|
|
//====== Copyright 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef VECTOR_H
#define VECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include <math.h>
#include <float.h>
// For vec_t, put this somewhere else?
#include "tier0/basetypes.h"
#if defined( _PS3 )
//#include <ssemath.h>
#include <vectormath/c/vectormath_aos.h>
#include "tier0/platform.h"
#include "mathlib/math_pfns.h"
#endif
#ifndef PLATFORM_PPC // we want our linux with xmm support
// For MMX intrinsics
#include <xmmintrin.h>
#endif
#ifndef ALIGN16_POST
#define ALIGN16_POST
#endif
#include "tier0/dbg.h"
#include "tier0/platform.h"
#if !defined( __SPU__ )
#include "tier0/threadtools.h"
#endif
#include "mathlib/vector2d.h"
#include "mathlib/math_pfns.h"
#include "tier0/memalloc.h"
#include "vstdlib/random.h"
// Uncomment this to add extra Asserts to check for NANs, uninitialized vecs, etc.
//#define VECTOR_PARANOIA 1
// Uncomment this to make sure we don't do anything slow with our vectors
//#define VECTOR_NO_SLOW_OPERATIONS 1
// Used to make certain code easier to read.
#define X_INDEX 0
#define Y_INDEX 1
#define Z_INDEX 2
#ifdef VECTOR_PARANOIA
#define CHECK_VALID( _v) Assert( (_v).IsValid() )
#else
#ifdef GNUC
#define CHECK_VALID( _v)
#else
#define CHECK_VALID( _v) 0
#endif
#endif
#define VecToString(v) (static_cast<const char *>(CFmtStr("(%f, %f, %f)", (v).x, (v).y, (v).z))) // ** Note: this generates a temporary, don't hold reference!
class VectorByValue;
//=========================================================
// 3D Vector
//=========================================================
class Vector { public: // Members
vec_t x, y, z;
// Construction/destruction:
Vector(void); Vector(vec_t X, vec_t Y, vec_t Z);
// Initialization
void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f); // TODO (Ilya): Should there be an init that takes a single float for consistency?
// Got any nasty NAN's?
bool IsValid() const; bool IsReasonable( float range = 1000000 ) const; ///< Check for reasonably-sized values (if used as a game world position)
void Invalidate();
// array access...
vec_t operator[](int i) const; vec_t& operator[](int i);
// Base address...
vec_t* Base(); vec_t const* Base() const;
// Cast to Vector2D...
Vector2D& AsVector2D(); const Vector2D& AsVector2D() const;
// Initialization methods
void Random( vec_t minVal, vec_t maxVal ); inline void Zero(); ///< zero out a vector
// equality
bool operator==(const Vector& v) const; bool operator!=(const Vector& v) const;
// arithmetic operations
FORCEINLINE Vector& operator+=(const Vector &v); FORCEINLINE Vector& operator-=(const Vector &v); FORCEINLINE Vector& operator*=(const Vector &v); FORCEINLINE Vector& operator*=(float s); FORCEINLINE Vector& operator/=(const Vector &v); FORCEINLINE Vector& operator/=(float s); FORCEINLINE Vector& operator+=(float fl) ; ///< broadcast add
FORCEINLINE Vector& operator-=(float fl) ; ///< broadcast sub
// negate the vector components
void Negate();
// Get the vector's magnitude.
inline vec_t Length() const;
// Get the vector's magnitude squared.
FORCEINLINE vec_t LengthSqr(void) const { CHECK_VALID(*this); return (x*x + y*y + z*z); }
// Get one over the vector's length
// via fast hardware approximation
inline vec_t LengthRecipFast(void) const { return FastRSqrtFast( LengthSqr() ); }
// return true if this vector is (0,0,0) within tolerance
bool IsZero( float tolerance = 0.01f ) const { return (x > -tolerance && x < tolerance && y > -tolerance && y < tolerance && z > -tolerance && z < tolerance); }
// return true if this vector is exactly (0,0,0) -- only fast if vector is coming from memory, not registers
inline bool IsZeroFast( ) const RESTRICT { COMPILE_TIME_ASSERT( sizeof(vec_t) == sizeof(int) ); return ( *reinterpret_cast<const int *>(&x) == 0 && *reinterpret_cast<const int *>(&y) == 0 && *reinterpret_cast<const int *>(&z) == 0 ); }
vec_t NormalizeInPlace(); ///< Normalize all components
vec_t NormalizeInPlaceSafe( const Vector &vFallback );///< Normalize all components
Vector Normalized() const; ///< Return normalized vector
Vector NormalizedSafe( const Vector &vFallback )const; ///< Return normalized vector, falling back to vFallback if the length of this is 0
bool IsLengthGreaterThan( float val ) const; bool IsLengthLessThan( float val ) const;
// check if a vector is within the box defined by two other vectors
FORCEINLINE bool WithinAABox( Vector const &boxmin, Vector const &boxmax); // Get the distance from this vector to the other one.
vec_t DistTo(const Vector &vOther) const;
// Get the distance from this vector to the other one squared.
