X is east (forward), Y is north (left), Z is up (up)
// QAngle are pitch (around y), Yaw (around Z), Roll (around X)
// AngularImpulse are exponetial maps (an axis in HL units scaled by a "twist" angle in degrees)
// They can be transformed like normals/covectors and added linearly
// mass is kg, volume is in^3, acceleration is in/s^2, velocity is in/s
// density is kg/m^3 (water ~= 998 at room temperature)
// preferably, these would be in kg/in^3, but the range of those numbers makes them not very human readable
// having water be about 1000 is really convenient for data entry.
// Since volume is in in^3 and density is in kg/m^3:
// density = (mass / volume) * CUBIC_METERS_PER_CUBIC_INCH
// Force is applied using impulses (kg*in/s)
// Torque is applied using impulses (kg*degrees/s)
// ------------------------------------------------------------------------------------
#define METERS_PER_INCH (0.0254f)
#define CUBIC_METERS_PER_CUBIC_INCH (METERS_PER_INCH*METERS_PER_INCH*METERS_PER_INCH)
// 2.2 lbs / kg
#define POUNDS_PER_KG (2.2f)
#define KG_PER_POUND (1.0f/POUNDS_PER_KG)
// convert from pounds to kg
#define lbs2kg(x) ((x)*KG_PER_POUND)
#define kg2lbs(x) ((x)*POUNDS_PER_KG)
const float VPHYSICS_MIN_MASS = 0.1f; const float VPHYSICS_MAX_MASS = 5e4f;
class IPhysicsObject; class IPhysicsEnvironment; class IPhysicsSurfaceProps; class IPhysicsConstraint; class IPhysicsConstraintGroup; class IPhysicsFluidController; class IPhysicsSpring; class IPhysicsVehicleController; class IConvexInfo; class IPhysicsObjectPairHash; class IPhysicsCollisionSet; class IPhysicsPlayerController; class IPhysicsFrictionSnapshot;
struct Ray_t; struct constraint_ragdollparams_t; struct constraint_hingeparams_t; struct constraint_fixedparams_t; struct constraint_ballsocketparams_t; struct constraint_slidingparams_t; struct constraint_pulleyparams_t; struct constraint_lengthparams_t; struct constraint_groupparams_t;
struct vehicleparams_t; struct matrix3x4_t;
struct fluidparams_t; struct springparams_t; struct objectparams_t; struct debugcollide_t; class CGameTrace; typedef CGameTrace trace_t; struct physics_stats_t; struct physics_performanceparams_t; struct virtualmeshparams_t;
//enum PhysInterfaceId_t;
struct physsaveparams_t; struct physrestoreparams_t; struct physprerestoreparams_t;
enum PhysInterfaceId_t { PIID_UNKNOWN, PIID_IPHYSICSOBJECT, PIID_IPHYSICSFLUIDCONTROLLER, PIID_IPHYSICSSPRING, PIID_IPHYSICSCONSTRAINTGROUP, PIID_IPHYSICSCONSTRAINT, PIID_IPHYSICSSHADOWCONTROLLER, PIID_IPHYSICSPLAYERCONTROLLER, PIID_IPHYSICSMOTIONCONTROLLER, PIID_IPHYSICSVEHICLECONTROLLER, PIID_IPHYSICSGAMETRACE,
PIID_NUM_TYPES };
class ISave; class IRestore;
#define VPHYSICS_DEBUG_OVERLAY_INTERFACE_VERSION "VPhysicsDebugOverlay001"
abstract_class IVPhysicsDebugOverlay { public: virtual void AddEntityTextOverlay(int ent_index, int line_offset, float duration, int r, int g, int b, int a, PRINTF_FORMAT_STRING const char *format, ...) = 0; virtual void AddBoxOverlay(const Vector& origin, const Vector& mins, const Vector& max, QAngle const& orientation, int r, int g, int b, int a, float duration) = 0; virtual void AddTriangleOverlay(const Vector& p1, const Vector& p2, const Vector& p3, int r, int g, int b, int a, bool noDepthTest, float duration) = 0; virtual void AddLineOverlay(const Vector& origin, const Vector& dest, int r, int g, int b,bool noDepthTest, float duration) = 0; virtual void AddTextOverlay(const Vector& origin, float duration, PRINTF_FORMAT_STRING const char *format, ...) = 0; virtual void AddTextOverlay(const Vector& origin, int line_offset, float duration, PRINTF_FORMAT_STRING const char *format, ...) = 0; virtual void AddScreenTextOverlay(float flXPos, float flYPos,float flDuration, int r, int g, int b, int a, const char *text) = 0; virtual void AddSweptBoxOverlay(const Vector& start, const Vector& end, const Vector& mins, const Vector& max, const QAngle & angles, int r, int g, int b, int a, float flDuration) = 0; virtual void AddTextOverlayRGB(const Vector& origin, int line_offset, float duration, float r, float g, float b, float alpha, PRINTF_FORMAT_STRING const char *format, ...) = 0; };
#define VPHYSICS_INTERFACE_VERSION "VPhysics031"
abstract_class IPhysics : public IAppSystem { public: virtual IPhysicsEnvironment *CreateEnvironment( void ) = 0; virtual void DestroyEnvironment( IPhysicsEnvironment * ) = 0; virtual IPhysicsEnvironment *GetActiveEnvironmentByIndex( int index ) = 0;
// Creates a fast hash of pairs of objects
// Useful for maintaining a table of object relationships like pairs that do not collide.
virtual IPhysicsObjectPairHash *CreateObjectPairHash() = 0; virtual void DestroyObjectPairHash( IPhysicsObjectPairHash *pHash ) = 0;
// holds a cache of these by id. So you can get by id to search for the previously created set
// UNDONE: Sets are currently limited to 32 elements. More elements will return NULL in create.
// NOTE: id is not allowed to be zero.
virtual IPhysicsCollisionSet *FindOrCreateCollisionSet( unsigned int id, int maxElementCount ) = 0; virtual IPhysicsCollisionSet *FindCollisionSet( unsigned int id ) = 0; virtual void DestroyAllCollisionSets() = 0; };
// CPhysConvex is a single convex solid
class CPhysConvex; // CPhysPolysoup is an abstract triangle soup mesh
class CPhysPolysoup; class ICollisionQuery; class IVPhysicsKeyParser; struct convertconvexparams_t; class CPackedPhysicsDescription;
class CPolyhedron;
// UNDONE: Find a better place for this? Should be in collisionutils, but it's needs VPHYSICS' solver.
