|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Places "detail" objects which are client-only renderable things
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#include "vbsp.h"
#include "bsplib.h"
#include "KeyValues.h"
#include "UtlSymbol.h"
#include "UtlVector.h"
#include <io.h>
#include "bspfile.h"
#include "utilmatlib.h"
#include "gamebspfile.h"
#include "mathlib/VMatrix.h"
#include "materialpatch.h"
#include "pacifier.h"
#include "vstdlib/random.h"
#include "builddisp.h"
#include "disp_vbsp.h"
#include "UtlBuffer.h"
#include "CollisionUtils.h"
#include <float.h>
#include "UtlLinkedList.h"
#include "byteswap.h"
#include "writebsp.h"
//-----------------------------------------------------------------------------
// Information about particular detail object types
//-----------------------------------------------------------------------------
enum { MODELFLAG_UPRIGHT = 0x1, };
struct DetailModel_t { CUtlSymbol m_ModelName; float m_Amount; float m_MinCosAngle; float m_MaxCosAngle; int m_Flags; int m_Orientation; int m_Type; Vector2D m_Pos[2]; Vector2D m_Tex[2]; float m_flRandomScaleStdDev; unsigned char m_ShapeSize; unsigned char m_ShapeAngle; unsigned char m_SwayAmount; };
struct DetailObjectGroup_t { float m_Alpha; CUtlVector< DetailModel_t > m_Models; };
struct DetailObject_t { CUtlSymbol m_Name; float m_Density; CUtlVector< DetailObjectGroup_t > m_Groups;
bool operator==(const DetailObject_t& src ) const { return src.m_Name == m_Name; } };
static CUtlVector<DetailObject_t> s_DetailObjectDict; static CUtlVector<entity_t *> g_BlockerList;
//-----------------------------------------------------------------------------
// Error checking.. make sure the model is valid + is a static prop
//-----------------------------------------------------------------------------
struct StaticPropLookup_t { CUtlSymbol m_ModelName; bool m_IsValid; };
static bool StaticLess( StaticPropLookup_t const& src1, StaticPropLookup_t const& src2 ) { return src1.m_ModelName < src2.m_ModelName; }
static CUtlRBTree< StaticPropLookup_t, unsigned short > s_StaticPropLookup( 0, 32, StaticLess );
//-----------------------------------------------------------------------------
// These puppies are used to construct the game lumps
//-----------------------------------------------------------------------------
static CUtlVector<DetailObjectDictLump_t> s_DetailObjectDictLump; static CUtlVector<DetailObjectLump_t> s_DetailObjectLump; static CUtlVector<DetailSpriteDictLump_t> s_DetailSpriteDictLump;
//-----------------------------------------------------------------------------
// Parses the key-value pairs in the detail.rad file
//-----------------------------------------------------------------------------
static void ParseDetailGroup( int detailId, KeyValues* pGroupKeyValues ) { // Sort the group by alpha
float alpha = pGroupKeyValues->GetFloat( "alpha", 1.0f ); int i = s_DetailObjectDict[detailId].m_Groups.Count(); while ( --i >= 0 ) { if (alpha > s_DetailObjectDict[detailId].m_Groups[i].m_Alpha) break; }
// Insert after the first guy who's more transparent that we are!
