|
|
//========= Copyright 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "sharedInterface.h"
#include "materialsystem/imaterial.h"
#include <keyvalues.h>
#include "materialsystem/imaterialvar.h"
#include "functionproxy.h"
#include "imaterialproxydict.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
class C_BaseEntity;
//-----------------------------------------------------------------------------
// Adds two vars...
//-----------------------------------------------------------------------------
class CAddProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity ); };
bool CAddProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { // Requires 2 args..
bool ok = CFunctionProxy::Init( pMaterial, pKeyValues ); ok = ok && m_pSrc2; return ok; }
void CAddProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pSrc2 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a, b, c; m_pSrc1->GetVecValue( a.Base(), vecSize ); m_pSrc2->GetVecValue( b.Base(), vecSize ); VectorAdd( a, b, c ); m_pResult->SetVecValue( c.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: SetFloatResult( m_pSrc1->GetFloatValue() + m_pSrc2->GetFloatValue() ); break;
case MATERIAL_VAR_TYPE_INT: m_pResult->SetFloatValue( m_pSrc1->GetIntValue() + m_pSrc2->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CAddProxy, Add );
//-----------------------------------------------------------------------------
// modulo
//-----------------------------------------------------------------------------
class CModProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity ); };
bool CModProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { // Requires 2 args..
bool ok = CFunctionProxy::Init( pMaterial, pKeyValues ); ok = ok && m_pSrc2; return ok; }
void CModProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pSrc2 && m_pResult ); SetFloatResult( fmod( m_pSrc1->GetFloatValue(), m_pSrc2->GetFloatValue() ) ); }
EXPOSE_MATERIAL_PROXY( CModProxy, Modulo );
//-----------------------------------------------------------------------------
// Subtracts two vars...
//-----------------------------------------------------------------------------
class CSubtractProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity ); };
bool CSubtractProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { // Requires 2 args..
bool ok = CFunctionProxy::Init( pMaterial, pKeyValues ); ok = ok && m_pSrc2; return ok; }
void CSubtractProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pSrc2 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a, b, c; m_pSrc1->GetVecValue( a.Base(), vecSize ); m_pSrc2->GetVecValue( b.Base(), vecSize ); VectorSubtract( a, b, c ); m_pResult->SetVecValue( c.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: SetFloatResult( m_pSrc1->GetFloatValue() - m_pSrc2->GetFloatValue() ); break;
case MATERIAL_VAR_TYPE_INT: m_pResult->SetFloatValue( m_pSrc1->GetIntValue() - m_pSrc2->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CSubtractProxy, Subtract );
//-----------------------------------------------------------------------------
// Multiplies two vars...
//-----------------------------------------------------------------------------
class CMultiplyProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity ); };
bool CMultiplyProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { // Requires 2 args..
bool ok = CFunctionProxy::Init( pMaterial, pKeyValues ); ok = ok && m_pSrc2; return ok; }
void CMultiplyProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pSrc2 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a, b, c; m_pSrc1->GetVecValue( a.Base(), vecSize ); m_pSrc2->GetVecValue( b.Base(), vecSize ); VectorMultiply( a, b, c ); m_pResult->SetVecValue( c.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: SetFloatResult( m_pSrc1->GetFloatValue() * m_pSrc2->GetFloatValue() ); break;
case MATERIAL_VAR_TYPE_INT: m_pResult->SetFloatValue( m_pSrc1->GetIntValue() * m_pSrc2->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CMultiplyProxy, Multiply );
//-----------------------------------------------------------------------------
// divides two vars...
//-----------------------------------------------------------------------------
class CDivideProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity ); };
bool CDivideProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { // Requires 2 args..
bool ok = CFunctionProxy::Init( pMaterial, pKeyValues ); ok = ok && m_pSrc2; return ok; }
void CDivideProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pSrc2 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a, b, c; m_pSrc1->GetVecValue( a.Base(), vecSize ); m_pSrc2->GetVecValue( b.Base(), vecSize ); VectorDivide( a, b, c ); m_pResult->SetVecValue( c.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: if (m_pSrc2->GetFloatValue() != 0) { SetFloatResult( m_pSrc1->GetFloatValue() / m_pSrc2->GetFloatValue() ); } else { SetFloatResult( m_pSrc1->GetFloatValue() ); } break;
case MATERIAL_VAR_TYPE_INT: if (m_pSrc2->GetIntValue() != 0) { m_pResult->SetFloatValue( m_pSrc1->GetIntValue() / m_pSrc2->GetIntValue() ); } else { m_pResult->SetFloatValue( m_pSrc1->GetIntValue() ); } break; } }
EXPOSE_MATERIAL_PROXY( CDivideProxy, Divide );
//-----------------------------------------------------------------------------
// clamps a var...