struct truncatedcone_t { Vector origin; Vector normal; float h; // height of the cone (hl units)
float theta; // cone angle (degrees)
};
abstract_class IPhysicsCollision { public: virtual ~IPhysicsCollision( void ) {}
// produce a convex element from verts (convex hull around verts)
virtual CPhysConvex *ConvexFromVerts( Vector **pVerts, int vertCount ) = 0; // produce a convex element from planes (csg of planes)
virtual CPhysConvex *ConvexFromPlanes( float *pPlanes, int planeCount, float mergeDistance ) = 0; // calculate volume of a convex element
virtual float ConvexVolume( CPhysConvex *pConvex ) = 0;
virtual float ConvexSurfaceArea( CPhysConvex *pConvex ) = 0; // store game-specific data in a convex solid
virtual void SetConvexGameData( CPhysConvex *pConvex, unsigned int gameData ) = 0; // If not converted, free the convex elements with this call
virtual void ConvexFree( CPhysConvex *pConvex ) = 0; virtual CPhysConvex *BBoxToConvex( const Vector &mins, const Vector &maxs ) = 0; // produce a convex element from a convex polyhedron
virtual CPhysConvex *ConvexFromConvexPolyhedron( const CPolyhedron &ConvexPolyhedron ) = 0; // produce a set of convex triangles from a convex polygon, normal is assumed to be on the side with forward point ordering, which should be clockwise, output will need to be able to hold exactly (iPointCount-2) convexes
virtual void ConvexesFromConvexPolygon( const Vector &vPolyNormal, const Vector *pPoints, int iPointCount, CPhysConvex **pOutput ) = 0;
// concave objects
// create a triangle soup
virtual CPhysPolysoup *PolysoupCreate( void ) = 0; // destroy the container and memory
virtual void PolysoupDestroy( CPhysPolysoup *pSoup ) = 0; // add a triangle to the soup
virtual void PolysoupAddTriangle( CPhysPolysoup *pSoup, const Vector &a, const Vector &b, const Vector &c, int materialIndex7bits ) = 0; // convert the convex into a compiled collision model
virtual CPhysCollide *ConvertPolysoupToCollide( CPhysPolysoup *pSoup, bool useMOPP ) = 0; // Convert an array of convex elements to a compiled collision model (this deletes the convex elements)
virtual CPhysCollide *ConvertConvexToCollide( CPhysConvex **pConvex, int convexCount ) = 0; virtual CPhysCollide *ConvertConvexToCollideParams( CPhysConvex **pConvex, int convexCount, const convertconvexparams_t &convertParams ) = 0; // Free a collide that was created with ConvertConvexToCollide()
virtual void DestroyCollide( CPhysCollide *pCollide ) = 0;
// Get the memory size in bytes of the collision model for serialization
virtual int CollideSize( CPhysCollide *pCollide ) = 0; // serialize the collide to a block of memory
virtual int CollideWrite( char *pDest, CPhysCollide *pCollide, bool bSwap = false ) = 0; // unserialize the collide from a block of memory
virtual CPhysCollide *UnserializeCollide( char *pBuffer, int size, int index ) = 0;
// compute the volume of a collide
virtual float CollideVolume( CPhysCollide *pCollide ) = 0; // compute surface area for tools
virtual float CollideSurfaceArea( CPhysCollide *pCollide ) = 0;
// Get the support map for a collide in the given direction
virtual Vector CollideGetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction ) = 0;
// Get an AABB for an oriented collision model
virtual void CollideGetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles ) = 0;
virtual void CollideGetMassCenter( CPhysCollide *pCollide, Vector *pOutMassCenter ) = 0; virtual void CollideSetMassCenter( CPhysCollide *pCollide, const Vector &massCenter ) = 0; // get the approximate cross-sectional area projected orthographically on the bbox of the collide
// NOTE: These are fractional areas - unitless. Basically this is the fraction of the OBB on each axis that
// would be visible if the object were rendered orthographically.
// NOTE: This has been precomputed when the collide was built or this function will return 1,1,1
virtual Vector CollideGetOrthographicAreas( const CPhysCollide *pCollide ) = 0; virtual void CollideSetOrthographicAreas( CPhysCollide *pCollide, const Vector &areas ) = 0;
// query the vcollide index in the physics model for the instance
virtual int CollideIndex( const CPhysCollide *pCollide ) = 0;
// Convert a bbox to a collide
virtual CPhysCollide *BBoxToCollide( const Vector &mins, const Vector &maxs ) = 0; virtual int GetConvexesUsedInCollideable( const CPhysCollide *pCollideable, CPhysConvex **pOutputArray, int iOutputArrayLimit ) = 0;
// Trace an AABB against a collide
virtual void TraceBox( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0; virtual void TraceBox( const Ray_t &ray, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0; virtual void TraceBox( const Ray_t &ray, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0;
// Trace one collide against another
virtual void TraceCollide( const Vector &start, const Vector &end, const CPhysCollide *pSweepCollide, const QAngle &sweepAngles, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0;
// relatively slow test for box vs. truncated cone
virtual bool IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone ) = 0;
// loads a set of solids into a vcollide_t
virtual void VCollideLoad( vcollide_t *pOutput, int solidCount, const char *pBuffer, int size, bool swap = false ) = 0; // destroyts the set of solids created by VCollideLoad
virtual void VCollideUnload( vcollide_t *pVCollide ) = 0;
// begins parsing a vcollide. NOTE: This keeps pointers to the text
// If you free the text and call members of IVPhysicsKeyParser, it will crash
virtual IVPhysicsKeyParser *VPhysicsKeyParserCreate( const char *pKeyData ) = 0; virtual IVPhysicsKeyParser *VPhysicsKeyParserCreate( vcollide_t *pVCollide ) = 0; // Free the parser created by VPhysicsKeyParserCreate
virtual void VPhysicsKeyParserDestroy( IVPhysicsKeyParser *pParser ) = 0;
// creates a list of verts from a collision mesh
virtual int CreateDebugMesh( CPhysCollide const *pCollisionModel, Vector **outVerts ) = 0; // destroy the list of verts created by CreateDebugMesh
virtual void DestroyDebugMesh( int vertCount, Vector *outVerts ) = 0;
// create a queryable version of the collision model
virtual ICollisionQuery *CreateQueryModel( CPhysCollide *pCollide ) = 0; // destroy the queryable version
virtual void DestroyQueryModel( ICollisionQuery *pQuery ) = 0;
virtual IPhysicsCollision *ThreadContextCreate( void ) = 0; virtual void ThreadContextDestroy( IPhysicsCollision *pThreadContex ) = 0;
virtual CPhysCollide *CreateVirtualMesh( const virtualmeshparams_t ¶ms ) = 0; virtual bool SupportsVirtualMesh() = 0;
virtual bool GetBBoxCacheSize( int *pCachedSize, int *pCachedCount ) = 0;
// extracts a polyhedron that defines a CPhysConvex's shape
virtual CPolyhedron *PolyhedronFromConvex( CPhysConvex * const pConvex, bool bUseTempPolyhedron ) = 0;
// dumps info about the collide to Msg()
virtual void OutputDebugInfo( const CPhysCollide *pCollide ) = 0; virtual unsigned int ReadStat( int statID ) = 0;
// Get an AABB for an oriented collision model
virtual float CollideGetRadius( const CPhysCollide *pCollide ) = 0;
virtual void *VCollideAllocUserData( vcollide_t *pVCollide, size_t userDataSize ) = 0; virtual void VCollideFreeUserData( vcollide_t *pVCollide ) = 0; virtual void VCollideCheck( vcollide_t *pVCollide, const char *pName ) = 0; virtual bool TraceBoxAA( const Ray_t &ray, const CPhysCollide *pCollide, trace_t *ptr ) = 0; };
// this can be used to post-process a collision model
abstract_class ICollisionQuery { public: virtual ~ICollisionQuery() {} // number of convex pieces in the whole solid
virtual int ConvexCount( void ) = 0; // triangle count for this convex piece
virtual int TriangleCount( int convexIndex ) = 0; // get the stored game data
virtual unsigned int GetGameData( int convexIndex ) = 0; // Gets the triangle's verts to an array
virtual void GetTriangleVerts( int convexIndex, int triangleIndex, Vector *verts ) = 0; // UNDONE: This doesn't work!!!