i = s_DetailObjectDict[detailId].m_Groups.InsertAfter(i); DetailObjectGroup_t& group = s_DetailObjectDict[detailId].m_Groups[i];
group.m_Alpha = alpha;
// Add in all the model groups
KeyValues* pIter = pGroupKeyValues->GetFirstSubKey(); float totalAmount = 0.0f; while( pIter ) { if (pIter->GetFirstSubKey()) { int i = group.m_Models.AddToTail();
DetailModel_t &model = group.m_Models[i];
model.m_ModelName = pIter->GetString( "model", 0 ); if (model.m_ModelName != UTL_INVAL_SYMBOL) { model.m_Type = DETAIL_PROP_TYPE_MODEL; } else { const char *pSpriteData = pIter->GetString( "sprite", 0 ); if (pSpriteData) { const char *pProcModelType = pIter->GetString( "sprite_shape", 0 );
if ( pProcModelType ) { if ( !Q_stricmp( pProcModelType, "cross" ) ) { model.m_Type = DETAIL_PROP_TYPE_SHAPE_CROSS; } else if ( !Q_stricmp( pProcModelType, "tri" ) ) { model.m_Type = DETAIL_PROP_TYPE_SHAPE_TRI; } else model.m_Type = DETAIL_PROP_TYPE_SPRITE; } else { // card sprite
model.m_Type = DETAIL_PROP_TYPE_SPRITE; }
model.m_Tex[0].Init(); model.m_Tex[1].Init();
float x = 0, y = 0, flWidth = 64, flHeight = 64, flTextureSize = 512; int nValid = sscanf( pSpriteData, "%f %f %f %f %f", &x, &y, &flWidth, &flHeight, &flTextureSize ); if ( (nValid != 5) || (flTextureSize == 0) ) { Error( "Invalid arguments to \"sprite\" in detail.vbsp (model %s)!\n", model.m_ModelName ); }
model.m_Tex[0].x = ( x + 0.5f ) / flTextureSize; model.m_Tex[0].y = ( y + 0.5f ) / flTextureSize; model.m_Tex[1].x = ( x + flWidth - 0.5f ) / flTextureSize; model.m_Tex[1].y = ( y + flHeight - 0.5f ) / flTextureSize;
model.m_Pos[0].Init( -10, 20 ); model.m_Pos[1].Init( 10, 0 );
pSpriteData = pIter->GetString( "spritesize", 0 ); if (pSpriteData) { sscanf( pSpriteData, "%f %f %f %f", &x, &y, &flWidth, &flHeight );
float ox = flWidth * x; float oy = flHeight * y;
model.m_Pos[0].x = -ox; model.m_Pos[0].y = flHeight - oy; model.m_Pos[1].x = flWidth - ox; model.m_Pos[1].y = -oy; }
model.m_flRandomScaleStdDev = pIter->GetFloat( "spriterandomscale", 0.0f );
// sway is a percent of max sway, cl_detail_max_sway
float flSway = clamp( pIter->GetFloat( "sway", 0.0f ), 0.0, 1.0 ); model.m_SwayAmount = (unsigned char)( 255.0 * flSway );
// shape angle
// for the tri shape, this is the angle each side is fanned out
model.m_ShapeAngle = pIter->GetInt( "shape_angle", 0 );
// shape size
// for the tri shape, this is the distance from the origin to the center of a side
float flShapeSize = clamp( pIter->GetFloat( "shape_size", 0.0f ), 0.0, 1.0 ); model.m_ShapeSize = (unsigned char)( 255.0 * flShapeSize ); } }
model.m_Amount = pIter->GetFloat( "amount", 1.0 ) + totalAmount; totalAmount = model.m_Amount;
model.m_Flags = 0; if (pIter->GetInt( "upright", 0 )) { model.m_Flags |= MODELFLAG_UPRIGHT; }
// These are used to prevent emission on steep surfaces
float minAngle = pIter->GetFloat( "minAngle", 180 ); float maxAngle = pIter->GetFloat( "maxAngle", 180 ); model.m_MinCosAngle = cos(minAngle * M_PI / 180.f); model.m_MaxCosAngle = cos(maxAngle * M_PI / 180.f); model.m_Orientation = pIter->GetInt( "detailOrientation", 0 );
// Make sure minAngle < maxAngle
if ( model.m_MinCosAngle < model.m_MaxCosAngle) { model.m_MinCosAngle = model.m_MaxCosAngle; } } pIter = pIter->GetNextKey(); }
// renormalize the amount if the total > 1
if (totalAmount > 1.0f) { for (i = 0; i < group.m_Models.Count(); ++i) { group.m_Models[i].m_Amount /= totalAmount; } } }
//-----------------------------------------------------------------------------
// Parses the key-value pairs in the detail.vbsp file
//-----------------------------------------------------------------------------
static void ParseDetailObjectFile( KeyValues& keyValues ) { // Iterate over all detail object groups...