//-----------------------------------------------------------------------------
class CClampProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity );
private: CFloatInput m_Min; CFloatInput m_Max; };
bool CClampProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CFunctionProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_Min.Init( pMaterial, pKeyValues, "min", 0 )) return false;
if (!m_Max.Init( pMaterial, pKeyValues, "max", 1 )) return false;
return true; }
void CClampProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
float flMin = m_Min.GetFloat(); float flMax = m_Max.GetFloat();
if (flMin > flMax) { float flTemp = flMin; flMin = flMax; flMax = flTemp; }
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a; m_pSrc1->GetVecValue( a.Base(), vecSize ); for (int i = 0; i < vecSize; ++i) { if (a[i] < flMin) a[i] = flMin; else if (a[i] > flMax) a[i] = flMax; } m_pResult->SetVecValue( a.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: { float src = m_pSrc1->GetFloatValue(); if (src < flMin) src = flMin; else if (src > flMax) src = flMax; SetFloatResult( src ); } break;
case MATERIAL_VAR_TYPE_INT: { int src = m_pSrc1->GetIntValue(); if (src < flMin) src = flMin; else if (src > flMax) src = flMax; m_pResult->SetIntValue( src ); } break; } }
EXPOSE_MATERIAL_PROXY( CClampProxy, Clamp );
//-----------------------------------------------------------------------------
// Creates a sinusoid
//-----------------------------------------------------------------------------
// sinePeriod: time that it takes to go through whole sine wave in seconds (default: 1.0f)
// sineMax : the max value for the sine wave (default: 1.0f )
// sineMin: the min value for the sine wave (default: 0.0f )
class CSineProxy : public CResultProxy { public: virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pC_BaseEntity );
private: CFloatInput m_SinePeriod; CFloatInput m_SineMax; CFloatInput m_SineMin; CFloatInput m_SineTimeOffset; };
bool CSineProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CResultProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_SinePeriod.Init( pMaterial, pKeyValues, "sinePeriod", 1.0f )) return false; if (!m_SineMax.Init( pMaterial, pKeyValues, "sineMax", 1.0f )) return false; if (!m_SineMin.Init( pMaterial, pKeyValues, "sineMin", 0.0f )) return false; if (!m_SineTimeOffset.Init( pMaterial, pKeyValues, "timeOffset", 0.0f )) return false;
return true; }
void CSineProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pResult );
float flValue; float flSineTimeOffset = m_SineTimeOffset.GetFloat(); float flSineMax = m_SineMax.GetFloat(); float flSineMin = m_SineMin.GetFloat(); float flSinePeriod = m_SinePeriod.GetFloat(); if (flSinePeriod == 0) flSinePeriod = 1;
// get a value in [0,1]
flValue = ( sin( 2.0f * M_PI * (gpGlobals->curtime - flSineTimeOffset) / flSinePeriod ) * 0.5f ) + 0.5f; // get a value in [min,max]
flValue = ( flSineMax - flSineMin ) * flValue + flSineMin; SetFloatResult( flValue ); }
EXPOSE_MATERIAL_PROXY( CSineProxy, Sine );
//-----------------------------------------------------------------------------
// copies a var...
//-----------------------------------------------------------------------------
class CEqualsProxy : public CFunctionProxy { public: void OnBind( void *pC_BaseEntity ); };
void CEqualsProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a; m_pSrc1->GetVecValue( a.Base(), vecSize ); m_pResult->SetVecValue( a.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: SetFloatResult( m_pSrc1->GetFloatValue() ); break;
case MATERIAL_VAR_TYPE_INT: m_pResult->SetIntValue( m_pSrc1->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CEqualsProxy, Equals );
//-----------------------------------------------------------------------------
// Get the fractional part of a var
//-----------------------------------------------------------------------------
class CFracProxy : public CFunctionProxy { public: void OnBind( void *pC_BaseEntity ); };
void CFracProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a; m_pSrc1->GetVecValue( a.Base(), vecSize ); a[0] -= ( float )( int )a[0]; a[1] -= ( float )( int )a[1]; a[2] -= ( float )( int )a[2]; m_pResult->SetVecValue( a.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: { float a = m_pSrc1->GetFloatValue(); a -= ( int )a; SetFloatResult( a ); } break;
case MATERIAL_VAR_TYPE_INT: // don't do anything besides assignment!
