|
|
//========= Copyright c 1996-2008, Valve Corporation, All rights reserved. ============//
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "mathlib/mathlib.h"
#include "mathlib/noise.h"
#include "mathlib/vector.h"
#include "mathlib/expressioncalculator.h"
#include <ctype.h>
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Parsing helper methods
//-----------------------------------------------------------------------------
bool ParseLiteral( const char *&expr, float &value ) { const char *startExpr = expr; value = ( float )strtod( startExpr, const_cast< char** >( &expr ) ); return ( startExpr != expr ); }
bool ParseString( const char *&expr, const char *str ) { const char *startExpr = expr; while ( ( *expr == ' ' ) || ( *expr == '\t' ) ) expr++; // skip whitespace
expr = StringAfterPrefix( expr, str ); if ( expr ) return true;
expr = startExpr; return false; }
bool ParseStringList( const char *&expr, const char **pOps, int &nOp ) { while ( nOp-- ) { if ( ParseString( expr, pOps[ nOp ] ) ) return true; } return false; }
bool ParseStringList( const char *&expr, const CUtlVector< CUtlString > &strings, int &nOp ) { while ( nOp-- ) { if ( ParseString( expr, strings[ nOp ] ) ) return true; } return false; }
int FindString( const CUtlVector< CUtlString > &strings, const char *str ) { uint sn = strings.Count(); for ( uint si = 0; si < sn; ++si ) { if ( !Q_strcmp( str, strings[ si ] ) ) return si; } return -1; }
class ParseState_t { public: ParseState_t( const CUtlStack<float> &stack, const char *expr ) : m_stacksize( stack.Count() ), m_startingExpr( expr ) {} void Reset( CUtlStack<float> &stack, const char *&expr ) { Assert( m_stacksize <= stack.Count() ); stack.PopMultiple( stack.Count() - m_stacksize ); expr = m_startingExpr; }
private: int m_stacksize; const char* m_startingExpr; };
void CExpressionCalculator::SetVariable( int nVariableIndex, float value ) { m_varValues[ nVariableIndex ] = value; }
void CExpressionCalculator::SetVariable( const char *var, float value ) { int vi = FindString( m_varNames, var ); if ( vi >= 0 ) { m_varValues[ vi ] = value; } else { m_varNames.AddToTail( var ); m_varValues.AddToTail( value ); } }
void CExpressionCalculator::ModifyVariable( const char *var, float value ) { int vi = FindString( m_varNames, var ); if ( vi >= 0 ) { m_varValues[ vi ] += value; } else { SetVariable( var, value ); } }
int CExpressionCalculator::FindVariableIndex( const char *var ) { return FindString( m_varNames, var ); }
bool CExpressionCalculator::Evaluate( float &value ) { m_bIsBuildingArgumentList = false; m_stack.PopMultiple( m_stack.Count() ); const char *pExpr = m_expr.Get(); bool success = ParseExpr( pExpr ); if ( success && m_stack.Count() == 1 ) { value = m_stack.Top(); return true; }
value = 0.0f; return false; }
//-----------------------------------------------------------------------------
// Builds a list of variable names from the expression
//-----------------------------------------------------------------------------
bool CExpressionCalculator::BuildVariableListFromExpression( ) { m_bIsBuildingArgumentList = true; m_stack.PopMultiple( m_stack.Count() ); const char *pExpr = m_expr.Get(); bool bSuccess = ParseExpr( pExpr ); m_bIsBuildingArgumentList = false; if ( !bSuccess || m_stack.Count() != 1 ) { m_varNames.RemoveAll(); return false; } return true; }
//-----------------------------------------------------------------------------
// Iterate over variables
//-----------------------------------------------------------------------------
int CExpressionCalculator::VariableCount() { return m_varNames.Count(); }
const char *CExpressionCalculator::VariableName( int nIndex ) { return m_varNames[nIndex]; }
bool CExpressionCalculator::ParseExpr( const char *&expr ) { return ( expr != NULL ) && ParseConditional( expr ); }
bool CExpressionCalculator::ParseConditional( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseOr( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