KeyValues* pIter; for( pIter = keyValues.GetFirstSubKey(); pIter; pIter = pIter->GetNextKey() ) { if (!pIter->GetFirstSubKey()) continue;
int i = s_DetailObjectDict.AddToTail( ); s_DetailObjectDict[i].m_Name = pIter->GetName() ; s_DetailObjectDict[i].m_Density = pIter->GetFloat( "density", 0.0f );
// Iterate over all detail object groups...
KeyValues* pIterGroups = pIter->GetFirstSubKey(); while( pIterGroups ) { if (pIterGroups->GetFirstSubKey()) { ParseDetailGroup( i, pIterGroups ); } pIterGroups = pIterGroups->GetNextKey(); } } }
//-----------------------------------------------------------------------------
// Finds the name of the detail.vbsp file to use
//-----------------------------------------------------------------------------
static const char *FindDetailVBSPName( void ) { for( int i = 0; i < num_entities; i++ ) { char* pEntity = ValueForKey( &entities[i], "classname" ); if ( !strcmp( pEntity, "worldspawn" ) ) { const char *pDetailVBSP = ValueForKey( &entities[i], "detailvbsp" ); if ( !pDetailVBSP || !pDetailVBSP[0] ) { pDetailVBSP = "detail.vbsp"; } return pDetailVBSP; } } return "detail.vbsp"; }
//-----------------------------------------------------------------------------
// Loads up the detail object dictionary
//-----------------------------------------------------------------------------
void LoadEmitDetailObjectDictionary( const char* pGameDir ) { // Set the required global lights filename and try looking in qproject
const char *pDetailVBSP = FindDetailVBSPName(); KeyValues * values = new KeyValues( pDetailVBSP ); if ( values->LoadFromFile( g_pFileSystem, pDetailVBSP ) ) { ParseDetailObjectFile( *values ); } values->deleteThis(); }
//-----------------------------------------------------------------------------
// Selects a detail group
//-----------------------------------------------------------------------------
static int SelectGroup( const DetailObject_t& detail, float alpha ) { // Find the two groups whose alpha we're between...
int start, end; for ( start = 0; start < detail.m_Groups.Count() - 1; ++start ) { if (alpha < detail.m_Groups[start+1].m_Alpha) break; }
end = start + 1; if (end >= detail.m_Groups.Count()) --end;
if (start == end) return start;
// Figure out how far we are between start and end...
float dist = 0.0f; float dAlpha = (detail.m_Groups[end].m_Alpha - detail.m_Groups[start].m_Alpha); if (dAlpha != 0.0f) { dist = (alpha - detail.m_Groups[start].m_Alpha) / dAlpha; }
// Pick a number, any number...
float r = rand() / (float)VALVE_RAND_MAX;
// When dist == 0, we *always* want start.
// When dist == 1, we *always* want end
// That's why this logic looks a little reversed
return (r > dist) ? start : end; }
//-----------------------------------------------------------------------------
// Selects a detail object
//-----------------------------------------------------------------------------
static int SelectDetail( DetailObjectGroup_t const& group ) { // Pick a number, any number...