m_pResult->SetIntValue( m_pSrc1->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CFracProxy, Frac );
//-----------------------------------------------------------------------------
// Get the Integer part of a var
//-----------------------------------------------------------------------------
class CIntProxy : public CFunctionProxy { public: void OnBind( void *pC_BaseEntity ); };
void CIntProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector a; m_pSrc1->GetVecValue( a.Base(), vecSize ); a[0] = ( float )( int )a[0]; a[1] = ( float )( int )a[1]; a[2] = ( float )( int )a[2]; m_pResult->SetVecValue( a.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: { float a = m_pSrc1->GetFloatValue(); a = ( float )( int )a; SetFloatResult( a ); } break;
case MATERIAL_VAR_TYPE_INT: // don't do anything besides assignment!
m_pResult->SetIntValue( m_pSrc1->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CIntProxy, Int );
//-----------------------------------------------------------------------------
// Linear ramp proxy
//-----------------------------------------------------------------------------
class CLinearRampProxy : public CResultProxy { public: virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pC_BaseEntity );
private: CFloatInput m_Rate; CFloatInput m_InitialValue; };
bool CLinearRampProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CResultProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_Rate.Init( pMaterial, pKeyValues, "rate", 1 )) return false;
if (!m_InitialValue.Init( pMaterial, pKeyValues, "initialValue", 0 )) return false;
return true; }
void CLinearRampProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pResult );
float flValue; // get a value in [0,1]
flValue = m_Rate.GetFloat() * gpGlobals->curtime + m_InitialValue.GetFloat(); SetFloatResult( flValue ); }
EXPOSE_MATERIAL_PROXY( CLinearRampProxy, LinearRamp );
//-----------------------------------------------------------------------------
// Uniform noise proxy
//-----------------------------------------------------------------------------
class CUniformNoiseProxy : public CResultProxy { public: virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pC_BaseEntity );
private: CFloatInput m_flMinVal; CFloatInput m_flMaxVal; };
bool CUniformNoiseProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CResultProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_flMinVal.Init( pMaterial, pKeyValues, "minVal", 0 )) return false;
if (!m_flMaxVal.Init( pMaterial, pKeyValues, "maxVal", 1 )) return false;
return true; }
void CUniformNoiseProxy::OnBind( void *pC_BaseEntity ) { SetFloatResult( random->RandomFloat( m_flMinVal.GetFloat(), m_flMaxVal.GetFloat() ) ); }
EXPOSE_MATERIAL_PROXY( CUniformNoiseProxy, UniformNoise );
//-----------------------------------------------------------------------------
// Gaussian noise proxy
//-----------------------------------------------------------------------------
class CGaussianNoiseProxy : public CResultProxy { public: virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pC_BaseEntity );
private: CFloatInput m_Mean; CFloatInput m_StdDev; CFloatInput m_flMinVal; CFloatInput m_flMaxVal; };
bool CGaussianNoiseProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CResultProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_Mean.Init( pMaterial, pKeyValues, "mean", 0.0f )) return false;
if (!m_StdDev.Init( pMaterial, pKeyValues, "halfwidth", 1.0f )) return false;
if (!m_flMinVal.Init( pMaterial, pKeyValues, "minVal", -FLT_MAX )) return false;
if (!m_flMaxVal.Init( pMaterial, pKeyValues, "maxVal", FLT_MAX )) return false;
return true; }
