Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

643 lines
27 KiB

  1. /*
  2. * C library of Limited memory BFGS (L-BFGS).
  3. *
  4. * Copyright (c) 1990, Jorge Nocedal
  5. * Copyright (c) 2007,2008, Naoaki Okazaki
  6. * All rights reserved.
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. */
  26. /* $Id: lbfgs.h 25 2008-11-02 04:50:00Z naoaki $ */
  27. #ifndef __LBFGS_H__
  28. #define __LBFGS_H__
  29. #ifdef __cplusplus
  30. extern "C" {
  31. #endif/*__cplusplus*/
  32. /*
  33. * The default precision of floating point values is 64bit (double).
  34. */
  35. #ifndef LBFGS_FLOAT
  36. #define LBFGS_FLOAT 64
  37. #endif/*LBFGS_FLOAT*/
  38. /*
  39. * Activate optimization routines for IEEE754 floating point values.
  40. */
  41. #ifndef LBFGS_IEEE_FLOAT
  42. #define LBFGS_IEEE_FLOAT 1
  43. #endif/*LBFGS_IEEE_FLOAT*/
  44. #if LBFGS_FLOAT == 32
  45. typedef float lbfgsfloatval_t;
  46. #elif LBFGS_FLOAT == 64
  47. typedef double lbfgsfloatval_t;
  48. #else
  49. #error "libLBFGS supports single (float; LBFGS_FLOAT = 32) or double (double; LBFGS_FLOAT=64) precision only."
  50. #endif
  51. /**
  52. * \addtogroup liblbfgs_api libLBFGS API
  53. * @{
  54. *
  55. * The libLBFGS API.
  56. */
  57. /**
  58. * Return values of lbfgs().
  59. *
  60. * Roughly speaking, a negative value indicates an error.
  61. */
  62. enum {
  63. /** L-BFGS reaches convergence. */
  64. LBFGS_SUCCESS = 0,
  65. LBFGS_CONVERGENCE = 0,
  66. LBFGS_STOP,
  67. /** The initial variables already minimize the objective function. */
  68. LBFGS_ALREADY_MINIMIZED,
  69. /** Unknown error. */
  70. LBFGSERR_UNKNOWNERROR = -1024,
  71. /** Logic error. */
  72. LBFGSERR_LOGICERROR,
  73. /** Insufficient memory. */
  74. LBFGSERR_OUTOFMEMORY,
  75. /** The minimization process has been canceled. */
  76. LBFGSERR_CANCELED,
  77. /** Invalid number of variables specified. */
  78. LBFGSERR_INVALID_N,
  79. /** Invalid number of variables (for SSE) specified. */
  80. LBFGSERR_INVALID_N_SSE,
  81. /** The array x must be aligned to 16 (for SSE). */
  82. LBFGSERR_INVALID_X_SSE,
  83. /** Invalid parameter lbfgs_parameter_t::epsilon specified. */
  84. LBFGSERR_INVALID_EPSILON,
  85. /** Invalid parameter lbfgs_parameter_t::past specified. */
  86. LBFGSERR_INVALID_TESTPERIOD,
  87. /** Invalid parameter lbfgs_parameter_t::delta specified. */
  88. LBFGSERR_INVALID_DELTA,
  89. /** Invalid parameter lbfgs_parameter_t::linesearch specified. */
  90. LBFGSERR_INVALID_LINESEARCH,
  91. /** Invalid parameter lbfgs_parameter_t::max_step specified. */
  92. LBFGSERR_INVALID_MINSTEP,
  93. /** Invalid parameter lbfgs_parameter_t::max_step specified. */
  94. LBFGSERR_INVALID_MAXSTEP,
  95. /** Invalid parameter lbfgs_parameter_t::ftol specified. */
  96. LBFGSERR_INVALID_FTOL,
  97. /** Invalid parameter lbfgs_parameter_t::gtol specified. */
  98. LBFGSERR_INVALID_GTOL,
  99. /** Invalid parameter lbfgs_parameter_t::xtol specified. */
  100. LBFGSERR_INVALID_XTOL,
  101. /** Invalid parameter lbfgs_parameter_t::max_linesearch specified. */
  102. LBFGSERR_INVALID_MAXLINESEARCH,
  103. /** Invalid parameter lbfgs_parameter_t::orthantwise_c specified. */
  104. LBFGSERR_INVALID_ORTHANTWISE,
  105. /** Invalid parameter lbfgs_parameter_t::orthantwise_start specified. */