float r = rand() / (float)VALVE_RAND_MAX;
// Look through the list of models + pick the one associated with this number
for ( int i = 0; i < group.m_Models.Count(); ++i ) { if (r <= group.m_Models[i].m_Amount) return i; }
return -1; }
//-----------------------------------------------------------------------------
// Adds a detail dictionary element (expected to oftentimes be shared)
//-----------------------------------------------------------------------------
static int AddDetailDictLump( const char* pModelName ) { DetailObjectDictLump_t dictLump; strncpy( dictLump.m_Name, pModelName, DETAIL_NAME_LENGTH );
for (int i = s_DetailObjectDictLump.Count(); --i >= 0; ) { if (!memcmp(&s_DetailObjectDictLump[i], &dictLump, sizeof(dictLump) )) return i; }
return s_DetailObjectDictLump.AddToTail( dictLump ); }
static int AddDetailSpriteDictLump( const Vector2D *pPos, const Vector2D *pTex ) { DetailSpriteDictLump_t dictLump; dictLump.m_UL = pPos[0]; dictLump.m_LR = pPos[1]; dictLump.m_TexUL = pTex[0]; dictLump.m_TexLR = pTex[1];
for (int i = s_DetailSpriteDictLump.Count(); --i >= 0; ) { if (!memcmp(&s_DetailSpriteDictLump[i], &dictLump, sizeof(dictLump) )) return i; }
return s_DetailSpriteDictLump.AddToTail( dictLump ); }
//-----------------------------------------------------------------------------
// Computes the leaf that the detail lies in
//-----------------------------------------------------------------------------
static int ComputeDetailLeaf( const Vector& pt ) { int node = 0; while( node >= 0 ) { dnode_t* pNode = &dnodes[node]; dplane_t* pPlane = &dplanes[pNode->planenum];
if (DotProduct(pt, pPlane->normal) < pPlane->dist) node = pNode->children[1]; else node = pNode->children[0]; }
return - node - 1; }
//-----------------------------------------------------------------------------
// Make sure the details are compiled with static prop
//-----------------------------------------------------------------------------
static bool IsModelValid( const char* pModelName ) { StaticPropLookup_t lookup; lookup.m_ModelName = pModelName;
int i = s_StaticPropLookup.Find( lookup ); if (i != s_StaticPropLookup.InvalidIndex() ) return s_StaticPropLookup[i].m_IsValid;
CUtlBuffer buf; lookup.m_IsValid = LoadStudioModel( pModelName, "detail_prop", buf ); if (!lookup.m_IsValid) { Warning("Error loading studio model \"%s\"!\n", pModelName ); }
s_StaticPropLookup.Insert( lookup ); return lookup.m_IsValid; }
//-----------------------------------------------------------------------------
// Add a detail to the lump.
//-----------------------------------------------------------------------------
static int s_nDetailOverflow = 0; static void AddDetailToLump( const char* pModelName, const Vector& pt, const QAngle& angles, int nOrientation ) { Assert( pt.IsValid() && angles.IsValid() );
// Make sure the model is valid...
if (!IsModelValid(pModelName)) return;
if (s_DetailObjectLump.Count() == 65535) { ++s_nDetailOverflow; return; }
// Insert an element into the object dictionary if it aint there...
int i = s_DetailObjectLump.AddToTail( );
DetailObjectLump_t& objectLump = s_DetailObjectLump[i]; objectLump.m_DetailModel = AddDetailDictLump( pModelName ); VectorCopy( angles, objectLump.m_Angles ); VectorCopy( pt, objectLump.m_Origin ); objectLump.m_Leaf = ComputeDetailLeaf(pt); objectLump.m_Lighting.r = 255; objectLump.m_Lighting.g = 255; objectLump.m_Lighting.b = 255; objectLump.m_Lighting.exponent = 0; objectLump.m_LightStyles = 0; objectLump.m_LightStyleCount = 0; objectLump.m_Orientation = nOrientation; objectLump.m_Type = DETAIL_PROP_TYPE_MODEL; }
//-----------------------------------------------------------------------------
// Add a detail sprite to the lump.
//-----------------------------------------------------------------------------
#define MAX_DETAIL_SPRITES 65535 * 32
static void AddDetailSpriteToLump( const Vector &vecOrigin, const QAngle &vecAngles, int nOrientation, const Vector2D *pPos, const Vector2D *pTex, float flScale, int iType, int iShapeAngle = 0, int iShapeSize = 0, int iSwayAmount = 0 ) { // Insert an element into the object dictionary if it aint there...