virtual void SetTriangleVerts( int convexIndex, int triangleIndex, const Vector *verts ) = 0; // returns the 7-bit material index
virtual int GetTriangleMaterialIndex( int convexIndex, int triangleIndex ) = 0; // sets a 7-bit material index for this triangle
virtual void SetTriangleMaterialIndex( int convexIndex, int triangleIndex, int index7bits ) = 0; };
//-----------------------------------------------------------------------------
// Purpose: Ray traces from game engine.
//-----------------------------------------------------------------------------
abstract_class IPhysicsGameTrace { public: virtual void VehicleTraceRay( const Ray_t &ray, void *pVehicle, trace_t *pTrace ) = 0; virtual void VehicleTraceRayWithWater( const Ray_t &ray, void *pVehicle, trace_t *pTrace ) = 0; virtual bool VehiclePointInWater( const Vector &vecPoint ) = 0; };
// The caller should implement this to return contents masks per convex on a collide
abstract_class IConvexInfo { public: virtual unsigned int GetContents( int convexGameData ) = 0; };
class CPhysicsEventHandler; abstract_class IPhysicsCollisionData { public: virtual void GetSurfaceNormal( Vector &out ) = 0; // normal points toward second object (object index 1)
virtual void GetContactPoint( Vector &out ) = 0; // contact point of collision (in world space)
virtual void GetContactSpeed( Vector &out ) = 0; // speed of surface 1 relative to surface 0 (in world space)
};
struct vcollisionevent_t { IPhysicsObject *pObjects[2]; int surfaceProps[2]; bool isCollision; bool isShadowCollision; float deltaCollisionTime;
float collisionSpeed; // only valid at postCollision
IPhysicsCollisionData *pInternalData; // may change pre/post collision
};
abstract_class IPhysicsCollisionEvent { public: // returns the two objects that collided, time between last collision of these objects
// and an opaque data block of collision information
// NOTE: PreCollision/PostCollision ALWAYS come in matched pairs!!!
virtual void PreCollision( vcollisionevent_t *pEvent ) = 0; virtual void PostCollision( vcollisionevent_t *pEvent ) = 0;
// This is a scrape event. The object has scraped across another object consuming the indicated energy
virtual void Friction( IPhysicsObject *pObject, float energy, int surfaceProps, int surfacePropsHit, IPhysicsCollisionData *pData ) = 0;
virtual void StartTouch( IPhysicsObject *pObject1, IPhysicsObject *pObject2, IPhysicsCollisionData *pTouchData ) = 0; virtual void EndTouch( IPhysicsObject *pObject1, IPhysicsObject *pObject2, IPhysicsCollisionData *pTouchData ) = 0;
virtual void FluidStartTouch( IPhysicsObject *pObject, IPhysicsFluidController *pFluid ) = 0; virtual void FluidEndTouch( IPhysicsObject *pObject, IPhysicsFluidController *pFluid ) = 0;
virtual void PostSimulationFrame() = 0;
virtual void ObjectEnterTrigger( IPhysicsObject *pTrigger, IPhysicsObject *pObject ) {} virtual void ObjectLeaveTrigger( IPhysicsObject *pTrigger, IPhysicsObject *pObject ) {} };
abstract_class IPhysicsObjectEvent { public: // these can be used to optimize out queries on sleeping objects
// Called when an object is woken after sleeping
virtual void ObjectWake( IPhysicsObject *pObject ) = 0; // called when an object goes to sleep (no longer simulating)
virtual void ObjectSleep( IPhysicsObject *pObject ) = 0; };
abstract_class IPhysicsConstraintEvent { public: // the constraint is now inactive, the game code is required to delete it or re-activate it.
virtual void ConstraintBroken( IPhysicsConstraint * ) = 0; };
struct hlshadowcontrol_params_t { Vector targetPosition; QAngle targetRotation; float maxAngular; float maxDampAngular; float maxSpeed; float maxDampSpeed; float dampFactor; float teleportDistance; };
// UNDONE: At some point allow this to be parameterized using hlshadowcontrol_params_t.
// All of the infrastructure is in place to do that.
abstract_class IPhysicsShadowController { public: virtual ~IPhysicsShadowController( void ) {}
virtual void Update( const Vector &position, const QAngle &angles, float timeOffset ) = 0; virtual void MaxSpeed( float maxSpeed, float maxAngularSpeed ) = 0; virtual void StepUp( float height ) = 0; // If the teleport distance is non-zero, the object will be teleported to
// the target location when the error exceeds this quantity.