  106. LBFGSERR_INVALID_ORTHANTWISE_START,
  107. /** Invalid parameter lbfgs_parameter_t::orthantwise_end specified. */
  108. LBFGSERR_INVALID_ORTHANTWISE_END,
  109. /** The line-search step went out of the interval of uncertainty. */
  110. LBFGSERR_OUTOFINTERVAL,
  111. /** A logic error occurred; alternatively, the interval of uncertainty
  112. became too small. */
  113. LBFGSERR_INCORRECT_TMINMAX,
  114. /** A rounding error occurred; alternatively, no line-search step
  115. satisfies the sufficient decrease and curvature conditions. */
  116. LBFGSERR_ROUNDING_ERROR,
  117. /** The line-search step became smaller than lbfgs_parameter_t::min_step. */
  118. LBFGSERR_MINIMUMSTEP,
  119. /** The line-search step became larger than lbfgs_parameter_t::max_step. */
  120. LBFGSERR_MAXIMUMSTEP,
  121. /** The line-search routine reaches the maximum number of evaluations. */
  122. LBFGSERR_MAXIMUMLINESEARCH,
  123. /** The algorithm routine reaches the maximum number of iterations. */
  124. LBFGSERR_MAXIMUMITERATION,
  125. /** Relative width of the interval of uncertainty is at most
  126. lbfgs_parameter_t::xtol. */
  127. LBFGSERR_WIDTHTOOSMALL,
  128. /** A logic error (negative line-search step) occurred. */
  129. LBFGSERR_INVALIDPARAMETERS,
  130. /** The current search direction increases the objective function value. */
  131. LBFGSERR_INCREASEGRADIENT,
  132. };
  133. /**
  134. * Line search algorithms.
  135. */
  136. enum {
  137. /** The default algorithm (MoreThuente method). */
  138. LBFGS_LINESEARCH_DEFAULT = 0,
  139. /** MoreThuente method proposd by More and Thuente. */
  140. LBFGS_LINESEARCH_MORETHUENTE = 0,
  141. /** Backtracking method with strong Wolfe condition. */
  142. LBFGS_LINESEARCH_BACKTRACKING,
  143. /** Backtracking method with regular Wolfe condition. */
  144. LBFGS_LINESEARCH_BACKTRACKING_LOOSE,
  145. };
  146. /**
  147. * L-BFGS optimization parameters.
  148. * Call lbfgs_parameter_init() function to initialize parameters to the
  149. * default values.
  150. */
  151. typedef struct {
  152. /**
  153. * The number of corrections to approximate the inverse hessian matrix.
  154. * The L-BFGS routine stores the computation results of previous \ref m
  155. * iterations to approximate the inverse hessian matrix of the current
  156. * iteration. This parameter controls the size of the limited memories
  157. * (corrections). The default value is \c 6. Values less than \c 3 are
  158. * not recommended. Large values will result in excessive computing time.
  159. */
  160. int m;
  161. /**
  162. * Epsilon for convergence test.
  163. * This parameter determines the accuracy with which the solution is to
  164. * be found. A minimization terminates when
  165. * ||g|| < \ref epsilon * max(1, ||x||),
  166. * where ||.|| denotes the Euclidean (L2) norm. The default value is
  167. * \c 1e-5.
  168. */
  169. lbfgsfloatval_t epsilon;
  170. int past;
  171. lbfgsfloatval_t delta;
  172. /**
  173. * The maximum number of iterations.
  174. * The lbfgs() function terminates an optimization process with
  175. * ::LBFGSERR_MAXIMUMITERATION status code when the iteration count
  176. * exceedes this parameter. Setting this parameter to zero continues an
  177. * optimization process until a convergence or error. The default value
  178. * is \c 0.
