|
|
#ifndef CRYPTOPP_INTEGER_H
#define CRYPTOPP_INTEGER_H
/** \file */
#include "cryptlib.h"
#include "secblock.h"
#include <iosfwd>
#include <algorithm>
NAMESPACE_BEGIN(CryptoPP)
struct InitializeInteger // used to initialize static variables
{ InitializeInteger(); };
typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock;
//! multiple precision integer and basic arithmetics
/*! This class can represent positive and negative integers
with absolute value less than (256**sizeof(word)) ** (256**sizeof(int)). \nosubgrouping */ class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object { public: //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
//@{
//! division by zero exception
class DivideByZero : public Exception { public: DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {} };
//!
class RandomNumberNotFound : public Exception { public: RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {} };
//!
enum Sign {POSITIVE=0, NEGATIVE=1};
//!
enum Signedness { //!
UNSIGNED, //!
SIGNED};
//!
enum RandomNumberType { //!
ANY, //!
PRIME}; //@}
//! \name CREATORS
//@{
//! creates the zero integer
Integer();
//! copy constructor
Integer(const Integer& t);
//! convert from signed long
Integer(signed long value);
//! convert from lword
Integer(Sign s, lword value);
//! convert from two words
Integer(Sign s, word highWord, word lowWord);
//! convert from string
/*! str can be in base 2, 8, 10, or 16. Base is determined by a
case insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10. */ explicit Integer(const char *str); explicit Integer(const wchar_t *str);
//! convert from big-endian byte array
Integer(const byte *encodedInteger, size_t byteCount, Signedness s=UNSIGNED);
//! convert from big-endian form stored in a BufferedTransformation
Integer(BufferedTransformation &bt, size_t byteCount, Signedness s=UNSIGNED);
//! convert from BER encoded byte array stored in a BufferedTransformation object
explicit Integer(BufferedTransformation &bt);
//! create a random integer
/*! The random integer created is uniformly distributed over [0, 2**bitcount). */ Integer(RandomNumberGenerator &rng, size_t bitcount);
//! avoid calling constructors for these frequently used integers
static const Integer & CRYPTOPP_API Zero(); //! avoid calling constructors for these frequently used integers
static const Integer & CRYPTOPP_API One(); //! avoid calling constructors for these frequently used integers
static const Integer & CRYPTOPP_API Two();
//! create a random integer of special type
/*! Ideally, the random integer created should be uniformly distributed
over {x | min <= x <= max and x is of rnType and x % mod == equiv}. However the actual distribution may not be uniform because sequential search is used to find an appropriate number from a random starting point. May return (with very small probability) a pseudoprime when a prime is requested and max > lastSmallPrime*lastSmallPrime (lastSmallPrime is declared in nbtheory.h). \throw RandomNumberNotFound if the set is empty. */ Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
//! return the integer 2**e
static Integer CRYPTOPP_API Power2(size_t e); //@}
//! \name ENCODE/DECODE
//@{
//! minimum number of bytes to encode this integer
/*! MinEncodedSize of 0 is 1 */ size_t MinEncodedSize(Signedness=UNSIGNED) const; //! encode in big-endian format
/*! unsigned means encode absolute value, signed means encode two's complement if negative.
if outputLen < MinEncodedSize, the most significant bytes will be dropped if outputLen > MinEncodedSize, the most significant bytes will be padded */ void Encode(byte *output, size_t outputLen, Signedness=UNSIGNED) const; //!
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness=UNSIGNED) const;
//! encode using Distinguished Encoding Rules, put result into a BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
//! encode absolute value as big-endian octet string
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
//! encode absolute value in OpenPGP format, return length of output
size_t OpenPGPEncode(byte *output, size_t bufferSize) const; //! encode absolute value in OpenPGP format, put result into a BufferedTransformation object
size_t OpenPGPEncode(BufferedTransformation &bt) const;
//!
void Decode(const byte *input, size_t inputLen, Signedness=UNSIGNED); //!
//* Precondition: bt.MaxRetrievable() >= inputLen
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness=UNSIGNED);
//!
void BERDecode(const byte *input, size_t inputLen); //!
void BERDecode(BufferedTransformation &bt);
//! decode nonnegative value as big-endian octet string
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
class OpenPGPDecodeErr : public Exception { public: OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {} };
//!
void OpenPGPDecode(const byte *input, size_t inputLen); //!