virtual void SetTeleportDistance( float teleportDistance ) = 0; virtual bool AllowsTranslation() = 0; virtual bool AllowsRotation() = 0;
// There are two classes of shadow objects:
// 1) Game physics controlled, shadow follows game physics (this is the default)
// 2) Physically controlled - shadow position is a target, but the game hasn't guaranteed that the space can be occupied by this object
virtual void SetPhysicallyControlled( bool isPhysicallyControlled ) = 0; virtual bool IsPhysicallyControlled() = 0; virtual void GetLastImpulse( Vector *pOut ) = 0; virtual void UseShadowMaterial( bool bUseShadowMaterial ) = 0; virtual void ObjectMaterialChanged( int materialIndex ) = 0;
//Basically get the last inputs to IPhysicsShadowController::Update(), returns last input to timeOffset in Update()
virtual float GetTargetPosition( Vector *pPositionOut, QAngle *pAnglesOut ) = 0; virtual float GetTeleportDistance( void ) = 0; virtual void GetMaxSpeed( float *pMaxSpeedOut, float *pMaxAngularSpeedOut ) = 0; };
class CPhysicsSimObject; class IPhysicsMotionController;
// Callback for simulation
class IMotionEvent { public: // These constants instruct the simulator as to how to apply the values copied to linear & angular
// GLOBAL/LOCAL refer to the coordinate system of the values, whereas acceleration/force determine whether or not
// mass is divided out (forces must be divided by mass to compute acceleration)
enum simresult_e { SIM_NOTHING = 0, SIM_LOCAL_ACCELERATION, SIM_LOCAL_FORCE, SIM_GLOBAL_ACCELERATION, SIM_GLOBAL_FORCE }; virtual simresult_e Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular ) = 0; };
abstract_class IPhysicsMotionController { public: virtual ~IPhysicsMotionController( void ) {} virtual void SetEventHandler( IMotionEvent *handler ) = 0; virtual void AttachObject( IPhysicsObject *pObject, bool checkIfAlreadyAttached ) = 0; virtual void DetachObject( IPhysicsObject *pObject ) = 0;
// returns the number of objects currently attached to the controller
virtual int CountObjects( void ) = 0; // NOTE: pObjectList is an array with at least CountObjects() allocated
virtual void GetObjects( IPhysicsObject **pObjectList ) = 0; // detaches all attached objects
virtual void ClearObjects( void ) = 0; // wakes up all attached objects
virtual void WakeObjects( void ) = 0;
enum priority_t { LOW_PRIORITY = 0, MEDIUM_PRIORITY = 1, HIGH_PRIORITY = 2, }; virtual void SetPriority( priority_t priority ) = 0; };
// -------------------
// Collision filter function. Return 0 if objects should not be tested for collisions, nonzero otherwise
// Install with IPhysicsEnvironment::SetCollisionFilter()
// -------------------
abstract_class IPhysicsCollisionSolver { public: virtual int ShouldCollide( IPhysicsObject *pObj0, IPhysicsObject *pObj1, void *pGameData0, void *pGameData1 ) = 0; virtual int ShouldSolvePenetration( IPhysicsObject *pObj0, IPhysicsObject *pObj1, void *pGameData0, void *pGameData1, float dt ) = 0; // pObject has already done the max number of collisions this tick, should we freeze it to save CPU?
virtual bool ShouldFreezeObject( IPhysicsObject *pObject ) = 0;
// The system has already done too many collision checks, performance will suffer.
// How many more should it do?
virtual int AdditionalCollisionChecksThisTick( int currentChecksDone ) = 0;
// This list of objects is in a connected contact graph that is too large to solve quickly
// return true to freeze the system, false to solve it
virtual bool ShouldFreezeContacts( IPhysicsObject **pObjectList, int objectCount ) = 0; };
enum PhysicsTraceType_t { VPHYSICS_TRACE_EVERYTHING = 0, VPHYSICS_TRACE_STATIC_ONLY, VPHYSICS_TRACE_MOVING_ONLY, VPHYSICS_TRACE_TRIGGERS_ONLY, VPHYSICS_TRACE_STATIC_AND_MOVING, };
abstract_class IPhysicsTraceFilter { public: virtual bool ShouldHitObject( IPhysicsObject *pObject, int contentsMask ) = 0; virtual PhysicsTraceType_t GetTraceType() const = 0; };
abstract_class IPhysicsEnvironment { public: virtual ~IPhysicsEnvironment( void ) {}
virtual void SetDebugOverlay( CreateInterfaceFn debugOverlayFactory ) = 0; virtual IVPhysicsDebugOverlay *GetDebugOverlay( void ) = 0;
// gravity is a 3-vector in in/s^2
virtual void SetGravity( const Vector &gravityVector ) = 0; virtual void GetGravity( Vector *pGravityVector ) const = 0;
// air density is in kg / m^3 (water is 1000)
// This controls drag, air that is more dense has more drag.
virtual void SetAirDensity( float density ) = 0; virtual float GetAirDensity( void ) const = 0; // object creation
// create a polygonal object. pCollisionModel was created by the physics builder DLL in a pre-process.
virtual IPhysicsObject *CreatePolyObject( const CPhysCollide *pCollisionModel, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams ) = 0; // same as above, but this one cannot move or rotate (infinite mass/inertia)
virtual IPhysicsObject *CreatePolyObjectStatic( const CPhysCollide *pCollisionModel, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams ) = 0; // Create a perfectly spherical object
virtual IPhysicsObject *CreateSphereObject( float radius, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams, bool isStatic ) = 0; // destroy an object created with CreatePolyObject() or CreatePolyObjectStatic()
virtual void DestroyObject( IPhysicsObject * ) = 0;
// Create a polygonal fluid body out of the specified collision model
// This object will affect any other objects that collide with the collision model
virtual IPhysicsFluidController *CreateFluidController( IPhysicsObject *pFluidObject, fluidparams_t *pParams ) = 0; // Destroy an object created with CreateFluidController()
virtual void DestroyFluidController( IPhysicsFluidController * ) = 0;
// Create a simulated spring that connects 2 objects
virtual IPhysicsSpring *CreateSpring( IPhysicsObject *pObjectStart, IPhysicsObject *pObjectEnd, springparams_t *pParams ) = 0; virtual void DestroySpring( IPhysicsSpring * ) = 0;
// Create a constraint in the space of pReferenceObject which is attached by the constraint to pAttachedObject
virtual IPhysicsConstraint *CreateRagdollConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_ragdollparams_t &ragdoll ) = 0; virtual IPhysicsConstraint *CreateHingeConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_hingeparams_t &hinge ) = 0; virtual IPhysicsConstraint *CreateFixedConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_fixedparams_t &fixed ) = 0; virtual IPhysicsConstraint *CreateSlidingConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_slidingparams_t &sliding ) = 0; virtual IPhysicsConstraint *CreateBallsocketConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_ballsocketparams_t &ballsocket ) = 0; virtual IPhysicsConstraint *CreatePulleyConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_pulleyparams_t &pulley ) = 0; virtual IPhysicsConstraint *CreateLengthConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_lengthparams_t &length ) = 0;
virtual void DestroyConstraint( IPhysicsConstraint * ) = 0;
virtual IPhysicsConstraintGroup *CreateConstraintGroup( const constraint_groupparams_t &groupParams ) = 0; virtual void DestroyConstraintGroup( IPhysicsConstraintGroup *pGroup ) = 0;
virtual IPhysicsShadowController *CreateShadowController( IPhysicsObject *pObject, bool allowTranslation, bool allowRotation ) = 0; virtual void DestroyShadowController( IPhysicsShadowController * ) = 0;
virtual IPhysicsPlayerController *CreatePlayerController( IPhysicsObject *pObject ) = 0; virtual void DestroyPlayerController( IPhysicsPlayerController * ) = 0;
virtual IPhysicsMotionController *CreateMotionController( IMotionEvent *pHandler ) = 0; virtual void DestroyMotionController( IPhysicsMotionController *pController ) = 0;
virtual IPhysicsVehicleController *CreateVehicleController( IPhysicsObject *pVehicleBodyObject, const vehicleparams_t ¶ms, unsigned int nVehicleType, IPhysicsGameTrace *pGameTrace ) = 0; virtual void DestroyVehicleController( IPhysicsVehicleController * ) = 0;
// install a function to filter collisions/penentration
virtual void SetCollisionSolver( IPhysicsCollisionSolver *pSolver ) = 0;
// run the simulator for deltaTime seconds
virtual void Simulate( float deltaTime ) = 0; // true if currently running the simulator (i.e. in a callback during physenv->Simulate())
virtual bool IsInSimulation() const = 0;
// Manage the timestep (period) of the simulator. The main functions are all integrated with
// this period as dt.
