|
|
//========= Copyright 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=====================================================================================//
#include "audio_pch.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
extern bool FUseHighQualityPitch( channel_t *pChannel );
//-----------------------------------------------------------------------------
// These mixers provide an abstraction layer between the audio device and
// mixing/decoding code. They allow data to be decoded and mixed using
// optimized, format sensitive code by calling back into the device that
// controls them.
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 8-bit mono mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave8Mono : public CAudioMixerWave { public: CAudioMixerWave8Mono( IWaveData *data ) : CAudioMixerWave( data ) {} virtual int GetMixSampleSize() { return CalcSampleSize(8, 1); } virtual void Mix( channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress ) { Device_Mix8Mono( pChannel, (char *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress ); } };
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 8-bit stereo mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave8Stereo : public CAudioMixerWave { public: CAudioMixerWave8Stereo( IWaveData *data ) : CAudioMixerWave( data ) {} virtual int GetMixSampleSize( ) { return CalcSampleSize(8, 2); } virtual void Mix( channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress ) { Device_Mix8Stereo( pChannel, (char *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress ); } };
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 16-bit mono mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave16Mono : public CAudioMixerWave { public: CAudioMixerWave16Mono( IWaveData *data ) : CAudioMixerWave( data ) {} virtual int GetMixSampleSize() { return CalcSampleSize(16, 1); } virtual void Mix( channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress ) { Device_Mix16Mono( pChannel, (short *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress ); } };
//-----------------------------------------------------------------------------
// Purpose: maps mixing to 16-bit stereo mixer
//-----------------------------------------------------------------------------
class CAudioMixerWave16Stereo : public CAudioMixerWave { public: CAudioMixerWave16Stereo( IWaveData *data ) : CAudioMixerWave( data ) {} virtual int GetMixSampleSize() { return CalcSampleSize(16, 2); } virtual void Mix( channel_t *pChannel, void *pData, int outputOffset, int inputOffset, fixedint fracRate, int outCount, int timecompress ) { Device_Mix16Stereo( pChannel, (short *)pData, outputOffset, inputOffset, fracRate, outCount, timecompress ); } };
//-----------------------------------------------------------------------------
// Purpose: Create an appropriate mixer type given the data format
// Input : *data - data access abstraction
// format - pcm or adpcm (1 or 2 -- RIFF format)
// channels - number of audio channels (1 = mono, 2 = stereo)
// bits - bits per sample
// Output : CAudioMixer * abstract mixer type that maps mixing to appropriate code
//-----------------------------------------------------------------------------
CAudioMixer *CreateWaveMixer( IWaveData *data, int format, int channels, int bits, int initialStreamPosition, int skipInitialSamples, bool bUpdateDelayForChoreo ) { switch ( format ) { case WAVE_FORMAT_PCM: { Assert( (initialStreamPosition == 0 ) && (skipInitialSamples == 0 ) ); // Not supported, so make sure the caller did not expect anything.
CAudioMixer *pMixer; if ( channels > 1 ) { if ( bits == 8 ) pMixer = new CAudioMixerWave8Stereo( data ); else pMixer = new CAudioMixerWave16Stereo( data ); } else { if ( bits == 8 ) pMixer = new CAudioMixerWave8Mono( data ); else pMixer = new CAudioMixerWave16Mono( data ); } Assert( CalcSampleSize(bits, channels) == pMixer->GetMixSampleSize() ); return pMixer; } break;
case WAVE_FORMAT_ADPCM: return CreateADPCMMixer( data );
#if IsX360()
case WAVE_FORMAT_XMA: return CreateXMAMixer( data, initialStreamPosition, skipInitialSamples, bUpdateDelayForChoreo ); #endif
#if IsPS3()
case WAVE_FORMAT_TEMP: case WAVE_FORMAT_MP3: return CreatePs3Mp3Mixer( data, initialStreamPosition, skipInitialSamples, bUpdateDelayForChoreo ); #endif
default: // unsupported format or wav file missing!!!