void CGaussianNoiseProxy::OnBind( void *pC_BaseEntity ) { float flMean = m_Mean.GetFloat(); float flStdDev = m_StdDev.GetFloat(); float flVal = randomgaussian->RandomFloat( flMean, flStdDev ); float flMaxVal = m_flMaxVal.GetFloat(); float flMinVal = m_flMinVal.GetFloat();
if (flMinVal > flMaxVal) { float flTemp = flMinVal; flMinVal = flMaxVal; flMaxVal = flTemp; }
// clamp
if (flVal < flMinVal) flVal = flMinVal; else if ( flVal > flMaxVal ) flVal = flMaxVal;
SetFloatResult( flVal ); }
EXPOSE_MATERIAL_PROXY( CGaussianNoiseProxy, GaussianNoise );
//-----------------------------------------------------------------------------
// Exponential proxy
//-----------------------------------------------------------------------------
class CExponentialProxy : public CFunctionProxy { public: virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pC_BaseEntity );
private: CFloatInput m_Scale; CFloatInput m_Offset; CFloatInput m_flMinVal; CFloatInput m_flMaxVal; };
bool CExponentialProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CFunctionProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_Scale.Init( pMaterial, pKeyValues, "scale", 1.0f )) return false;
if (!m_Offset.Init( pMaterial, pKeyValues, "offset", 0.0f )) return false;
if (!m_flMinVal.Init( pMaterial, pKeyValues, "minVal", -FLT_MAX )) return false;
if (!m_flMaxVal.Init( pMaterial, pKeyValues, "maxVal", FLT_MAX )) return false;
return true; }
void CExponentialProxy::OnBind( void *pC_BaseEntity ) { float flVal = m_Scale.GetFloat() * exp(m_pSrc1->GetFloatValue( ) + m_Offset.GetFloat());
float flMaxVal = m_flMaxVal.GetFloat(); float flMinVal = m_flMinVal.GetFloat();
if (flMinVal > flMaxVal) { float flTemp = flMinVal; flMinVal = flMaxVal; flMaxVal = flTemp; }
// clamp
if (flVal < flMinVal) flVal = flMinVal; else if ( flVal > flMaxVal ) flVal = flMaxVal;
SetFloatResult( flVal ); }
EXPOSE_MATERIAL_PROXY( CExponentialProxy, Exponential );
//-----------------------------------------------------------------------------
// Absolute value proxy
//-----------------------------------------------------------------------------
class CAbsProxy : public CFunctionProxy { public: virtual void OnBind( void *pC_BaseEntity ); };
void CAbsProxy::OnBind( void *pC_BaseEntity ) { SetFloatResult( fabs(m_pSrc1->GetFloatValue( )) ); }
EXPOSE_MATERIAL_PROXY( CAbsProxy, Abs );
//-----------------------------------------------------------------------------
// Empty proxy-- used to comment out large proxy blocks
//-----------------------------------------------------------------------------
class CEmptyProxy : public IMaterialProxy { public: CEmptyProxy() {} virtual ~CEmptyProxy() {} virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { return true; } virtual void OnBind( void *pC_BaseEntity ) {} virtual void Release( void ) { delete this; } virtual IMaterial *GetMaterial() { return NULL; } };
EXPOSE_MATERIAL_PROXY( CEmptyProxy, Empty );
//-----------------------------------------------------------------------------
// Comparison proxy
//-----------------------------------------------------------------------------
class CLessOrEqualProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity );
private: IMaterialVar *m_pLessVar; IMaterialVar *m_pGreaterVar; };
bool CLessOrEqualProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { char const* pLessEqualVar = pKeyValues->GetString( "lessEqualVar" ); if( !pLessEqualVar ) return false;
bool foundVar; m_pLessVar = pMaterial->FindVar( pLessEqualVar, &foundVar, true ); if( !foundVar ) return false;
char const* pGreaterVar = pKeyValues->GetString( "greaterVar" ); if( !pGreaterVar ) return false;
foundVar; m_pGreaterVar = pMaterial->FindVar( pGreaterVar, &foundVar, true ); if( !foundVar ) return false;
// Compare 2 args..