  179. */
  180. int max_iterations;
  181. /**
  182. * The line search algorithm.
  183. * This parameter specifies a line search algorithm to be used by the
  184. * L-BFGS routine.
  185. */
  186. int linesearch;
  187. /**
  188. * The maximum number of trials for the line search.
  189. * This parameter controls the number of function and gradients evaluations
  190. * per iteration for the line search routine. The default value is \c 20.
  191. */
  192. int max_linesearch;
  193. /**
  194. * The minimum step of the line search routine.
  195. * The default value is \c 1e-20. This value need not be modified unless
  196. * the exponents are too large for the machine being used, or unless the
  197. * problem is extremely badly scaled (in which case the exponents should
  198. * be increased).
  199. */
  200. lbfgsfloatval_t min_step;
  201. /**
  202. * The maximum step of the line search.
  203. * The default value is \c 1e+20. This value need not be modified unless
  204. * the exponents are too large for the machine being used, or unless the
  205. * problem is extremely badly scaled (in which case the exponents should
  206. * be increased).
  207. */
  208. lbfgsfloatval_t max_step;
  209. /**
  210. * A parameter to control the accuracy of the line search routine.
  211. * The default value is \c 1e-4. This parameter should be greater
  212. * than zero and smaller than \c 0.5.
  213. */
  214. lbfgsfloatval_t ftol;
  215. /**
  216. * A parameter to control the accuracy of the line search routine.
  217. * The default value is \c 0.9. If the function and gradient
  218. * evaluations are inexpensive with respect to the cost of the
  219. * iteration (which is sometimes the case when solving very large
  220. * problems) it may be advantageous to set this parameter to a small
  221. * value. A typical small value is \c 0.1. This parameter shuold be
  222. * greater than the \ref ftol parameter (\c 1e-4) and smaller than
  223. * \c 1.0.
  224. */
  225. lbfgsfloatval_t gtol;
  226. /**
  227. * The machine precision for floating-point values.
  228. * This parameter must be a positive value set by a client program to
  229. * estimate the machine precision. The line search routine will terminate
  230. * with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width
  231. * of the interval of uncertainty is less than this parameter.
  232. */
  233. lbfgsfloatval_t xtol;
  234. /**
  235. * Coeefficient for the L1 norm of variables.
  236. * This parameter should be set to zero for standard minimization
  237. * problems. Setting this parameter to a positive value activates
  238. * Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which
  239. * minimizes the objective function F(x) combined with the L1 norm |x|
  240. * of the variables, {F(x) + C |x|}. This parameter is the coeefficient
  241. * for the |x|, i.e., C. As the L1 norm |x| is not differentiable at
  242. * zero, the library modifies function and gradient evaluations from
  243. * a client program suitably; a client program thus have only to return
  244. * the function value F(x) and gradients G(x) as usual. The default value
  245. * is zero.
  246. */
  247. lbfgsfloatval_t orthantwise_c;
  248. /**
  249. * Start index for computing L1 norm of the variables.
  250. * This parameter is valid only for OWL-QN method
  251. * (i.e., \ref orthantwise_c != 0). This parameter b (0 <= b < N)
  252. * specifies the index number from which the library computes the
  253. * L1 norm of the variables x,
  254. * |x| := |x_{b}| + |x_{b+1}| + ... + |x_{N}| .
  255. * In other words, variables x_1, ..., x_{b-1} are not used for
  256. * computing the L1 norm. Setting b (0 < b < N), one can protect
  257. * variables, x_1, ..., x_{b-1} (e.g., a bias term of logistic
  258. * regression) from being regularized. The default value is zero.
  259. */
  260. int orthantwise_start;
  261. /**
  262. * End index for computing L1 norm of the variables.
  263. * This parameter is valid only for OWL-QN method
  264. * (i.e., \ref orthantwise_c != 0). This parameter e (0 < e <= N)
  265. * specifies the index number at which the library stops computing the
  266. * L1 norm of the variables x,
  267. */
  268. int orthantwise_end;
  269. } lbfgs_parameter_t;
  270. /**
  271. * Callback interface to provide objective function and gradient evaluations.