Assert( false ); return NULL; } }
//-----------------------------------------------------------------------------
// Purpose: Init the base WAVE mixer.
// Input : *data - data access object
//-----------------------------------------------------------------------------
CAudioMixerWave::CAudioMixerWave( IWaveData *data ) : m_pData(data) { m_fsample_index = 0; m_sample_max_loaded = 0; m_sample_loaded_index = -1; m_finished = false; m_forcedEndSample = 0; m_delaySamples = 0; }
//-----------------------------------------------------------------------------
// Purpose: Frees the data access object (we own it after construction)
//-----------------------------------------------------------------------------
CAudioMixerWave::~CAudioMixerWave( void ) { CAudioSource *pSource = GetSource(); if ( pSource ) { pSource->ReferenceRemove( this ); } delete m_pData; }
bool CAudioMixerWave::IsReadyToMix() { return m_pData->IsReadyToMix(); }
//-----------------------------------------------------------------------------
// Purpose: Decode and read the data
// by default we just pass the request on to the data access object
// other mixers may need to buffer or decode the data for some reason
//
// Input : **pData - dest pointer
// sampleCount - number of samples needed
// Output : number of samples available in this batch
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetOutputData( void **pData, int sampleCount, char copyBuf[AUDIOSOURCE_COPYBUF_SIZE] ) { int samples_loaded;
samples_loaded = m_pData->ReadSourceData( pData, m_sample_max_loaded, sampleCount, copyBuf );
// keep track of total samples loaded
m_sample_max_loaded += samples_loaded;
// keep track of index of last sample loaded
m_sample_loaded_index += samples_loaded;
return samples_loaded; }
//-----------------------------------------------------------------------------
// Purpose: calls through the wavedata to get the audio source
// Output : CAudioSource
//-----------------------------------------------------------------------------
CAudioSource *CAudioMixerWave::GetSource( void ) { if ( m_pData ) return &m_pData->Source();
return NULL; }
//-----------------------------------------------------------------------------
// Purpose: Gets the current sample location in playback (index of next sample
// to be loaded).
// Output : int (samples from start of wave)
//-----------------------------------------------------------------------------
int CAudioMixerWave::GetSamplePosition( void ) { return m_sample_max_loaded; }
//-----------------------------------------------------------------------------
// Purpose:
// Input : delaySamples -
//-----------------------------------------------------------------------------
void CAudioMixerWave::SetStartupDelaySamples( int delaySamples ) { m_delaySamples = delaySamples; }
bool CAudioMixerWave::IsSetSampleStartSupported() const { return true; }
// Move the current position to newPosition
void CAudioMixerWave::SetSampleStart( int newPosition ) { CAudioSource *pSource = GetSource(); if ( pSource ) newPosition = pSource->ZeroCrossingAfter( newPosition );
m_fsample_index = newPosition;
// index of last sample loaded - set to sample at new position
m_sample_loaded_index = newPosition; m_sample_max_loaded = m_sample_loaded_index + 1; }
// End playback at newEndPosition
void CAudioMixerWave::SetSampleEnd( int newEndPosition ) { // forced end of zero means play the whole sample
if ( !newEndPosition ) newEndPosition = 1;
CAudioSource *pSource = GetSource(); if ( pSource ) newEndPosition = pSource->ZeroCrossingBefore( newEndPosition );
// past current position? limit.
if ( newEndPosition < m_fsample_index ) newEndPosition = m_fsample_index;
m_forcedEndSample = newEndPosition; }
//-----------------------------------------------------------------------------
// Purpose: Skip source data (read but don't mix). The mixer must provide the
// full amount of samples or have silence in its output stream.
//-----------------------------------------------------------------------------
int CAudioMixerWave::SkipSamples( channel_t *pChannel, int sampleCount, int outputRate, int outputOffset ) { if ( GetSource()->GetType() == CAudioSource::AUDIO_SOURCE_WAV )
if ( IsSetSampleStartSupported() ) { SetSampleStart( sampleCount ); return sampleCount; }
// If not supported, use the slower method, that is reading samples but discard the result.