int i = s_DetailObjectLump.AddToTail( );
if (i >= MAX_DETAIL_SPRITES) { Error( "Error! Too many detail props emitted on this map!\n" ); }
DetailObjectLump_t& objectLump = s_DetailObjectLump[i]; objectLump.m_DetailModel = AddDetailSpriteDictLump( pPos, pTex ); VectorCopy( vecAngles, objectLump.m_Angles ); VectorCopy( vecOrigin, objectLump.m_Origin ); objectLump.m_Leaf = ComputeDetailLeaf(vecOrigin); objectLump.m_Lighting.r = 255; objectLump.m_Lighting.g = 255; objectLump.m_Lighting.b = 255; objectLump.m_Lighting.exponent = 0; objectLump.m_LightStyles = 0; objectLump.m_LightStyleCount = 0; objectLump.m_Orientation = nOrientation; objectLump.m_Type = iType; objectLump.m_flScale = flScale; objectLump.m_ShapeAngle = iShapeAngle; objectLump.m_ShapeSize = iShapeSize; objectLump.m_SwayAmount = iSwayAmount; }
static void AddDetailSpriteToLump( const Vector &vecOrigin, const QAngle &vecAngles, DetailModel_t const& model, float flScale ) { AddDetailSpriteToLump( vecOrigin, vecAngles, model.m_Orientation, model.m_Pos, model.m_Tex, flScale, model.m_Type, model.m_ShapeAngle, model.m_ShapeSize, model.m_SwayAmount ); }
//-----------------------------------------------------------------------------
// Got a detail! Place it on the surface...
//-----------------------------------------------------------------------------
// BUGBUG: When the global optimizer is on, "normal" gets trashed in this function
// (only when not in the debugger?)
// Printing the values of normal at the bottom of the function fixes it as does
// disabling global optimizations.
static void PlaceDetail( DetailModel_t const& model, const Vector& pt, const Vector& normal ) { // But only place it on the surface if it meets the angle constraints...
float cosAngle = normal.z;
// Never emit if the angle's too steep
if (cosAngle < model.m_MaxCosAngle) return;
// If it's between min + max, flip a coin...
if (cosAngle < model.m_MinCosAngle) { float probability = (cosAngle - model.m_MaxCosAngle) / (model.m_MinCosAngle - model.m_MaxCosAngle);
float t = rand() / (float)VALVE_RAND_MAX; if (t > probability) return; }
// Compute the orientation of the detail
QAngle angles; if (model.m_Flags & MODELFLAG_UPRIGHT) { // If it's upright, we just select a random yaw
angles.Init( 0, 360.0f * rand() / (float)VALVE_RAND_MAX, 0.0f ); } else { // It's not upright, so it must conform to the ground. Choose
// a random orientation based on the surface normal
Vector zaxis; VectorCopy( normal, zaxis ); VectorNormalize( zaxis );
// Choose any two arbitrary axes which are perpendicular to the normal
Vector xaxis( 1, 0, 0 ); if (fabs(xaxis.Dot(zaxis)) - 1.0 > -1e-3) xaxis.Init( 0, 1, 0 ); Vector yaxis; CrossProduct( zaxis, xaxis, yaxis ); VectorNormalize( yaxis ); CrossProduct( yaxis, zaxis, xaxis ); VectorNormalize( xaxis ); VMatrix matrix; matrix.SetBasisVectors( xaxis, yaxis, zaxis ); matrix.SetTranslation( vec3_origin );
float rotAngle = 360.0f * rand() / (float)VALVE_RAND_MAX; VMatrix rot = SetupMatrixAxisRot( Vector( 0, 0, 1 ), rotAngle ); matrix = matrix * rot;
MatrixToAngles( matrix, angles ); }
// FIXME: We may also want a purely random rotation too
// TERROR:
for( int i = 0; i < g_BlockerList.Count(); ++i ) { entity_t *ent = g_BlockerList[i]; { for ( int j = 0; j < ent->numbrushes; ++j ) { int brushnum = ent->firstbrush + j; mapbrush_t *brush = &g_MainMap->mapbrushes[ brushnum ]; if ( IsPointInBox( pt, brush->mins, brush->maxs ) ) { return; } } } }
// Insert an element into the object dictionary if it aint there...