bool ok = CFunctionProxy::Init( pMaterial, pKeyValues ); ok = ok && m_pSrc2; return ok; }
void CLessOrEqualProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pSrc2 && m_pLessVar && m_pGreaterVar && m_pResult );
IMaterialVar *pSourceVar; if (m_pSrc1->GetFloatValue() <= m_pSrc2->GetFloatValue()) { pSourceVar = m_pLessVar; } else { pSourceVar = m_pGreaterVar; }
int vecSize = 0; MaterialVarType_t resultType = m_pResult->GetType(); if (resultType == MATERIAL_VAR_TYPE_VECTOR) { if (m_ResultVecComp >= 0) resultType = MATERIAL_VAR_TYPE_FLOAT; vecSize = m_pResult->VectorSize(); } else if (resultType == MATERIAL_VAR_TYPE_UNDEFINED) { resultType = pSourceVar->GetType(); if (resultType == MATERIAL_VAR_TYPE_VECTOR) { vecSize = pSourceVar->VectorSize(); } }
switch( resultType ) { case MATERIAL_VAR_TYPE_VECTOR: { Vector src; pSourceVar->GetVecValue( src.Base(), vecSize ); m_pResult->SetVecValue( src.Base(), vecSize ); } break;
case MATERIAL_VAR_TYPE_FLOAT: SetFloatResult( pSourceVar->GetFloatValue() ); break;
case MATERIAL_VAR_TYPE_INT: m_pResult->SetFloatValue( pSourceVar->GetIntValue() ); break; } }
EXPOSE_MATERIAL_PROXY( CLessOrEqualProxy, LessOrEqual );
//-----------------------------------------------------------------------------
// WrapMinMax proxy
//-----------------------------------------------------------------------------
class CWrapMinMaxProxy : public CFunctionProxy { public: virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pC_BaseEntity );
private: CFloatInput m_flMinVal; CFloatInput m_flMaxVal; };
bool CWrapMinMaxProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if (!CFunctionProxy::Init( pMaterial, pKeyValues )) return false;
if (!m_flMinVal.Init( pMaterial, pKeyValues, "minVal", 0 )) return false;
if (!m_flMaxVal.Init( pMaterial, pKeyValues, "maxVal", 1 )) return false;
return true; }
void CWrapMinMaxProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pResult );
if ( m_flMaxVal.GetFloat() <= m_flMinVal.GetFloat() ) // Bad input, just return the min
{ SetFloatResult( m_flMinVal.GetFloat() ); } else { float flResult = ( m_pSrc1->GetFloatValue() - m_flMinVal.GetFloat() ) / ( m_flMaxVal.GetFloat() - m_flMinVal.GetFloat() );
if ( flResult >= 0.0f ) { flResult -= ( float )( int )flResult; } else // Negative
{ flResult -= ( float )( ( ( int )flResult ) - 1 ); }
flResult *= ( m_flMaxVal.GetFloat() - m_flMinVal.GetFloat() ); flResult += m_flMinVal.GetFloat();
SetFloatResult( flResult ); } }
EXPOSE_MATERIAL_PROXY( CWrapMinMaxProxy, WrapMinMax );
//-----------------------------------------------------------------------------
// RemapValClamped
//-----------------------------------------------------------------------------
class CRemapValClampedProxy : public CFunctionProxy { public: bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); void OnBind( void *pC_BaseEntity );
private: CFloatInput m_RangeInMin; CFloatInput m_RangeInMax; CFloatInput m_RangeOutMin; CFloatInput m_RangeOutMax; };
bool CRemapValClampedProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { if ( !CFunctionProxy::Init( pMaterial, pKeyValues ) ) return false;
if ( !m_RangeInMin.Init( pMaterial, pKeyValues, "range_in_min", 0 ) ) return false;
if ( !m_RangeInMax.Init( pMaterial, pKeyValues, "range_in_max", 1 ) ) return false;
if ( !m_RangeOutMin.Init( pMaterial, pKeyValues, "range_out_min", 0 ) ) return false;
if ( !m_RangeOutMax.Init( pMaterial, pKeyValues, "range_out_max", 1 ) ) return false;
return true; }
void CRemapValClampedProxy::OnBind( void *pC_BaseEntity ) { Assert( m_pSrc1 && m_pResult );
MaterialVarType_t resultType; int vecSize; ComputeResultType( resultType, vecSize );
float flInMin = m_RangeInMin.GetFloat(); float flInMax = m_RangeInMax.GetFloat(); float flOutMin = m_RangeOutMin.GetFloat(); float flOutMax = m_RangeOutMax.GetFloat(); switch ( resultType ) { case MATERIAL_VAR_TYPE_FLOAT: { SetFloatResult( RemapValClamped( m_pSrc1->GetFloatValue(), flInMin, flInMax, flOutMin, flOutMax ) ); } break;
case MATERIAL_VAR_TYPE_INT: { m_pResult->SetIntValue( (int)RemapValClamped( m_pSrc1->GetIntValue(), flInMin, flInMax, flOutMin, flOutMax ) ); } break; } }
EXPOSE_MATERIAL_PROXY( CRemapValClampedProxy, RemapValClamp );
|