// On XMA and MP3, this could result in a lot of I/O, and thus some stuttering.
float flTempPitch = pChannel->pitch; pChannel->pitch = 1.0f; int nRetVal = MixDataToDevice_( pChannel, sampleCount, outputRate, outputOffset, true ); pChannel->pitch = flTempPitch; return nRetVal; }
// wrapper routine to append without overflowing the temp buffer
static uint AppendToBuffer( char *pBuffer, const char *pSampleData, int nBytes, const char *pBufferEnd ) { int nAvail = pBufferEnd - pBuffer; int nCopy = MIN( nBytes, nAvail ); Q_memcpy( pBuffer, pSampleData, nCopy ); return nCopy; }
// Load a static copy buffer (g_temppaintbuffer) with the requested number of samples,
// with the first sample(s) in the buffer always set up as the last sample(s) of the previous load.
// Return a pointer to the head of the copy buffer.
// This ensures that interpolating pitch shifters always have the previous sample to reference.
// pChannel: sound's channel data
// sample_load_request: number of samples to load from source data
// pSamplesLoaded: returns the actual number of samples loaded (should always = sample_load_request)
// copyBuf: req'd by GetOutputData, used by some Mixers
// Returns: NULL ptr to data if no samples available, otherwise always fills remainder of copy buffer with
// 0 to pad remainder.
// NOTE: DO NOT MODIFY THIS ROUTINE (KELLYB)
extern ConVar snd_find_channel;
char *CAudioMixerWave::LoadMixBuffer( channel_t *pChannel, int sample_load_request, int *pSamplesLoaded, char copyBuf[AUDIOSOURCE_COPYBUF_SIZE] ) { VPROF( "CAudioMixerWave::LoadMixBuffer" ); int samples_loaded; char *pSample = NULL; char *pData = NULL; int cCopySamps = 0;
// save index of last sample loaded (updated in GetOutputData)
int64 sample_loaded_index = m_sample_loaded_index;
// get data from source (copyBuf is expected to be available for use)
samples_loaded = GetOutputData( (void **)&pData, sample_load_request, copyBuf ); if ( !samples_loaded && sample_load_request ) { // none available, bail out
// 360 might not be able to get samples due to latency of loop seek
// could also be the valid EOF for non-loops (caller keeps polling for data, until no more)
AssertOnce( IsGameConsole() || !m_pData->Source().IsLooped() ); *pSamplesLoaded = 0;
if ( (*snd_find_channel.GetString()) != '\0' ) { char sndname[MAX_PATH]; GetSource()->GetFileName( sndname, sizeof(sndname) ); if ( Q_stristr( sndname, snd_find_channel.GetString() ) != 0 ) { Msg( "%s(%d): Sound '%s' is finished or accumulated too much latency.\n", __FILE__, __LINE__, sndname ); } } return NULL; }
int samplesize = GetMixSampleSize(); const int nTempCopyBufferSize = ( TEMP_COPY_BUFFER_SIZE * sizeof( portable_samplepair_t ) ); char *pCopy = (char *)g_temppaintbuffer; const char *pCopyBufferEnd = pCopy + nTempCopyBufferSize;
Assert( pCopy ); if ( !pCopy ) { Warning( "LoadMixBuffer: no paint buffer\n" ); *pSamplesLoaded = 0; return NULL; }
// TERROR: enabling some checking
if ( IsDebug() ) { // for safety, 360 always validates sample request, due to new xma audio code and possible logic flaws
// PC can expect number of requested samples to be within tolerances due to exisiting aged code
// otherwise buffer overruns cause hard to track random crashes
if ( ( ( sample_load_request + 1 ) * samplesize ) > nTempCopyBufferSize ) { // make sure requested samples will fit in temp buffer.
// if this assert fails, then pitch is too high (ie: > 2.0) or the sample counters have diverged.