switch ( model.m_Type ) { case DETAIL_PROP_TYPE_MODEL: AddDetailToLump( model.m_ModelName.String(), pt, angles, model.m_Orientation ); break;
// Sprites and procedural models made from sprites
case DETAIL_PROP_TYPE_SPRITE: default: { float flScale = 1.0f; if ( model.m_flRandomScaleStdDev != 0.0f ) { flScale = fabs( RandomGaussianFloat( 1.0f, model.m_flRandomScaleStdDev ) ); }
AddDetailSpriteToLump( pt, angles, model, flScale ); } break; } }
//-----------------------------------------------------------------------------
// Places Detail Objects on a face
//-----------------------------------------------------------------------------
static void EmitDetailObjectsOnFace( dface_t* pFace, DetailObject_t& detail ) { if (pFace->numedges < 3) return;
// We're going to pick a bunch of random points, and then probabilistically
// decide whether or not to plant a detail object there.
// Turn the face into a bunch of polygons, and compute the area of each
int* pSurfEdges = &dsurfedges[pFace->firstedge]; int vertexIdx = (pSurfEdges[0] < 0); int firstVertexIndex = dedges[abs(pSurfEdges[0])].v[vertexIdx]; dvertex_t* pFirstVertex = &dvertexes[firstVertexIndex]; for (int i = 1; i < pFace->numedges - 1; ++i ) { int vertexIdx = (pSurfEdges[i] < 0); dedge_t* pEdge = &dedges[abs(pSurfEdges[i])];
// Compute two triangle edges
Vector e1, e2; VectorSubtract( dvertexes[pEdge->v[vertexIdx]].point, pFirstVertex->point, e1 ); VectorSubtract( dvertexes[pEdge->v[1 - vertexIdx]].point, pFirstVertex->point, e2 );
// Compute the triangle area
Vector areaVec; CrossProduct( e1, e2, areaVec ); float normalLength = areaVec.Length(); float area = 0.5f * normalLength;
// Compute the number of samples to take
int numSamples = area * detail.m_Density * 0.000001;
// Now take a sample, and randomly place an object there
for (int i = 0; i < numSamples; ++i ) { // Create a random sample...
float u = rand() / (float)VALVE_RAND_MAX; float v = rand() / (float)VALVE_RAND_MAX; if (v > 1.0f - u) { u = 1.0f - u; v = 1.0f - v; assert( u + v <= 1.0f ); }
// Compute alpha
float alpha = 1.0f;
// Select a group based on the alpha value
int group = SelectGroup( detail, alpha );
// Now that we've got a group, choose a detail
int model = SelectDetail( detail.m_Groups[group] ); if (model < 0) continue;
// Got a detail! Place it on the surface...
Vector pt, normal; VectorMA( pFirstVertex->point, u, e1, pt ); VectorMA( pt, v, e2, pt ); VectorDivide( areaVec, -normalLength, normal );
PlaceDetail( detail.m_Groups[group].m_Models[model], pt, normal ); } } }
//-----------------------------------------------------------------------------
// Places Detail Objects on a face
//-----------------------------------------------------------------------------
static float ComputeDisplacementFaceArea( dface_t* pFace ) { float area = 0.0f;
// Compute the area of the base face
int* pSurfEdges = &dsurfedges[pFace->firstedge]; int vertexIdx = (pSurfEdges[0] < 0); int firstVertexIndex = dedges[abs(pSurfEdges[0])].v[vertexIdx]; dvertex_t* pFirstVertex = &dvertexes[firstVertexIndex]; for (int i = 1; i <= 2; ++i ) { int vertexIdx = (pSurfEdges[i] < 0); dedge_t* pEdge = &dedges[abs(pSurfEdges[i])];
// Compute two triangle edges
Vector e1, e2; VectorSubtract( dvertexes[pEdge->v[vertexIdx]].point, pFirstVertex->point, e1 ); VectorSubtract( dvertexes[pEdge->v[1 - vertexIdx]].point, pFirstVertex->point, e2 );
// Compute the triangle area
Vector areaVec; CrossProduct( e1, e2, areaVec ); float normalLength = areaVec.Length(); area += 0.5f * normalLength; }
return area; }
//-----------------------------------------------------------------------------
// Places Detail Objects on a face
//-----------------------------------------------------------------------------
static void EmitDetailObjectsOnDisplacementFace( dface_t* pFace, DetailObject_t& detail, CCoreDispInfo& coreDispInfo ) { assert(pFace->numedges == 4);
// We're going to pick a bunch of random points, and then probabilistically
// decide whether or not to plant a detail object there.