  272. *
  273. * The lbfgs() function call this function to obtain the values of objective
  274. * function and its gradients when needed. A client program must implement
  275. * this function to evaluate the values of the objective function and its
  276. * gradients, given current values of variables.
  277. *
  278. * @param instance The user data sent for lbfgs() function by the client.
  279. * @param x The current values of variables.
  280. * @param g The gradient vector. The callback function must compute
  281. * the gradient values for the current variables.
  282. * @param n The number of variables.
  283. * @param step The current step of the line search routine.
  284. * @retval lbfgsfloatval_t The value of the objective function for the current
  285. * variables.
  286. */
  287. typedef lbfgsfloatval_t (*lbfgs_evaluate_t)(
  288. void *instance,
  289. const lbfgsfloatval_t *x,
  290. lbfgsfloatval_t *g,
  291. const int n,
  292. const lbfgsfloatval_t step
  293. );
  294. /**
  295. * Callback interface to receive the progress of the optimization process.
  296. *
  297. * The lbfgs() function call this function for each iteration. Implementing
  298. * this function, a client program can store or display the current progress
  299. * of the optimization process.
  300. *
  301. * @param instance The user data sent for lbfgs() function by the client.
  302. * @param x The current values of variables.
  303. * @param g The current gradient values of variables.
  304. * @param fx The current value of the objective function.
  305. * @param xnorm The Euclidean norm of the variables.
  306. * @param gnorm The Euclidean norm of the gradients.
  307. * @param step The line-search step used for this iteration.
  308. * @param n The number of variables.
  309. * @param k The iteration count.
  310. * @param ls The number of evaluations called for this iteration.
  311. * @retval int Zero to continue the optimization process. Returning a
  312. * non-zero value will cancel the optimization process.
  313. */
  314. typedef int (*lbfgs_progress_t)(
  315. void *instance,
  316. const lbfgsfloatval_t *x,
  317. const lbfgsfloatval_t *g,
  318. const lbfgsfloatval_t fx,
  319. const lbfgsfloatval_t xnorm,
  320. const lbfgsfloatval_t gnorm,
  321. const lbfgsfloatval_t step,
  322. int n,
  323. int k,
  324. int ls
  325. );
  326. /*
  327. A user must implement a function compatible with ::lbfgs_evaluate_t (evaluation
  328. callback) and pass the pointer to the callback function to lbfgs() arguments.
  329. Similarly, a user can implement a function compatible with ::lbfgs_progress_t
  330. (progress callback) to obtain the current progress (e.g., variables, function
  331. value, ||G||, etc) and to cancel the iteration process if necessary.
  332. Implementation of a progress callback is optional: a user can pass \c NULL if
  333. progress notification is not necessary.
  334. In addition, a user must preserve two requirements:
  335. - The number of variables must be multiples of 16 (this is not 4).
  336. - The memory block of variable array ::x must be aligned to 16.
  337. This algorithm terminates an optimization
  338. when:
  339. ||G|| < \epsilon \cdot \max(1, ||x||) .
  340. In this formula, ||.|| denotes the Euclidean norm.
  341. */
  342. /**
  343. * Start a L-BFGS optimization.
  344. *
  345. * @param n The number of variables.
  346. * @param x The array of variables. A client program can set
  347. * default values for the optimization and receive the
  348. * optimization result through this array. This array
  349. * must be allocated by ::lbfgs_malloc function
  350. * for libLBFGS built with SSE/SSE2 optimization routine
  351. * enabled. The library built without SSE/SSE2
  352. * optimization does not have such a requirement.
  353. * @param ptr_fx The pointer to the variable that receives the final
  354. * value of the objective function for the variables.
  355. * This argument can be set to \c NULL if the final
  356. * value of the objective function is unnecessary.