ParseState_t ps1( m_stack, expr ); if ( ParseString( expr, "?" ) && ParseExpr( expr ) && ParseString( expr, ":" ) && ParseExpr( expr ) ) { float f3 = m_stack.Top(); m_stack.Pop(); float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); m_stack.Push( f1 != 0.0f ? f2 : f3 ); return true; // and matched
} ps1.Reset( m_stack, expr ); return true; // equality (or lower) matched
}
bool CExpressionCalculator::ParseOr( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseAnd( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
ParseState_t ps1( m_stack, expr ); if ( ParseString( expr, "||" ) && ParseOr( expr ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); m_stack.Push( ( f1 != 0.0f ) || ( f2 != 0.0f ) ? 1 : 0 ); return true; // and matched
} ps1.Reset( m_stack, expr ); return true; // equality (or lower) matched
}
bool CExpressionCalculator::ParseAnd( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseEquality( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
ParseState_t ps1( m_stack, expr ); if ( ParseString( expr, "&&" ) && ParseAnd( expr ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); m_stack.Push( ( f1 != 0.0f ) && ( f2 != 0.0f ) ? 1 : 0 ); return true; // and matched
} ps1.Reset( m_stack, expr ); return true; // equality (or lower) matched
}
bool CExpressionCalculator::ParseEquality( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseLessGreater( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
const char *pOps[] = { "==", "!=" }; int nOp = 2;
ParseState_t ps1( m_stack, expr ); if ( ParseStringList( expr, pOps, nOp ) && ParseEquality( expr ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nOp ) { case 0: // ==
m_stack.Push( f1 == f2 ? 1 : 0 ); break; case 1: // !=
m_stack.Push( f1 != f2 ? 1 : 0 ); break; } return true; // equality matched
} ps1.Reset( m_stack, expr ); return true; // lessgreater (or lower) matched
}
bool CExpressionCalculator::ParseLessGreater( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseAddSub( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
const char *pOps[] = { "<", ">", "<=", ">=" }; int nOp = 4;
ParseState_t ps1( m_stack, expr ); if ( ParseStringList( expr, pOps, nOp ) && ParseLessGreater( expr ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nOp ) { case 0: // <
m_stack.Push( f1 < f2 ? 1 : 0 ); break; case 1: // >
m_stack.Push( f1 > f2 ? 1 : 0 ); break; case 2: // <=
m_stack.Push( f1 <= f2 ? 1 : 0 ); break; case 3: // >=
m_stack.Push( f1 >= f2 ? 1 : 0 ); break; } return true; // inequality matched
} ps1.Reset( m_stack, expr ); return true; // addsub (or lower) matched
}
bool CExpressionCalculator::ParseAddSub( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseDivMul( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
const char *pOps[] = { "+", "-" }; int nOp = 2;
ParseState_t ps1( m_stack, expr ); if ( ParseStringList( expr, pOps, nOp ) && ParseAddSub( expr ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nOp ) { case 0: // +
m_stack.Push( f1 + f2 ); break; case 1: // -
m_stack.Push( f1 - f2 ); break; } return true; // addsub matched
} ps1.Reset( m_stack, expr ); return true; // divmul (or lower) matched
}
bool CExpressionCalculator::ParseDivMul( const char *&expr ) { ParseState_t ps0( m_stack, expr ); if ( !ParseUnary( expr ) ) { ps0.Reset( m_stack, expr ); return false; // nothing matched
}
const char *pOps[] = { "*", "/", "%" }; int nOp = 3;
ParseState_t ps1( m_stack, expr ); if ( ParseStringList( expr, pOps, nOp ) && ParseDivMul( expr ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nOp ) { case 0: // *
m_stack.Push( f1 * f2 ); break; case 1: // /
m_stack.Push( f1 / f2 ); break; case 2: // %
m_stack.Push( fmod( f1, f2 ) ); break; } return true; // divmul matched
} ps1.Reset( m_stack, expr ); return true; // unary (or lower) matched
}
bool CExpressionCalculator::ParseUnary( const char *&expr ) { ParseState_t ps( m_stack, expr );
const char *pOps[] = { "+", "-", "!" }; int nOp = 3;
if ( ParseStringList( expr, pOps, nOp ) && ParseUnary( expr ) ) { float f1 = m_stack.Top(); m_stack.Pop(); switch ( nOp ) { case 0: // +
m_stack.Push( f1 ); break; case 1: // -
m_stack.Push( -f1 ); break; case 2: // !