// NOTE: to prevent this, pitch should always be capped in MixDataToDevice (but isn't nor are the sample counters).
DevWarning( "LoadMixBuffer: sample load request %d exceeds buffer sizes\n", sample_load_request ); Assert( 0 ); *pSamplesLoaded = 0; return NULL; } }
// copy all samples from pData to copy buffer, set 0th sample to saved previous sample - this ensures
// interpolation pitch shift routines always have a previous sample to reference.
// copy previous sample(s) to head of copy buffer pCopy
// In some cases, we'll need the previous 2 samples. This occurs when
// Rate < 1.0 - in example below, sample 4.86 - 6.48 requires samples 4-7 (previous samples saved are 4 & 5)
/*
Example: rate = 0.81, sampleCount = 3 (ie: # of samples to return )
_____load 3______ ____load 3_______ __load 2__
0 1 2 3 4 5 6 7 sample_index (whole samples)
^ ^ ^ ^ ^ ^ ^ ^ ^ | | | | | | | | | 0 0.81 1.68 2.43 3.24 4.05 4.86 5.67 6.48 m_fsample_index (rate*sample) _______________ ________________ ________________ ^ ^ ^ ^ | | | | m_sample_loaded_index | | m_sample_loaded_index | | m_fsample_index---- ----m_fsample_index
[return 3 samp] [return 3 samp] [return 3 samp] */ pSample = &(pChannel->sample_prev[0]);
// determine how many saved samples we need to copy to head of copy buffer (0,1 or 2)
// so that pitch interpolation will correctly reference samples.
// NOTE: pitch interpolators always reference the sample before and after the indexed sample.
// cCopySamps = sample_max_loaded - floor(m_fsample_index);
if ( sample_loaded_index < 0 || (floor(m_fsample_index) > sample_loaded_index)) { // no samples previously loaded, or
// next sample index is entirely within the next block of samples to be loaded,
// so we won't need any samples from the previous block. (can occur when rate > 2.0)
cCopySamps = 0; } else if ( m_fsample_index < sample_loaded_index ) { // next sample index is entirely within the previous block of samples loaded,
// so we'll need the last 2 samples loaded. (can occur when rate < 1.0)
Assert ( ceil(m_fsample_index + 0.00000001) == sample_loaded_index ); cCopySamps = 2; } else { // next sample index is between the next block and the previously loaded block,
// so we'll need the last sample loaded. (can occur when 1.0 < rate < 2.0)
Assert( floor(m_fsample_index) == sample_loaded_index ); cCopySamps = 1; } Assert( cCopySamps >= 0 && cCopySamps <= 2 );
// point to the sample(s) we are to copy
if ( cCopySamps ) { pSample = cCopySamps == 1 ? pSample + samplesize : pSample; pCopy += AppendToBuffer( pCopy, pSample, samplesize * cCopySamps, pCopyBufferEnd ); }
// copy loaded samples from pData into pCopy
// and update pointer to free space in copy buffer
if ( ( samples_loaded * samplesize ) != 0 && !pData ) { char const *pWavName = ""; CSfxTable *source = pChannel->sfx; char nameBuf[MAX_PATH]; if ( source ) { pWavName = source->getname(nameBuf, sizeof(nameBuf)); } Warning( "CAudioMixerWave::LoadMixBuffer: '%s' samples_loaded * samplesize = %i but pData == NULL\n", pWavName, ( samples_loaded * samplesize ) ); *pSamplesLoaded = 0; return NULL; }
pCopy += AppendToBuffer( pCopy, pData, samples_loaded * samplesize, pCopyBufferEnd ); // if we loaded fewer samples than we wanted to, and we're not
// delaying, load more samples or, if we run out of samples from non-looping source,
// pad copy buffer.
if ( samples_loaded < sample_load_request ) { // retry loading source data until 0 bytes returned, or we've loaded enough data.