  357. * @param proc_evaluate The callback function to provide function and
  358. * gradient evaluations given a current values of
  359. * variables. A client program must implement a
  360. * callback function compatible with \ref
  361. * lbfgs_evaluate_t and pass the pointer to the
  362. * callback function.
  363. * @param proc_progress The callback function to receive the progress
  364. * (the number of iterations, the current value of
  365. * the objective function) of the minimization
  366. * process. This argument can be set to \c NULL if
  367. * a progress report is unnecessary.
  368. * @param instance A user data for the client program. The callback
  369. * functions will receive the value of this argument.
  370. * @param param The pointer to a structure representing parameters for
  371. * L-BFGS optimization. A client program can set this
  372. * parameter to \c NULL to use the default parameters.
  373. * Call lbfgs_parameter_init() function to fill a
  374. * structure with the default values.
  375. * @retval int The status code. This function returns zero if the
  376. * minimization process terminates without an error. A
  377. * non-zero value indicates an error.
  378. */
  379. int lbfgs(
  380. int n,
  381. lbfgsfloatval_t *x,
  382. lbfgsfloatval_t *ptr_fx,
  383. lbfgs_evaluate_t proc_evaluate,
  384. lbfgs_progress_t proc_progress,
  385. void *instance,
  386. lbfgs_parameter_t *param
  387. );
  388. /**
  389. * Initialize L-BFGS parameters to the default values.
  390. *
  391. * Call this function to fill a parameter structure with the default values
  392. * and overwrite parameter values if necessary.
  393. *
  394. * @param param The pointer to the parameter structure.
  395. */
  396. void lbfgs_parameter_init(lbfgs_parameter_t *param);
  397. /**
  398. * Allocate an array for variables.
  399. *
  400. * This function allocates an array of variables for the convenience of
  401. * ::lbfgs function; the function has a requreiemt for a variable array
  402. * when libLBFGS is built with SSE/SSE2 optimization routines. A user does
  403. * not have to use this function for libLBFGS built without SSE/SSE2
  404. * optimization.
  405. *
  406. * @param n The number of variables.
  407. */
  408. lbfgsfloatval_t* lbfgs_malloc(int n);
  409. /**
  410. * Free an array of variables.
  411. *
  412. * @param x The array of variables allocated by ::lbfgs_malloc
  413. * function.
  414. */
  415. void lbfgs_free(lbfgsfloatval_t *x);
  416. /** @} */
  417. #ifdef __cplusplus
  418. }
  419. #endif/*__cplusplus*/
  420. /**
  421. @mainpage libLBFGS: a library of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
  422. @section intro Introduction
  423. This library is a C port of the implementation of Limited-memory
  424. Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal.
  425. The original FORTRAN source code is available at:
  426. http://www.ece.northwestern.edu/~nocedal/lbfgs.html
  427. The L-BFGS method solves the unconstrainted minimization problem,
  428. <pre>
  429. minimize F(x), x = (x1, x2, ..., xN),
  430. </pre>
  431. only if the objective function F(x) and its gradient G(x) are computable. The
  432. well-known Newton's method requires computation of the inverse of the hessian
  433. matrix of the objective function. However, the computational cost for the
  434. inverse hessian matrix is expensive especially when the objective function
  435. takes a large number of variables. The L-BFGS method iteratively finds a
  436. minimizer by approximating the inverse hessian matrix by information from last
  437. m iterations. This innovation saves the memory storage and computational time
  438. drastically for large-scaled problems.
  439. Among the various ports of L-BFGS, this library provides several features:
  440. - <b>Optimization with L1-norm (Orthant-Wise Limited-memory Quasi-Newton
  441. (OWL-QN) method)</b>:
  442. In addition to standard minimization problems, the library can minimize
  443. a function F(x) combined with L1-norm |x| of the variables,
  444. {F(x) + C |x|}, where C is a constant scalar parameter. This feature is
  445. useful for estimating parameters of sparse log-linear models (e.g.,
  446. logistic regression and maximum entropy) with L1-regularization (or
  447. Laplacian prior).
  448. - <b>Clean C code</b>:
  449. Unlike C codes generated automatically by f2c (Fortran 77 into C converter),
  450. this port includes changes based on my interpretations, improvements,
  451. optimizations, and clean-ups so that the ported code would be well-suited
  452. for a C code. In addition to comments inherited from the original code,
  453. a number of comments were added through my interpretations.