// Compute the area of the base face
float area = ComputeDisplacementFaceArea( pFace );
// Compute the number of samples to take
int numSamples = area * detail.m_Density * 0.000001;
// Now take a sample, and randomly place an object there
for (int i = 0; i < numSamples; ++i ) { // Create a random sample...
float u = rand() / (float)VALVE_RAND_MAX; float v = rand() / (float)VALVE_RAND_MAX;
// Compute alpha
float alpha; Vector pt, normal; coreDispInfo.GetPositionOnSurface( u, v, pt, &normal, &alpha ); alpha /= 255.0f;
// Select a group based on the alpha value
int group = SelectGroup( detail, alpha );
// Now that we've got a group, choose a detail
int model = SelectDetail( detail.m_Groups[group] ); if (model < 0) continue;
// Got a detail! Place it on the surface...
PlaceDetail( detail.m_Groups[group].m_Models[model], pt, normal ); } }
//-----------------------------------------------------------------------------
// Sort detail objects by leaf
//-----------------------------------------------------------------------------
static int SortFunc( const void *arg1, const void *arg2 ) { int nDelta = ((DetailObjectLump_t*)arg1)->m_Leaf - ((DetailObjectLump_t*)arg2)->m_Leaf; if ( nDelta < 0 ) return -1; if ( nDelta > 0 ) return 1; return 0; }
//-----------------------------------------------------------------------------
// Places Detail Objects in the lump
//-----------------------------------------------------------------------------
static void SetLumpData( ) { // Sort detail props by leaf
qsort( s_DetailObjectLump.Base(), s_DetailObjectLump.Count(), sizeof(DetailObjectLump_t), SortFunc );
GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle(GAMELUMP_DETAIL_PROPS); if (handle != g_GameLumps.InvalidGameLump()) { g_GameLumps.DestroyGameLump(handle); } int nDictSize = s_DetailObjectDictLump.Count() * sizeof(DetailObjectDictLump_t); int nSpriteDictSize = s_DetailSpriteDictLump.Count() * sizeof(DetailSpriteDictLump_t); int nObjSize = s_DetailObjectLump.Count() * sizeof(DetailObjectLump_t); int nSize = nDictSize + nSpriteDictSize + nObjSize + (3 * sizeof(int));
handle = g_GameLumps.CreateGameLump( GAMELUMP_DETAIL_PROPS, nSize, 0, GAMELUMP_DETAIL_PROPS_VERSION );
// Serialize the data
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), nSize ); buf.PutInt( s_DetailObjectDictLump.Count() ); if (nDictSize) { buf.Put( s_DetailObjectDictLump.Base(), nDictSize ); } buf.PutInt( s_DetailSpriteDictLump.Count() ); if (nSpriteDictSize) { buf.Put( s_DetailSpriteDictLump.Base(), nSpriteDictSize ); } buf.PutInt( s_DetailObjectLump.Count() ); if (nObjSize) { buf.Put( s_DetailObjectLump.Base(), nObjSize ); } }
//-----------------------------------------------------------------------------
// Places Detail Objects in the level
//-----------------------------------------------------------------------------
void EmitDetailModels() { StartPacifier("Placing detail props : ");
// build detail blocker list
g_BlockerList.RemoveAll(); for( int i = 0; i < num_entities; ++i ) { entity_t *ent = &entities[i]; char* classname = ValueForKey( ent, "classname" ); if ( !strcmp( classname, "func_detail_blocker" ) ) { g_BlockerList.AddToTail(ent); } }
// Place stuff on each face
dface_t* pFace = dfaces;
for (int j = 0; j < numfaces; ++j) { UpdatePacifier( (float)j / (float)numfaces );
// Get at the material associated with this face
texinfo_t* pTexInfo = &texinfo[pFace[j].texinfo]; dtexdata_t* pTexData = GetTexData( pTexInfo->texdata );
// Try to get at the material
bool found; MaterialSystemMaterial_t handle = FindOriginalMaterial( TexDataStringTable_GetString( pTexData->nameStringTableID ), &found, false ); if (!found) continue;
// See if its got any detail objects on it
const char* pDetailType = GetMaterialVar( handle, "%detailtype" ); if (!pDetailType) continue;
// Get the detail type...