virtual float GetSimulationTimestep() const = 0; virtual void SetSimulationTimestep( float timestep ) = 0;
// returns the current simulation clock's value. This is an absolute time.
virtual float GetSimulationTime() const = 0; virtual void ResetSimulationClock() = 0; // returns the current simulation clock's value at the next frame. This is an absolute time.
virtual float GetNextFrameTime( void ) const = 0;
// Collision callbacks (game code collision response)
virtual void SetCollisionEventHandler( IPhysicsCollisionEvent *pCollisionEvents ) = 0; virtual void SetObjectEventHandler( IPhysicsObjectEvent *pObjectEvents ) = 0; virtual void SetConstraintEventHandler( IPhysicsConstraintEvent *pConstraintEvents ) = 0;
virtual void SetQuickDelete( bool bQuick ) = 0;
virtual int GetActiveObjectCount() const = 0; virtual void GetActiveObjects( IPhysicsObject **pOutputObjectList ) const = 0; virtual const IPhysicsObject **GetObjectList( int *pOutputObjectCount ) const = 0; virtual bool TransferObject( IPhysicsObject *pObject, IPhysicsEnvironment *pDestinationEnvironment ) = 0;
virtual void CleanupDeleteList( void ) = 0; virtual void EnableDeleteQueue( bool enable ) = 0;
// Save/Restore methods
virtual bool Save( const physsaveparams_t ¶ms ) = 0; virtual void PreRestore( const physprerestoreparams_t ¶ms ) = 0; virtual bool Restore( const physrestoreparams_t ¶ms ) = 0; virtual void PostRestore() = 0;
// Debugging:
virtual bool IsCollisionModelUsed( CPhysCollide *pCollide ) const = 0; // Physics world version of the enginetrace API:
virtual void TraceRay( const Ray_t &ray, unsigned int fMask, IPhysicsTraceFilter *pTraceFilter, trace_t *pTrace ) = 0; virtual void SweepCollideable( const CPhysCollide *pCollide, const Vector &vecAbsStart, const Vector &vecAbsEnd, const QAngle &vecAngles, unsigned int fMask, IPhysicsTraceFilter *pTraceFilter, trace_t *pTrace ) = 0;
// performance tuning
virtual void GetPerformanceSettings( physics_performanceparams_t *pOutput ) const = 0; virtual void SetPerformanceSettings( const physics_performanceparams_t *pSettings ) = 0;
// perf/cost statistics
virtual void ReadStats( physics_stats_t *pOutput ) = 0; virtual void ClearStats() = 0;
virtual unsigned int GetObjectSerializeSize( IPhysicsObject *pObject ) const = 0; virtual void SerializeObjectToBuffer( IPhysicsObject *pObject, unsigned char *pBuffer, unsigned int bufferSize ) = 0; virtual IPhysicsObject *UnserializeObjectFromBuffer( void *pGameData, unsigned char *pBuffer, unsigned int bufferSize, bool enableCollisions ) = 0;
virtual void EnableConstraintNotify( bool bEnable ) = 0; virtual void DebugCheckContacts(void) = 0;
virtual void SetAlternateGravity( const Vector &gravityVector ) = 0; virtual void GetAlternateGravity( Vector *pGravityVector ) const = 0;
virtual float GetDeltaFrameTime( int maxTicks ) const = 0; virtual void ForceObjectsToSleep( IPhysicsObject **pList, int listCount ) = 0; //Network prediction related functions
virtual void SetPredicted( bool bPredicted ) = 0; //Interaction with this system and it's objects may not always march forward, sometimes it will get/set data in the past.
virtual bool IsPredicted( void ) = 0; virtual void SetPredictionCommandNum( int iCommandNum ) = 0; //what command the client is working on right now
virtual int GetPredictionCommandNum( void ) = 0; virtual void DoneReferencingPreviousCommands( int iCommandNum ) = 0; //won't need data from commands before this one any more
virtual void RestorePredictedSimulation( void ) = 0; //called to restore results from a previous simulation with the same predicted timestamp set
// destroy a CPhysCollide used in CreatePolyObject()/CreatePolyObjectStatic() when any owning IPhysicsObject is flushed from the queued deletion list.
virtual void DestroyCollideOnDeadObjectFlush( CPhysCollide * ) = 0; //should only be used after calling DestroyObject() on all IPhysicsObjects created with it.
};
enum callbackflags { CALLBACK_GLOBAL_COLLISION = 0x0001, CALLBACK_GLOBAL_FRICTION = 0x0002, CALLBACK_GLOBAL_TOUCH = 0x0004, CALLBACK_GLOBAL_TOUCH_STATIC = 0x0008, CALLBACK_SHADOW_COLLISION = 0x0010, CALLBACK_GLOBAL_COLLIDE_STATIC = 0x0020, CALLBACK_IS_VEHICLE_WHEEL = 0x0040, CALLBACK_FLUID_TOUCH = 0x0100, CALLBACK_NEVER_DELETED = 0x0200, // HACKHACK: This means this object will never be deleted (set on the world)
CALLBACK_MARKED_FOR_DELETE = 0x0400, // This allows vphysics to skip some work for this object since it will be
// deleted later this frame. (Set automatically by destroy calls)
CALLBACK_ENABLING_COLLISION = 0x0800, // This is active during the time an object is enabling collisions
// allows us to skip collisions between "new" objects and objects marked for delete
CALLBACK_DO_FLUID_SIMULATION = 0x1000, // remove this to opt out of fluid simulations
CALLBACK_IS_PLAYER_CONTROLLER= 0x2000, // HACKHACK: Set this on players until player cotrollers are unified with shadow controllers
CALLBACK_CHECK_COLLISION_DISABLE = 0x4000, CALLBACK_MARKED_FOR_TEST = 0x8000, // debug -- marked object is being debugged
};
enum collisionhints { COLLISION_HINT_DEBRIS = 0x0001, COLLISION_HINT_STATICSOLID = 0x0002, };
class IPredictedPhysicsObject;
abstract_class IPhysicsObject { public: virtual ~IPhysicsObject( void ) {}
// returns true if this object is static/unmoveable
// NOTE: returns false for objects that are not created static, but set EnableMotion(false);
// Call IsMoveable() to find if the object is static OR has motion disabled
virtual bool IsStatic() const = 0; virtual bool IsAsleep() const = 0; virtual bool IsTrigger() const = 0; virtual bool IsFluid() const = 0; // fluids are special triggers with fluid controllers attached, they return true to IsTrigger() as well!