// NJS: note, VC wasn't inlining it correctly in several deeply nested inlines due to being an 'out of line' inline.
// may be able to tidy this up after switching to VC7
FORCEINLINE vec_t DistToSqr(const Vector &vOther) const { Vector delta;
delta.x = x - vOther.x; delta.y = y - vOther.y; delta.z = z - vOther.z;
return delta.LengthSqr(); }
// Copy
void CopyToArray(float* rgfl) const;
// Multiply, add, and assign to this (ie: *this = a + b * scalar). This
// is about 12% faster than the actual vector equation (because it's done per-component
// rather than per-vector).
void MulAdd(const Vector& a, const Vector& b, float scalar);
// Dot product.
vec_t Dot(const Vector& vOther) const;
// assignment
Vector& operator=(const Vector &vOther);
// returns 0, 1, 2 corresponding to the component with the largest absolute value
inline int LargestComponent() const; inline vec_t LargestComponentValue() const; inline int SmallestComponent() const; inline vec_t SmallestComponentValue() const;
// 2d
vec_t Length2D(void) const; vec_t Length2DSqr(void) const;
/// get the component of this vector parallel to some other given vector
inline Vector ProjectOnto( const Vector& onto );
operator VectorByValue &() { return *((VectorByValue *)(this)); } operator const VectorByValue &() const { return *((const VectorByValue *)(this)); }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// copy constructors
// Vector(const Vector &vOther);
// arithmetic operations
Vector operator-(void) const; Vector operator+(const Vector& v) const; Vector operator-(const Vector& v) const; Vector operator*(const Vector& v) const; Vector operator/(const Vector& v) const; Vector operator*(float fl) const; Vector operator/(float fl) const; // Cross product between two vectors.
Vector Cross(const Vector &vOther) const;
// Returns a vector with the min or max in X, Y, and Z.
Vector Min(const Vector &vOther) const; Vector Max(const Vector &vOther) const;
#else
private: // No copy constructors allowed if we're in optimal mode
Vector(const Vector& vOther); #endif
};
// Zero the object -- necessary for CNetworkVar and possibly other cases.
inline void EnsureValidValue( Vector &x ) { x.Zero(); }
#define USE_M64S defined( PLATFORM_WINDOWS_PC )
//=========================================================
// 4D Short Vector (aligned on 8-byte boundary)
//=========================================================
class ALIGN8 ShortVector { public:
short x, y, z, w;
// Initialization
void Init(short ix = 0, short iy = 0, short iz = 0, short iw = 0 );
#if USE_M64S
__m64 &AsM64() { return *(__m64*)&x; } const __m64 &AsM64() const { return *(const __m64*)&x; } #endif
// Setter
void Set( const ShortVector& vOther ); void Set( const short ix, const short iy, const short iz, const short iw );
// array access...
short operator[](int i) const; short& operator[](int i);
// Base address...
short* Base(); short const* Base() const;
// equality
bool operator==(const ShortVector& v) const; bool operator!=(const ShortVector& v) const;
// Arithmetic operations
FORCEINLINE ShortVector& operator+=(const ShortVector &v); FORCEINLINE ShortVector& operator-=(const ShortVector &v); FORCEINLINE ShortVector& operator*=(const ShortVector &v); FORCEINLINE ShortVector& operator*=(float s); FORCEINLINE ShortVector& operator/=(const ShortVector &v); FORCEINLINE ShortVector& operator/=(float s); FORCEINLINE ShortVector operator*(float fl) const;
private:
// No copy constructors allowed if we're in optimal mode
// ShortVector(ShortVector const& vOther);
// No assignment operators either...