  454. - <b>Callback interface</b>:
  455. The library receives function and gradient values via a callback interface.
  456. The library also notifies the progress of the optimization by invoking a
  457. callback function. In the original implementation, a user had to set
  458. function and gradient values every time the function returns for obtaining
  459. updated values.
  460. - <b>Thread safe</b>:
  461. The library is thread-safe, which is the secondary gain from the callback
  462. interface.
  463. - <b>Cross platform.</b> The source code can be compiled on Microsoft Visual
  464. Studio 2005, GNU C Compiler (gcc), etc.
  465. - <b>Configurable precision</b>: A user can choose single-precision (float)
  466. or double-precision (double) accuracy by changing ::LBFGS_FLOAT macro.
  467. - <b>SSE/SSE2 optimization</b>:
  468. This library includes SSE/SSE2 optimization (written in compiler intrinsics)
  469. for vector arithmetic operations on Intel/AMD processors. The library uses
  470. SSE for float values and SSE2 for double values. The SSE/SSE2 optimization
  471. routine is disabled by default.
  472. This library is used by:
  473. - <a href="http://www.chokkan.org/software/crfsuite/">CRFsuite: A fast implementation of Conditional Random Fields (CRFs)</a>
  474. - <a href="http://www.public.iastate.edu/~gdancik/mlegp/">mlegp: an R package for maximum likelihood estimates for Gaussian processes</a>
  475. - <a href="http://infmath.uibk.ac.at/~matthiasf/imaging2/">imaging2: the imaging2 class library</a>
  476. - <a href="http://search.cpan.org/~laye/Algorithm-LBFGS-0.16/">Algorithm::LBFGS - Perl extension for L-BFGS</a>
  477. @section download Download
  478. - <a href="http://www.chokkan.org/software/dist/liblbfgs-1.6.tar.gz">Source code</a>
  479. libLBFGS is distributed under the term of the
  480. <a href="http://opensource.org/licenses/mit-license.php">MIT license</a>.
  481. @section changelog History
  482. - Version 1.6 (2008-11-02):
  483. - Improved line-search algorithm with strong Wolfe condition, which was
  484. contributed by Takashi Imamichi. This routine is now default for
  485. ::LBFGS_LINESEARCH_BACKTRACKING. The previous line search algorithm
  486. with regular Wolfe condition is still available as
  487. ::LBFGS_LINESEARCH_BACKTRACKING_LOOSE.
  488. - Configurable stop index for L1-norm computation. A member variable
  489. ::lbfgs_parameter_t::orthantwise_end was added to specify the index
  490. number at which the library stops computing the L1 norm of the
  491. variables. This is useful to prevent some variables from being
  492. regularized by the OW-LQN method.
  493. - A sample program written in C++ (sample/sample.cpp).
  494. - Version 1.5 (2008-07-10):
  495. - Configurable starting index for L1-norm computation. A member variable
  496. ::lbfgs_parameter_t::orthantwise_start was added to specify the index
  497. number from which the library computes the L1 norm of the variables.
  498. This is useful to prevent some variables from being regularized by the
  499. OW-LQN method.
  500. - Fixed a zero-division error when the initial variables have already
  501. been a minimizer (reported by Takashi Imamichi). In this case, the
  502. library returns ::LBFGS_ALREADY_MINIMIZED status code.
  503. - Defined ::LBFGS_SUCCESS status code as zero; removed unused constants,
  504. LBFGSFALSE and LBFGSTRUE.
  505. - Fixed a compile error in an implicit down-cast.
  506. - Version 1.4 (2008-04-25):
  507. - Configurable line search algorithms. A member variable
  508. ::lbfgs_parameter_t::linesearch was added to choose either MoreThuente
  509. method (::LBFGS_LINESEARCH_MORETHUENTE) or backtracking algorithm
  510. (::LBFGS_LINESEARCH_BACKTRACKING).