virtual bool IsHinged() const = 0; virtual bool IsCollisionEnabled() const = 0; virtual bool IsGravityEnabled() const = 0; virtual bool IsDragEnabled() const = 0; virtual bool IsMotionEnabled() const = 0; virtual bool IsMoveable() const = 0; // legacy: IsMotionEnabled() && !IsStatic()
virtual bool IsAttachedToConstraint(bool bExternalOnly) const = 0;
// Enable / disable collisions for this object
virtual void EnableCollisions( bool enable ) = 0; // Enable / disable gravity for this object
virtual void EnableGravity( bool enable ) = 0; // Enable / disable air friction / drag for this object
virtual void EnableDrag( bool enable ) = 0; // Enable / disable motion (pin / unpin the object)
virtual void EnableMotion( bool enable ) = 0;
// Game can store data in each object (link back to game object)
virtual void SetGameData( void *pGameData ) = 0; virtual void *GetGameData( void ) const = 0; // This flags word can be defined by the game as well
virtual void SetGameFlags( unsigned short userFlags ) = 0; virtual unsigned short GetGameFlags( void ) const = 0; virtual void SetGameIndex( unsigned short gameIndex ) = 0; virtual unsigned short GetGameIndex( void ) const = 0;
// setup various callbacks for this object
virtual void SetCallbackFlags( unsigned short callbackflags ) = 0; // get the current callback state for this object
virtual unsigned short GetCallbackFlags( void ) const = 0;
// "wakes up" an object
// NOTE: ALL OBJECTS ARE "Asleep" WHEN CREATED
virtual void Wake( void ) = 0; virtual void Sleep( void ) = 0; // call this when the collision filter conditions change due to this
// object's state (e.g. changing solid type or collision group)
virtual void RecheckCollisionFilter() = 0; // NOTE: Contact points aren't updated when collision rules change, call this to force an update
// UNDONE: Force this in RecheckCollisionFilter() ?
virtual void RecheckContactPoints( bool bSearchForNewContacts = false ) = 0;
// mass accessors
virtual void SetMass( float mass ) = 0; virtual float GetMass( void ) const = 0; // get 1/mass (it's cached)
virtual float GetInvMass( void ) const = 0; virtual Vector GetInertia( void ) const = 0; virtual Vector GetInvInertia( void ) const = 0; virtual void SetInertia( const Vector &inertia ) = 0;
virtual void SetDamping( const float *speed, const float *rot ) = 0; virtual void GetDamping( float *speed, float *rot ) const = 0;
// coefficients are optional, pass either
virtual void SetDragCoefficient( float *pDrag, float *pAngularDrag ) = 0; virtual void SetBuoyancyRatio( float ratio ) = 0; // Override bouyancy
// material index
virtual int GetMaterialIndex() const = 0; virtual void SetMaterialIndex( int materialIndex ) = 0;
// contents bits
virtual unsigned int GetContents() const = 0; virtual void SetContents( unsigned int contents ) = 0;
// Get the radius if this is a sphere object (zero if this is a polygonal mesh)
virtual float GetSphereRadius() const = 0; // Set the radius on a sphere. May need to force recalculation of contact points
virtual void SetSphereRadius(float radius) = 0; virtual float GetEnergy() const = 0; virtual Vector GetMassCenterLocalSpace() const = 0;
// NOTE: This will teleport the object
virtual void SetPosition( const Vector &worldPosition, const QAngle &angles, bool isTeleport ) = 0; virtual void SetPositionMatrix( const matrix3x4_t&matrix, bool isTeleport ) = 0;
virtual void GetPosition( Vector *worldPosition, QAngle *angles ) const = 0; virtual void GetPositionMatrix( matrix3x4_t *positionMatrix ) const = 0; // force the velocity to a new value
// NOTE: velocity is in worldspace, angularVelocity is relative to the object's
// local axes (just like pev->velocity, pev->avelocity)
virtual void SetVelocity( const Vector *velocity, const AngularImpulse *angularVelocity ) = 0;
// like the above, but force the change into the simulator immediately
virtual void SetVelocityInstantaneous( const Vector *velocity, const AngularImpulse *angularVelocity ) = 0;
// NOTE: velocity is in worldspace, angularVelocity is relative to the object's
// local axes (just like pev->velocity, pev->avelocity)
virtual void GetVelocity( Vector *velocity, AngularImpulse *angularVelocity ) const = 0;
// NOTE: These are velocities, not forces. i.e. They will have the same effect regardless of
// the object's mass or inertia
virtual void AddVelocity( const Vector *velocity, const AngularImpulse *angularVelocity ) = 0; // gets a velocity in the object's local frame of reference at a specific point
virtual void GetVelocityAtPoint( const Vector &worldPosition, Vector *pVelocity ) const = 0; // gets the velocity actually moved by the object in the last simulation update
virtual void GetImplicitVelocity( Vector *velocity, AngularImpulse *angularVelocity ) const = 0; // NOTE: These are here for convenience, but you can do them yourself by using the matrix
// returned from GetPositionMatrix()
// convenient coordinate system transformations (params - dest, src)
virtual void LocalToWorld( Vector *worldPosition, const Vector &localPosition ) const = 0; virtual void WorldToLocal( Vector *localPosition, const Vector &worldPosition ) const = 0;
// transforms a vector (no translation) from object-local to world space
virtual void LocalToWorldVector( Vector *worldVector, const Vector &localVector ) const = 0; // transforms a vector (no translation) from world to object-local space
virtual void WorldToLocalVector( Vector *localVector, const Vector &worldVector ) const = 0; // push on an object
// force vector is direction & magnitude of impulse kg in / s
virtual void ApplyForceCenter( const Vector &forceVector ) = 0; virtual void ApplyForceOffset( const Vector &forceVector, const Vector &worldPosition ) = 0; // apply torque impulse. This will change the angular velocity on the object.