void OpenPGPDecode(BufferedTransformation &bt); //@}
//! \name ACCESSORS
//@{
//! return true if *this can be represented as a signed long
bool IsConvertableToLong() const; //! return equivalent signed long if possible, otherwise undefined
signed long ConvertToLong() const;
//! number of significant bits = floor(log2(abs(*this))) + 1
unsigned int BitCount() const; //! number of significant bytes = ceiling(BitCount()/8)
unsigned int ByteCount() const; //! number of significant words = ceiling(ByteCount()/sizeof(word))
unsigned int WordCount() const;
//! return the i-th bit, i=0 being the least significant bit
bool GetBit(size_t i) const; //! return the i-th byte
byte GetByte(size_t i) const; //! return n lowest bits of *this >> i
lword GetBits(size_t i, size_t n) const;
//!
bool IsZero() const {return !*this;} //!
bool NotZero() const {return !IsZero();} //!
bool IsNegative() const {return sign == NEGATIVE;} //!
bool NotNegative() const {return !IsNegative();} //!
bool IsPositive() const {return NotNegative() && NotZero();} //!
bool NotPositive() const {return !IsPositive();} //!
bool IsEven() const {return GetBit(0) == 0;} //!
bool IsOdd() const {return GetBit(0) == 1;} //@}
//! \name MANIPULATORS
//@{
//!
Integer& operator=(const Integer& t);
//!
Integer& operator+=(const Integer& t); //!
Integer& operator-=(const Integer& t); //!
Integer& operator*=(const Integer& t) {return *this = Times(t);} //!
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);} //!
Integer& operator%=(const Integer& t) {return *this = Modulo(t);} //!
Integer& operator/=(word t) {return *this = DividedBy(t);} //!
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));}
//!
Integer& operator<<=(size_t); //!
Integer& operator>>=(size_t);
//!
void Randomize(RandomNumberGenerator &rng, size_t bitcount); //!
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max); //! set this Integer to a random element of {x | min <= x <= max and x is of rnType and x % mod == equiv}
/*! returns false if the set is empty */ bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs); void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs) { if (!GenerateRandomNoThrow(rng, params)) throw RandomNumberNotFound(); }
//! set the n-th bit to value
void SetBit(size_t n, bool value=1); //! set the n-th byte to value
void SetByte(size_t n, byte value);
//!
void Negate(); //!
void SetPositive() {sign = POSITIVE;} //!
void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
//!
void swap(Integer &a); //@}
//! \name UNARY OPERATORS
//@{
//!
bool operator!() const; //!
Integer operator+() const {return *this;} //!
Integer operator-() const; //!
Integer& operator++(); //!
Integer& operator--(); //!
Integer operator++(int) {Integer temp = *this; ++*this; return temp;} //!
Integer operator--(int) {Integer temp = *this; --*this; return temp;} //@}
//! \name BINARY OPERATORS
//@{
//! signed comparison
/*! \retval -1 if *this < a
\retval 0 if *this = a \retval 1 if *this > a */ int Compare(const Integer& a) const;
//!
Integer Plus(const Integer &b) const; //!
Integer Minus(const Integer &b) const; //!
Integer Times(const Integer &b) const; //!
Integer DividedBy(const Integer &b) const; //!
Integer Modulo(const Integer &b) const; //!
Integer DividedBy(word b) const; //!
word Modulo(word b) const;
//!
Integer operator>>(size_t n) const {return Integer(*this)>>=n;} //!
Integer operator<<(size_t n) const {return Integer(*this)<<=n;} //@}
//! \name OTHER ARITHMETIC FUNCTIONS
//@{
//!
Integer AbsoluteValue() const; //!
Integer Doubled() const {return Plus(*this);} //!
Integer Squared() const {return Times(*this);} //! extract square root, if negative return 0, else return floor of square root
Integer SquareRoot() const; //! return whether this integer is a perfect square
bool IsSquare() const;
//! is 1 or -1
bool IsUnit() const; //! return inverse if 1 or -1, otherwise return 0
Integer MultiplicativeInverse() const;
//! modular multiplication
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m); //! modular exponentiation
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d); //! use a faster division algorithm when divisor is short
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
//! returns same result as Divide(r, q, a, Power2(n)), but faster
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
//! greatest common divisor
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n); //! calculate multiplicative inverse of *this mod n
Integer InverseMod(const Integer &n) const; //!
word InverseMod(word n) const; //@}
//! \name INPUT/OUTPUT
//@{
//!
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a); //!
friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a); //@}
private: friend class ModularArithmetic; friend class MontgomeryRepresentation; friend class HalfMontgomeryRepresentation;
Integer(word value, size_t length);
int PositiveCompare(const Integer &t) const; friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b); friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b); friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b); friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor);
IntegerSecBlock reg; Sign sign; };
//!
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;} //!
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;} //!
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;} //!
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;} //!
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;} //!
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;} //!
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);} //!
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);} //!
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);} //!
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);} //!
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);} //!
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);} //!
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
NAMESPACE_END
#ifndef __BORLANDC__
NAMESPACE_BEGIN(std) inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b) { a.swap(b); } NAMESPACE_END #endif
#endif
|