// if we hit 0 bytes, fill remaining space in copy buffer with 0 and exit
int samples_load_extra; int samples_loaded_retry = -1; for ( int k = 0; (k < 10000 && samples_loaded_retry && samples_loaded < sample_load_request); k++ ) { // how many more samples do we need to satisfy load request
samples_load_extra = sample_load_request - samples_loaded; samples_loaded_retry = GetOutputData( (void**)&pData, samples_load_extra, copyBuf );
// copy loaded samples from pData into pCopy
if ( samples_loaded_retry ) { if ( ( samples_loaded_retry * samplesize ) != 0 && !pData ) { Warning( "CAudioMixerWave::LoadMixBuffer: samples_loaded_retry * samplesize = %i but pData == NULL\n", ( samples_loaded_retry * samplesize ) ); *pSamplesLoaded = 0; return NULL; }
pCopy += AppendToBuffer( pCopy, pData, samples_loaded_retry * samplesize, pCopyBufferEnd ); samples_loaded += samples_loaded_retry; } } }
// if we still couldn't load the requested samples, fill rest of copy buffer with 0
if ( samples_loaded < sample_load_request ) { // should always be able to get as many samples as we request from looping sound sources
AssertOnce ( IsGameConsole() || !m_pData->Source().IsLooped() );
// these samples are filled with 0, not loaded.
// non-looping source hit end of data, fill rest of g_temppaintbuffer with 0
int samples_zero_fill = sample_load_request - samples_loaded;
int nAvail = pCopyBufferEnd - pCopy; int nFill = samples_zero_fill * samplesize; nFill = MIN( nAvail, nFill ); Q_memset( pCopy, 0, nFill ); pCopy += nFill; samples_loaded += samples_zero_fill; }
if ( samples_loaded >= 2 ) { // always save last 2 samples from copy buffer to channel
// (we'll need 0,1 or 2 samples as start of next buffer for interpolation)
Assert( sizeof( pChannel->sample_prev ) >= samplesize*2 ); pSample = pCopy - samplesize*2; Q_memcpy( &(pChannel->sample_prev[0]), pSample, samplesize*2 ); }
// this routine must always return as many samples loaded (or zeros) as requested.
Assert( samples_loaded == sample_load_request );
*pSamplesLoaded = samples_loaded;
return (char *)g_temppaintbuffer; }
// Helper routine to round (rate * samples) down to fixed point precision
double RoundToFixedPoint( double rate, int samples, bool bInterpolated_pitch ) { fixedint fixp_rate; int64 d64_newSamps; // need to use double precision int to avoid overflow
double newSamps;
// get rate, in fixed point, determine new samples at rate
if ( bInterpolated_pitch ) fixp_rate = FIX_FLOAT14(rate); // 14 bit iterator
else fixp_rate = FIX_FLOAT(rate); // 28 bit iterator
// get number of new samples, convert back to float
d64_newSamps = (int64)fixp_rate * (int64)samples;
if ( bInterpolated_pitch ) newSamps = FIX_14TODOUBLE(d64_newSamps); else newSamps = FIX_TODOUBLE(d64_newSamps);
return newSamps; }
extern double MIX_GetMaxRate( double rate, int sampleCount );
// Helper routine for MixDataToDevice:
// Compute number of new samples to load at 'rate' so we can
// output 'sampleCount' samples, from m_fsample_index to fsample_index_end (inclusive)
// rate: sample rate
// sampleCountOut: number of samples calling routine needs to output
// bInterpolated_pitch: true if mixers use interpolating pitch shifters
int CAudioMixerWave::GetSampleLoadRequest( double rate, int sampleCountOut, bool bInterpolated_pitch ) { double fsample_index_end; // index of last sample we'll need
int64 sample_index_high; // rounded up last sample index
int sample_load_request; // number of samples to load
// NOTE: we must use fixed point math here, identical to math in mixers, to make sure
// we predict iteration results exactly.