// HL Axes, kg degrees / s
virtual void ApplyTorqueCenter( const AngularImpulse &torque ) = 0;
// Calculates the force/torque on the center of mass for an offset force impulse (pass output to ApplyForceCenter / ApplyTorqueCenter)
virtual void CalculateForceOffset( const Vector &forceVector, const Vector &worldPosition, Vector *centerForce, AngularImpulse *centerTorque ) const = 0; // Calculates the linear/angular velocities on the center of mass for an offset force impulse (pass output to AddVelocity)
virtual void CalculateVelocityOffset( const Vector &forceVector, const Vector &worldPosition, Vector *centerVelocity, AngularImpulse *centerAngularVelocity ) const = 0; // calculate drag scale
virtual float CalculateLinearDrag( const Vector &unitDirection ) const = 0; virtual float CalculateAngularDrag( const Vector &objectSpaceRotationAxis ) const = 0;
// returns true if the object is in contact with another object
// if true, puts a point on the contact surface in contactPoint, and
// a pointer to the object in contactObject
// NOTE: You can pass NULL for either to avoid computations
// BUGBUG: Use CreateFrictionSnapshot instead of this - this is a simple hack
virtual bool GetContactPoint( Vector *contactPoint, IPhysicsObject **contactObject ) const = 0;
// refactor this a bit - move some of this to IPhysicsShadowController
virtual void SetShadow( float maxSpeed, float maxAngularSpeed, bool allowPhysicsMovement, bool allowPhysicsRotation ) = 0; virtual void UpdateShadow( const Vector &targetPosition, const QAngle &targetAngles, bool tempDisableGravity, float timeOffset ) = 0; // returns number of ticks since last Update() call
virtual int GetShadowPosition( Vector *position, QAngle *angles ) const = 0; virtual IPhysicsShadowController *GetShadowController( void ) const = 0; virtual void RemoveShadowController() = 0; // applies the math of the shadow controller to this object.
// for use in your own controllers
// returns the new value of secondsToArrival with dt time elapsed
virtual float ComputeShadowControl( const hlshadowcontrol_params_t ¶ms, float secondsToArrival, float dt ) = 0;
virtual const CPhysCollide *GetCollide( void ) const = 0; virtual const char *GetName() const = 0;
virtual void BecomeTrigger() = 0; virtual void RemoveTrigger() = 0;
// sets the object to be hinged. Fixed it place, but able to rotate around one axis.
virtual void BecomeHinged( int localAxis ) = 0; // resets the object to original state
virtual void RemoveHinged() = 0;
// used to iterate the contact points of an object
virtual IPhysicsFrictionSnapshot *CreateFrictionSnapshot() = 0; virtual void DestroyFrictionSnapshot( IPhysicsFrictionSnapshot *pSnapshot ) = 0;
// dumps info about the object to Msg()
virtual void OutputDebugInfo() const = 0;
#if OBJECT_WELDING
virtual void WeldToObject( IPhysicsObject *pParent ) = 0; virtual void RemoveWeld( IPhysicsObject *pOther ) = 0; virtual void RemoveAllWelds( void ) = 0; #endif
// EnableGravity still determines whether to apply gravity
// This flag determines which gravity constant to use for an alternate gravity effect
virtual void SetUseAlternateGravity( bool bSet ) = 0; virtual void SetCollisionHints( uint32 collisionHints ) = 0; virtual uint32 GetCollisionHints() const = 0;
inline bool IsPredicted( void ) const { return GetPredictedInterface() != NULL; } //true if class has an IPredictedPhysicsObject interface
virtual IPredictedPhysicsObject *GetPredictedInterface( void ) const = 0; virtual void SyncWith( IPhysicsObject *pOther ) = 0; };
abstract_class IPredictedPhysicsObject : public IPhysicsObject { public: virtual ~IPredictedPhysicsObject( void ) {}
virtual void SetErrorDelta_Position( const Vector &vPosition ) = 0; virtual void SetErrorDelta_Velocity( const Vector &vVelocity ) = 0; };
abstract_class IPhysicsSpring { public: virtual ~IPhysicsSpring( void ) {} virtual void GetEndpoints( Vector *worldPositionStart, Vector *worldPositionEnd ) = 0; virtual void SetSpringConstant( float flSpringContant) = 0; virtual void SetSpringDamping( float flSpringDamping) = 0; virtual void SetSpringLength( float flSpringLenght) = 0;
// Get the starting object
virtual IPhysicsObject *GetStartObject( void ) = 0;
// Get the end object
virtual IPhysicsObject *GetEndObject( void ) = 0; };
//-----------------------------------------------------------------------------
// Purpose: These properties are defined per-material. This is accessible at
// each triangle in a collision mesh
//-----------------------------------------------------------------------------
struct surfacephysicsparams_t { // vphysics physical properties
float friction; float elasticity; // collision elasticity - used to compute coefficient of restitution
float density; // physical density (in kg / m^3)
float thickness; // material thickness if not solid (sheet materials) in inches
float dampening; };
struct surfaceaudioparams_t { // sounds / audio data
float reflectivity; // like elasticity, but how much sound should be reflected by this surface
float hardnessFactor; // like elasticity, but only affects impact sound choices
float roughnessFactor; // like friction, but only affects scrape sound choices
// audio thresholds
float roughThreshold; // surface roughness > this causes "rough" scrapes, < this causes "smooth" scrapes
float hardThreshold; // surface hardness > this causes "hard" impacts, < this causes "soft" impacts
float hardVelocityThreshold; // collision velocity > this causes "hard" impacts, < this causes "soft" impacts
// NOTE: Hard impacts must meet both hardnessFactor AND velocity thresholds
};
struct surfacesoundnames_t { unsigned short walkStepLeft; unsigned short walkStepRight; unsigned short runStepLeft; unsigned short runStepRight;
unsigned short impactSoft; unsigned short impactHard;
unsigned short scrapeSmooth; unsigned short scrapeRough;
unsigned short bulletImpact; unsigned short rolling;
unsigned short breakSound; unsigned short strainSound; };
struct surfacesoundhandles_t { HSOUNDSCRIPTHASH walkStepLeft; HSOUNDSCRIPTHASH walkStepRight; HSOUNDSCRIPTHASH runStepLeft; HSOUNDSCRIPTHASH runStepRight;
HSOUNDSCRIPTHASH impactSoft; HSOUNDSCRIPTHASH impactHard;
HSOUNDSCRIPTHASH scrapeSmooth; HSOUNDSCRIPTHASH scrapeRough;
HSOUNDSCRIPTHASH bulletImpact; HSOUNDSCRIPTHASH rolling;
HSOUNDSCRIPTHASH breakSound; HSOUNDSCRIPTHASH strainSound; };
struct surfacegameprops_t { // game movement data
float maxSpeedFactor; // Modulates player max speed when walking on this surface
float jumpFactor; // Indicates how much higher the player should jump when on the surface
// Game-specific data
float penetrationModifier; float damageModifier; unsigned short material; // Indicates whether or not the player is on a ladder.