m_stack.Push( f1 == 0 ? 1 : 0 ); break; } return true; }
ps.Reset( m_stack, expr ); if ( ParsePrimary( expr ) ) return true;
ps.Reset( m_stack, expr ); return false; }
bool CExpressionCalculator::ParsePrimary( const char *&expr ) { ParseState_t ps( m_stack, expr );
float value = 0.0f; if ( ParseLiteral( expr, value ) ) { m_stack.Push( value ); return true; }
ps.Reset( m_stack, expr ); int nVar = m_varNames.Count(); if ( ParseStringList( expr, m_varNames, nVar) ) { m_stack.Push( m_varValues[ nVar ] ); return true; }
ps.Reset( m_stack, expr ); if ( ParseString( expr, "(" ) && ParseExpr( expr ) && ParseString( expr, ")" ) ) { return true; }
ps.Reset( m_stack, expr ); if ( Parse1ArgFunc( expr ) || Parse2ArgFunc( expr ) || Parse3ArgFunc( expr ) || // Parse4ArgFunc( expr ) ||
Parse5ArgFunc( expr ) ) { return true; }
// If we're parsing it to discover names of variable names, add them here
if ( !m_bIsBuildingArgumentList ) return false;
// Variables can't start with a number
if ( V_isdigit( *expr ) ) return false;
const char *pStart = expr; while ( V_isalnum( *expr ) || *expr == '_' ) { ++expr; }
size_t nLen = (size_t)expr - (size_t)pStart; char *pVariableName = (char*)stackalloc( nLen+1 ); memcpy( pVariableName, pStart, nLen ); pVariableName[nLen] = 0;
SetVariable( pVariableName, 0.0f ); m_stack.Push( 0.0f ); return true; }
/*
dtor(d) : converts degrees to radians rtod(r) : converts radians to degrees
abs(a) : absolute value floor(a) : rounds down to the nearest integer ceiling(a) : rounds up to the nearest integer round(a) : rounds to the nearest integer sgn(a) : if a < 0 returns -1 else 1 sqr(a) : returns a * a sqrt(a) : returns sqrt(a)
sin(a) : sin(a), a is in degrees asin(a) : asin(a) returns degrees cos(a) : cos(a), a is in degrees acos(a) : acos(a) returns degrees tan(a) : tan(a), a is in degrees
exp(a) : returns the exponential function of a log(a) : returns the natural logaritm of a */ bool CExpressionCalculator::Parse1ArgFunc( const char *&expr ) { ParseState_t ps( m_stack, expr );
const char *pFuncs[] = { "abs", "sqr", "sqrt", "sin", "asin", "cos", "acos", "tan", "exp", "log", "dtor", "rtod", "floor", "ceiling", "round", "sign" }; int nFunc = 16;
if ( ParseStringList( expr, pFuncs, nFunc ) && ParseString( expr, "(" ) && ParseExpr( expr ) && ParseString( expr, ")" ) ) { float f1 = m_stack.Top(); m_stack.Pop(); switch ( nFunc ) { case 0: // abs
m_stack.Push( fabs( f1 ) ); break; case 1: // sqr
m_stack.Push( f1 * f1 ); break; case 2: // sqrt
m_stack.Push( sqrt( f1 ) ); break; case 3: // sin
m_stack.Push( sin( f1 ) ); break; case 4: // asin
m_stack.Push( asin( f1 ) ); break; case 5: // cos
m_stack.Push( cos( f1 ) ); break; case 6: // acos
m_stack.Push( acos( f1 ) ); break; case 7: // tan
m_stack.Push( tan( f1 ) ); break; case 8: // exp
m_stack.Push( exp( f1 ) ); break; case 9: // log
m_stack.Push( log( f1 ) ); break; case 10: // dtor
m_stack.Push( DEG2RAD( f1 ) ); break; case 11: // rtod
m_stack.Push( RAD2DEG( f1 ) ); break; case 12: // floor
m_stack.Push( floor( f1 ) ); break; case 13: // ceiling
m_stack.Push( ceil( f1 ) ); break; case 14: // round
m_stack.Push( floor( f1 + 0.5f ) ); break; case 15: // sign
m_stack.Push( f1 >= 0.0f ? 1.0f : -1.0f ); break; } return true; } return false; }
/*
min(a,b) : if a<b returns a else b max(a,b) : if a>b returns a else b atan2(a,b) : atan2(a/b) returns degrees pow(a,b) : function returns a raised to the power of b */ bool CExpressionCalculator::Parse2ArgFunc( const char *&expr ) { ParseState_t ps( m_stack, expr );
const char *pFuncs[] = { "min", "max", "atan2", "pow" }; int nFunc = 4;
if ( ParseStringList( expr, pFuncs, nFunc ) && ParseString( expr, "(" ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, ")" ) ) { float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nFunc ) { case 0: // min