  511. - Fixed a bug: the previous version did not compute psuedo-gradients
  512. properly in the line search routines for OWL-QN. This bug might quit
  513. an iteration process too early when the OWL-QN routine was activated
  514. (0 < ::lbfgs_parameter_t::orthantwise_c).
  515. - Configure script for POSIX environments.
  516. - SSE/SSE2 optimizations with GCC.
  517. - New functions ::lbfgs_malloc and ::lbfgs_free to use SSE/SSE2 routines
  518. transparently. It is uncessary to use these functions for libLBFGS built
  519. without SSE/SSE2 routines; you can still use any memory allocators if
  520. SSE/SSE2 routines are disabled in libLBFGS.
  521. - Version 1.3 (2007-12-16):
  522. - An API change. An argument was added to lbfgs() function to receive the
  523. final value of the objective function. This argument can be set to
  524. \c NULL if the final value is unnecessary.
  525. - Fixed a null-pointer bug in the sample code (reported by Takashi Imamichi).
  526. - Added build scripts for Microsoft Visual Studio 2005 and GCC.
  527. - Added README file.
  528. - Version 1.2 (2007-12-13):
  529. - Fixed a serious bug in orthant-wise L-BFGS.
  530. An important variable was used without initialization.
  531. - Version 1.1 (2007-12-01):
  532. - Implemented orthant-wise L-BFGS.
  533. - Implemented lbfgs_parameter_init() function.
  534. - Fixed several bugs.
  535. - API documentation.
  536. - Version 1.0 (2007-09-20):
  537. - Initial release.
  538. @section api Documentation
  539. - @ref liblbfgs_api "libLBFGS API"
  540. @section sample Sample code
  541. @include sample.c
  542. @section ack Acknowledgements
  543. The L-BFGS algorithm is described in:
  544. - Jorge Nocedal.
  545. Updating Quasi-Newton Matrices with Limited Storage.
  546. <i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980.
  547. - Dong C. Liu and Jorge Nocedal.
  548. On the limited memory BFGS method for large scale optimization.
  549. <i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989.
  550. The line search algorithms used in this implementation are described in:
  551. - John E. Dennis and Robert B. Schnabel.
  552. <i>Numerical Methods for Unconstrained Optimization and Nonlinear
  553. Equations</i>, Englewood Cliffs, 1983.
  554. - Jorge J. More and David J. Thuente.
  555. Line search algorithm with guaranteed sufficient decrease.
  556. <i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3,
  557. pp. 286-307, 1994.
  558. This library also implements Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)
  559. method presented in:
  560. - Galen Andrew and Jianfeng Gao.
  561. Scalable training of L1-regularized log-linear models.
  562. In <i>Proceedings of the 24th International Conference on Machine
  563. Learning (ICML 2007)</i>, pp. 33-40, 2007.
  564. Finally I would like to thank the original author, Jorge Nocedal, who has been
  565. distributing the effieicnt and explanatory implementation in an open source
  566. licence.
  567. @section reference Reference
  568. - <a href="http://www.ece.northwestern.edu/~nocedal/lbfgs.html">L-BFGS</a> by Jorge Nocedal.
  569. - <a href="http://research.microsoft.com/research/downloads/Details/3f1840b2-dbb3-45e5-91b0-5ecd94bb73cf/Details.aspx">OWL-QN</a> by Galen Andrew.
  570. - <a href="http://chasen.org/~taku/software/misc/lbfgs/">C port (via f2c)</a> by Taku Kudo.
  571. - <a href="http://www.alglib.net/optimization/lbfgs.php">C#/C++/Delphi/VisualBasic6 port</a> in ALGLIB.
  572. - <a href="http://cctbx.sourceforge.net/">Computational Crystallography Toolbox</a> includes
  573. <a href="http://cctbx.sourceforge.net/current_cvs/c_plus_plus/namespacescitbx_1_1lbfgs.html">scitbx::lbfgs</a>.
  574. */
  575. #endif/*__LBFGS_H__*/