unsigned char climbable; unsigned char pad; };
//-----------------------------------------------------------------------------
// Purpose: Each different material has an entry like this
//-----------------------------------------------------------------------------
struct surfacedata_t { surfacephysicsparams_t physics; // physics parameters
surfaceaudioparams_t audio; // audio parameters
surfacesoundnames_t sounds; // names of linked sounds
surfacegameprops_t game; // Game data / properties
surfacesoundhandles_t soundhandles; };
class ISaveRestoreOps;
#define VPHYSICS_SURFACEPROPS_INTERFACE_VERSION "VPhysicsSurfaceProps001"
abstract_class IPhysicsSurfaceProps { public: virtual ~IPhysicsSurfaceProps( void ) {}
// parses a text file containing surface prop keys
virtual int ParseSurfaceData( const char *pFilename, const char *pTextfile ) = 0; // current number of entries in the database
virtual int SurfacePropCount( void ) const = 0;
virtual int GetSurfaceIndex( const char *pSurfacePropName ) const = 0; virtual void GetPhysicsProperties( int surfaceDataIndex, float *density, float *thickness, float *friction, float *elasticity ) const = 0;
virtual surfacedata_t *GetSurfaceData( int surfaceDataIndex ) = 0; virtual const char *GetString( unsigned short stringTableIndex ) const = 0;
virtual const char *GetPropName( int surfaceDataIndex ) const = 0;
// sets the global index table for world materials
// UNDONE: Make this per-CPhysCollide
virtual void SetWorldMaterialIndexTable( int *pMapArray, int mapSize ) = 0;
// NOTE: Same as GetPhysicsProperties, but maybe more convenient
virtual void GetPhysicsParameters( int surfaceDataIndex, surfacephysicsparams_t *pParamsOut ) const = 0;
virtual ISaveRestoreOps* GetMaterialIndexDataOps() const = 0; };
abstract_class IPhysicsFluidController { public: virtual ~IPhysicsFluidController( void ) {}
virtual void SetGameData( void *pGameData ) = 0; virtual void *GetGameData( void ) const = 0;
virtual void GetSurfacePlane( Vector *pNormal, float *pDist ) const = 0; virtual float GetDensity() const = 0; virtual void WakeAllSleepingObjects() = 0; virtual int GetContents() const = 0; };
//-----------------------------------------------------------------------------
// Purpose: parameter block for creating fluid dynamic motion
// UNDONE: Expose additional fluid model paramters?
//-----------------------------------------------------------------------------
struct fluidparams_t { Vector4D surfacePlane; // x,y,z normal, dist (plane constant) fluid surface
Vector currentVelocity; // velocity of the current in inches/second
float damping; // damping factor for buoyancy (tweak)
float torqueFactor; float viscosityFactor; void *pGameData; bool useAerodynamics;// true if this controller should calculate surface pressure
int contents;
fluidparams_t() {} fluidparams_t( fluidparams_t const& src ) { Vector4DCopy( src.surfacePlane, surfacePlane ); VectorCopy( src.currentVelocity, currentVelocity ); damping = src.damping; torqueFactor = src.torqueFactor; viscosityFactor = src.viscosityFactor; contents = src.contents; } };
//-----------------------------------------------------------------------------
// Purpose: parameter block for creating linear springs
// UNDONE: Expose additional spring model paramters?
//-----------------------------------------------------------------------------
struct springparams_t { springparams_t() { memset( this, 0, sizeof(*this) ); } float constant; // spring constant
float naturalLength;// relaxed length
float damping; // damping factor
float relativeDamping; // relative damping (damping proportional to the change in the relative position of the objects)
Vector startPosition; Vector endPosition; bool useLocalPositions; // start & end Position are in local space to start and end objects if this is true
bool onlyStretch; // only apply forces when the length is greater than the natural length
};
//-----------------------------------------------------------------------------
// Purpose: parameter block for creating polygonal objects
//-----------------------------------------------------------------------------
struct objectparams_t { Vector *massCenterOverride; float mass; float inertia; float damping; float rotdamping; float rotInertiaLimit; const char *pName; // used only for debugging
void *pGameData; float volume; float dragCoefficient; bool enableCollisions; };
struct convertconvexparams_t { bool buildOuterConvexHull; bool buildDragAxisAreas; bool buildOptimizedTraceTables; bool checkOptimalTracing; bool bUseFastApproximateInertiaTensor; bool bBuildAABBTree; float dragAreaEpsilon; CPhysConvex *pForcedOuterHull;
void Defaults() { dragAreaEpsilon = 0.25f; // 0.5in x 0.5in square
buildOuterConvexHull = false; buildDragAxisAreas = false; buildOptimizedTraceTables = false; checkOptimalTracing = false; bUseFastApproximateInertiaTensor = false; bBuildAABBTree = false; pForcedOuterHull = NULL; } };
//-----------------------------------------------------------------------------
// Physics interface IDs
//
// Note that right now the order of the enum also defines the order of save/load
//-----------------------------------------------------------------------------
// Purpose: parameter blocks for save and load operations
//-----------------------------------------------------------------------------
struct physsaveparams_t { ISave *pSave; void *pObject; PhysInterfaceId_t type; };
struct physrestoreparams_t { IRestore *pRestore; void **ppObject; PhysInterfaceId_t type; void *pGameData; const char *pName; // used only for debugging
const CPhysCollide *pCollisionModel; IPhysicsEnvironment *pEnvironment; IPhysicsGameTrace *pGameTrace; };
struct physrecreateparams_t { void *pOldObject; void *pNewObject; };
struct physprerestoreparams_t { int recreatedObjectCount; physrecreateparams_t recreatedObjectList[1]; };
//-------------------------------------
#define DEFINE_PIID( type, enumval ) \
template <> inline PhysInterfaceId_t GetPhysIID<type>( type ** ) { return enumval; }
template <class PHYSPTR> inline PhysInterfaceId_t GetPhysIID(PHYSPTR **); // will get link error if no match
DEFINE_PIID( IPhysicsObject, PIID_IPHYSICSOBJECT ); DEFINE_PIID( IPhysicsFluidController, PIID_IPHYSICSFLUIDCONTROLLER ); DEFINE_PIID( IPhysicsSpring, PIID_IPHYSICSSPRING ); DEFINE_PIID( IPhysicsConstraintGroup, PIID_IPHYSICSCONSTRAINTGROUP ); DEFINE_PIID( IPhysicsConstraint, PIID_IPHYSICSCONSTRAINT ); DEFINE_PIID( IPhysicsShadowController, PIID_IPHYSICSSHADOWCONTROLLER ); DEFINE_PIID( IPhysicsPlayerController, PIID_IPHYSICSPLAYERCONTROLLER ); DEFINE_PIID( IPhysicsMotionController, PIID_IPHYSICSMOTIONCONTROLLER ); DEFINE_PIID( IPhysicsVehicleController, PIID_IPHYSICSVEHICLECONTROLLER ); DEFINE_PIID( IPhysicsGameTrace, PIID_IPHYSICSGAMETRACE );
//-----------------------------------------------------------------------------
#endif // VPHYSICS_INTERFACE_H
|