m_stack.Push( MIN( f1, f2 ) ); break; case 1: // max
m_stack.Push( MAX( f1, f2 ) ); break; case 2: // atan2
m_stack.Push( atan2( f1, f2 ) ); break; case 3: // pow
m_stack.Push( pow( f1, f2 ) ); break; } return true; } return false; }
/*
inrange(x,a,b) : if x is between a and b, returns 1 else returns 0 clamp(x,a,b) : see bound() above
ramp(value,a,b) : returns 0 -> 1 as value goes from a to b lerp(factor,a,b) : returns a -> b as value goes from 0 to 1
cramp(value,a,b) : clamp(ramp(value,a,b),0,1) clerp(factor,a,b) : clamp(lerp(factor,a,b),a,b)
elerp(x,a,b) : ramp( 3*x*x - 2*x*x*x, a, b) //elerp(factor,a,b) : lerp(lerp(sind(clerp(factor,-90,90)),0.5,1.0),a,b)
noise(a,b,c) : { solid noise pattern (improved perlin noise) indexed with three numbers } */
float ramp( float x, float a, float b ) { return ( x - a ) / ( b - a ); }
float lerp( float x, float a, float b ) { return a + x * ( b - a ); }
float smoothstep( float x ) { return 3*x*x - 2*x*x*x; }
bool CExpressionCalculator::Parse3ArgFunc( const char *&expr ) { ParseState_t ps( m_stack, expr );
const char *pFuncs[] = { "inrange", "clamp", "ramp", "lerp", "cramp", "clerp", "elerp", "noise" }; int nFunc = 8;
if ( ParseStringList( expr, pFuncs, nFunc ) && ParseString( expr, "(" ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, ")" ) ) { float f3 = m_stack.Top(); m_stack.Pop(); float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nFunc ) { case 0: // inrange
m_stack.Push( ( f1 >= f2 ) && ( f1 <= f3 ) ? 1.0f : 0.0f ); break; case 1: // clamp
m_stack.Push( clamp( f1, f2, f3 ) ); break; case 2: // ramp
m_stack.Push( ramp( f1, f2, f3 ) ); break; case 3: // lerp
m_stack.Push( lerp( f1, f2, f3 ) ); break; case 4: // cramp
m_stack.Push( clamp( ramp( f1, f2, f3 ), 0, 1 ) ); break; case 5: // clerp
m_stack.Push( clamp( lerp( f1, f2, f3 ), f2, f3 ) ); break; case 6: // elerp
m_stack.Push( lerp( smoothstep( f1 ), f2, f3 ) ); break; case 7: // noise
m_stack.Push( ImprovedPerlinNoise( Vector( f1, f2, f3 ) ) ); break; } return true; } return false; }
//bool CExpressionCalculator::Parse4ArgFunc( const char *&expr );
/*
rescale (X,Xa,Xb,Ya,Yb) : lerp(ramp(X,Xa,Xb),Ya,Yb) crescale(X,Xa,Xb,Ya,Yb) : clamp(rescale(X,Xa,Xb,Ya,Yb),Ya,Yb) */ float rescale( float x, float a, float b, float c, float d ) { return lerp( ramp( x, a, b ), c, d ); }
bool CExpressionCalculator::Parse5ArgFunc( const char *&expr ) { ParseState_t ps( m_stack, expr );
const char *pFuncs[] = { "rescale", "crescale" }; int nFunc = 2;
if ( ParseStringList( expr, pFuncs, nFunc ) && ParseString( expr, "(" ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, "," ) && ParseExpr( expr ) && ParseString( expr, ")" ) ) { float f5 = m_stack.Top(); m_stack.Pop(); float f4 = m_stack.Top(); m_stack.Pop(); float f3 = m_stack.Top(); m_stack.Pop(); float f2 = m_stack.Top(); m_stack.Pop(); float f1 = m_stack.Top(); m_stack.Pop(); switch ( nFunc ) { case 0: // rescale
m_stack.Push( rescale( f1, f2, f3, f4, f5 ) ); break; case 1: // crescale
m_stack.Push( clamp( rescale( f1, f2, f3, f4, f5 ), f4, f5 ) ); break; } return true; } return false; }
CExpressionCalculator::CExpressionCalculator( const CExpressionCalculator& x ) { *this = x; }
CExpressionCalculator& CExpressionCalculator::operator=( const CExpressionCalculator& x ) { m_expr = x.m_expr; m_varNames = x.m_varNames; m_varValues = x.m_varValues; m_stack.CopyFrom( x.m_stack ); m_bIsBuildingArgumentList = x.m_bIsBuildingArgumentList; return *this; }
float EvaluateExpression( char const *pExpr, float flValueToReturnIfFailure ) { CExpressionCalculator myEvaluator( pExpr ); float flResult; bool bSuccess = myEvaluator.Evaluate( flResult ); return ( bSuccess ) ? flResult : flValueToReturnIfFailure; }
|