// get floating point sample index of last sample we'll need
fsample_index_end = m_fsample_index + RoundToFixedPoint( rate, sampleCountOut-1, bInterpolated_pitch );
// always round up to ensure we'll have that n+1 sample for interpolation
sample_index_high = (int64)( ceil( fsample_index_end ) ); // make sure we always round the floating point index up by at least 1 sample,
// ie: make sure integer sample_index_high is greater than floating point sample index
if ( (double)sample_index_high <= fsample_index_end ) { sample_index_high++; } Assert ( sample_index_high > fsample_index_end );
// attempt to load enough samples so we can reach sample_index_high sample.
sample_load_request = sample_index_high - m_sample_loaded_index; Assert( sample_index_high >= m_sample_loaded_index );
// NOTE: we can actually return 0 samples to load if rate < 1.0
// and sampleCountOut == 1. In this case, the output sample
// is computed from the previously saved buffer data.
return sample_load_request; }
int CAudioMixerWave::MixDataToDevice( channel_t *pChannel, int sampleCount, int outputRate, int outputOffset ) { return MixDataToDevice_( pChannel, sampleCount, outputRate, outputOffset, false ); }
//-----------------------------------------------------------------------------
// Purpose: The device calls this to request data. The mixer must provide the
// full amount of samples or have silence in its output stream.
// Mix channel to all active paintbuffers.
// NOTE: cannot be called consecutively to mix into multiple paintbuffers!
// Input : *pDevice - requesting device
// sampleCount - number of samples at the output rate - should never be more than size of paintbuffer.
// outputRate - sampling rate of the request
// outputOffset - starting offset to mix to in paintbuffer
// bskipallmixing - true if we just want to skip ahead in source data
// Output : Returns true to keep mixing, false to delete this mixer
// NOTE: DO NOT MODIFY THIS ROUTINE (KELLYB)
//-----------------------------------------------------------------------------
int CAudioMixerWave::MixDataToDevice_( channel_t *pChannel, int sampleCount, int outputRate, int outputOffset, bool bSkipAllMixing ) { // shouldn't be playing this if finished, but return if we are
if ( m_finished ) return 0;
// save this to compute total output
int startingOffset = outputOffset;
double inputRate = (pChannel->pitch * m_pData->Source().SampleRate()); double rate_max = inputRate / outputRate; // If we are terminating this wave prematurely, then make sure we detect the limit
if ( m_forcedEndSample ) { // How many total input samples will we need?
int samplesRequired = (int)(sampleCount * rate_max); // will this hit the end?
if ( m_fsample_index + samplesRequired >= m_forcedEndSample ) { // yes, mark finished and truncate the sample request
m_finished = true; sampleCount = (int)( (m_forcedEndSample - m_fsample_index) / rate_max ); } }
/*
Example: rate = 1.2, sampleCount = 3 (ie: # of samples to return )
______load 4 samples_____ ________load 4 samples____ ___load 3 samples__
0 1 2 3 4 5 6 7 8 9 10 sample_index (whole samples)
^ ^ ^ ^ ^ ^ ^ ^ ^ | | | | | | | | | 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 m_fsample_index (rate*sample) _______return 3_______ _______return 3_______ _______return 3__________ ^ ^ | | m_sample_loaded_index----- | (after first load 4 samples, this is where pointers are) m_fsample_index--------- */ while ( sampleCount > 0 ) { bool advanceSample = true; int samples_loaded, outputSampleCount; char *pData = NULL; double fsample_index_prev = m_fsample_index; // save so we can modify in LoadMixBuffer
bool bInterpolated_pitch = FUseHighQualityPitch( pChannel ); double rate;
VPROF_( bInterpolated_pitch ? "CAudioMixerWave::MixData innerloop interpolated" : "CAudioMixerWave::MixData innerloop not interpolated", 2, VPROF_BUDGETGROUP_OTHER_SOUND, false, BUDGETFLAG_OTHER );
// process samples in paintbuffer-sized batches
int sampleCountOut = MIN( sampleCount, PAINTBUFFER_SIZE ); // cap rate so that we never overflow the input copy buffer.
rate = MIX_GetMaxRate( rate_max, sampleCountOut );
if ( m_delaySamples > 0 ) { // If we are preceding sample playback with a delay,
// just fill data buffer with 0 value samples.