DetailObject_t search; search.m_Name = pDetailType; int objectType = s_DetailObjectDict.Find(search); if (objectType < 0) { Warning("Material %s uses unknown detail object type %s!\n", TexDataStringTable_GetString( pTexData->nameStringTableID ), pDetailType); continue; }
// Emit objects on a particular face
DetailObject_t& detail = s_DetailObjectDict[objectType];
// Initialize the Random Number generators for detail prop placement based on the hammer Face num.
int detailpropseed = dfaceids[j].hammerfaceid; #ifdef WARNSEEDNUMBER
Warning( "[%d]\n",detailpropseed ); #endif
srand( detailpropseed ); RandomSeed( detailpropseed );
if (pFace[j].dispinfo < 0) { EmitDetailObjectsOnFace( &pFace[j], detail ); } else { // Get a CCoreDispInfo. All we need is the triangles and lightmap texture coordinates.
mapdispinfo_t *pMapDisp = &mapdispinfo[pFace[j].dispinfo]; CCoreDispInfo coreDispInfo; DispMapToCoreDispInfo( pMapDisp, &coreDispInfo, NULL, NULL );
EmitDetailObjectsOnDisplacementFace( &pFace[j], detail, coreDispInfo ); } } // Emit specifically specified detail props
Vector origin; QAngle angles; Vector2D pos[2]; Vector2D tex[2]; for (int i = 0; i < num_entities; ++i) { char* pEntity = ValueForKey(&entities[i], "classname"); if (!strcmp(pEntity, "detail_prop") || !strcmp(pEntity, "prop_detail")) { GetVectorForKey( &entities[i], "origin", origin ); GetAnglesForKey( &entities[i], "angles", angles ); char* pModelName = ValueForKey( &entities[i], "model" ); int nOrientation = IntForKey( &entities[i], "detailOrientation" );
AddDetailToLump( pModelName, origin, angles, nOrientation );
// strip this ent from the .bsp file
entities[i].epairs = 0; continue; }
if (!strcmp(pEntity, "prop_detail_sprite")) { GetVectorForKey( &entities[i], "origin", origin ); GetAnglesForKey( &entities[i], "angles", angles ); int nOrientation = IntForKey( &entities[i], "detailOrientation" ); GetVector2DForKey( &entities[i], "position_ul", pos[0] ); GetVector2DForKey( &entities[i], "position_lr", pos[1] ); GetVector2DForKey( &entities[i], "tex_ul", tex[0] ); GetVector2DForKey( &entities[i], "tex_size", tex[1] ); float flTextureSize = FloatForKey( &entities[i], "tex_total_size" );
tex[1].x += tex[0].x - 0.5f; tex[1].y += tex[0].y - 0.5f; tex[0].x += 0.5f; tex[0].y += 0.5f; tex[0] /= flTextureSize; tex[1] /= flTextureSize;
AddDetailSpriteToLump( origin, angles, nOrientation, pos, tex, 1.0f, DETAIL_PROP_TYPE_SPRITE );
// strip this ent from the .bsp file
entities[i].epairs = 0; continue; } }
EndPacifier( true ); }
//-----------------------------------------------------------------------------
// Places Detail Objects in the level
//-----------------------------------------------------------------------------
void EmitDetailObjects() { EmitDetailModels();
// Done! Now lets add the lumps (destroy previous ones)
SetLumpData( );
if ( s_nDetailOverflow != 0 ) { Warning( "Error! Too many detail props on this map. %d were not emitted!\n", s_nDetailOverflow ); } }
|