// Because there is no pitch shift applied, outputSampleCount == sampleCountOut.
int num_zero_samples = MIN( m_delaySamples, sampleCountOut );
// Decrement delay counter
m_delaySamples -= num_zero_samples;
int sampleSize = GetMixSampleSize(); int readBytes = sampleSize * num_zero_samples;
// make sure we don't overflow temp copy buffer (g_temppaintbuffer)
Assert ( (TEMP_COPY_BUFFER_SIZE * sizeof(portable_samplepair_t)) > readBytes ); pData = (char *)g_temppaintbuffer;
// Now copy in some zeroes
memset( pData, 0, readBytes ); // we don't pitch shift these samples, so outputSampleCount == samples_loaded
samples_loaded = num_zero_samples; outputSampleCount = num_zero_samples;
advanceSample = false;
// the zero samples are at the output rate, so set the input/output ratio to 1.0
rate = 1.0f; } else { // ask the source for the data...
// temp buffer req'd by some data loaders
char copyBuf[AUDIOSOURCE_COPYBUF_SIZE];
// compute number of new samples to load at 'rate' so we can
// output 'sampleCount' samples, from m_fsample_index to fsample_index_end (inclusive)
int sample_load_request = GetSampleLoadRequest( rate, sampleCountOut, bInterpolated_pitch ); Assert( sample_load_request >= 0 );
// return pointer to a new copy buffer (g_temppaintbuffer) loaded with sample_load_request samples +
// first sample(s), which are always the last sample(s) from the previous load.
// Always returns sample_load_request samples. Updates m_sample_max_loaded, m_sample_loaded_index.
pData = LoadMixBuffer( pChannel, sample_load_request, &samples_loaded, copyBuf );
// LoadMixBuffer should always return requested samples.
Assert ( !pData || ( samples_loaded == sample_load_request ) );
outputSampleCount = sampleCountOut; } // no samples available
if ( !pData ) { break; }
SND_MouthEnvelopeFollower( pChannel, pData, outputSampleCount ); // get sample fraction from 0th sample in copy buffer
double sampleFraction = m_fsample_index - floor( m_fsample_index ); // if just skipping samples in source, don't mix, just keep reading
if ( !bSkipAllMixing ) { // mix this data to all active paintbuffers
// Verify that we won't get a buffer overrun.
Assert( floor( sampleFraction + RoundToFixedPoint(rate, (outputSampleCount-1), bInterpolated_pitch) ) <= samples_loaded );
int saveIndex = MIX_GetCurrentPaintbufferIndex(); for ( int i = 0 ; i < CPAINTBUFFERS; i++ ) { if ( g_paintBuffers[i].factive ) { // mix channel into all active paintbuffers
MIX_SetCurrentPaintbuffer( i );
Mix( pChannel, // Channel.
pData, // Input buffer.
outputOffset, // Output position.
FIX_FLOAT( sampleFraction ), // Iterators.
FIX_FLOAT( rate ), outputSampleCount, 0 ); } } MIX_SetCurrentPaintbuffer( saveIndex ); }
if ( advanceSample ) { // update sample index to point to the next sample to output
// if we're not delaying
// Use fixed point math to make sure we exactly match results of mix
// iterators.
m_fsample_index = fsample_index_prev + RoundToFixedPoint( rate, outputSampleCount, bInterpolated_pitch ); }
outputOffset += outputSampleCount; sampleCount -= outputSampleCount; }
// Did we run out of samples? if so, mark finished
if ( sampleCount > 0 ) { m_finished = true; }
// total number of samples mixed !!! at the output clock rate !!!
return outputOffset - startingOffset; }
bool CAudioMixerWave::ShouldContinueMixing( void ) { return !m_finished; }
float CAudioMixerWave::ModifyPitch( float pitch ) { return pitch; }
float CAudioMixerWave::GetVolumeScale( void ) { return 1.0f; }
|