// ShortVector& operator=( ShortVector const& src );
} ALIGN8_POST;
//=========================================================
// 4D Integer Vector
//=========================================================
class IntVector4D { public:
int x, y, z, w;
// Initialization
void Init(int ix = 0, int iy = 0, int iz = 0, int iw = 0 );
#if USE_M64S
__m64 &AsM64() { return *(__m64*)&x; } const __m64 &AsM64() const { return *(const __m64*)&x; } #endif
// Setter
void Set( const IntVector4D& vOther ); void Set( const int ix, const int iy, const int iz, const int iw );
// array access...
int operator[](int i) const; int& operator[](int i);
// Base address...
int* Base(); int const* Base() const;
// equality
bool operator==(const IntVector4D& v) const; bool operator!=(const IntVector4D& v) const;
// Arithmetic operations
FORCEINLINE IntVector4D& operator+=(const IntVector4D &v); FORCEINLINE IntVector4D& operator-=(const IntVector4D &v); FORCEINLINE IntVector4D& operator*=(const IntVector4D &v); FORCEINLINE IntVector4D& operator*=(float s); FORCEINLINE IntVector4D& operator/=(const IntVector4D &v); FORCEINLINE IntVector4D& operator/=(float s); FORCEINLINE IntVector4D operator*(float fl) const;
private:
// No copy constructors allowed if we're in optimal mode
// IntVector4D(IntVector4D const& vOther);
// No assignment operators either...
// IntVector4D& operator=( IntVector4D const& src );
};
//-----------------------------------------------------------------------------
// Allows us to specifically pass the vector by value when we need to
//-----------------------------------------------------------------------------
class VectorByValue : public Vector { public: // Construction/destruction:
VectorByValue(void) : Vector() {} VectorByValue(vec_t X, vec_t Y, vec_t Z) : Vector( X, Y, Z ) {} VectorByValue(const VectorByValue& vOther) { *this = vOther; } };
//-----------------------------------------------------------------------------
// Utility to simplify table construction. No constructor means can use
// traditional C-style initialization
//-----------------------------------------------------------------------------
class TableVector { public: vec_t x, y, z;
operator Vector &() { return *((Vector *)(this)); } operator const Vector &() const { return *((const Vector *)(this)); }
// array access...
inline vec_t& operator[](int i) { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
inline vec_t operator[](int i) const { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; } };
//-----------------------------------------------------------------------------
// Here's where we add all those lovely SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 VectorAligned : public Vector { public: inline VectorAligned(void) {}; inline VectorAligned(vec_t X, vec_t Y, vec_t Z) { Init(X,Y,Z); }
#ifdef VECTOR_NO_SLOW_OPERATIONS
private: // No copy constructors allowed if we're in optimal mode
VectorAligned(const VectorAligned& vOther); VectorAligned(const Vector &vOther);
#else
public: explicit VectorAligned(const Vector &vOther) { Init(vOther.x, vOther.y, vOther.z); } VectorAligned& operator=(const Vector &vOther) { Init(vOther.x, vOther.y, vOther.z); return *this; }
VectorAligned& operator=(const VectorAligned &vOther) { // we know we're aligned, so use simd
// we can't use the convenient abstract interface coz it gets declared later
#ifdef _X360
XMStoreVector4A(Base(), XMLoadVector4A(vOther.Base())); #elif _WIN32
_mm_store_ps(Base(), _mm_load_ps( vOther.Base() )); #else
Init(vOther.x, vOther.y, vOther.z); #endif
return *this; }
#endif
float w; // this space is used anyway
#if !defined(NO_MALLOC_OVERRIDE)
void* operator new[] ( size_t nSize) { return MemAlloc_AllocAligned(nSize, 16); }
void* operator new[] ( size_t nSize, const char *pFileName, int nLine) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); }
void* operator new[] ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); }
void operator delete[] ( void* p) { MemAlloc_FreeAligned(p); }
void operator delete[] ( void* p, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); }
void operator delete[] ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); }
// please don't allocate a single quaternion...
void* operator new ( size_t nSize ) { return MemAlloc_AllocAligned(nSize, 16); } void* operator new ( size_t nSize, const char *pFileName, int nLine ) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); } void* operator new ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine ) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); } void operator delete ( void* p) { MemAlloc_FreeAligned(p); }
void operator delete ( void* p, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); }
void operator delete ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); } #endif
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Vector related operations
//-----------------------------------------------------------------------------
// Vector clear
FORCEINLINE void VectorClear( Vector& a );
// Copy
FORCEINLINE void VectorCopy( const Vector& src, Vector& dst );
// Vector arithmetic
FORCEINLINE void VectorAdd( const Vector& a, const Vector& b, Vector& result ); FORCEINLINE void VectorSubtract( const Vector& a, const Vector& b, Vector& result ); FORCEINLINE void VectorMultiply( const Vector& a, vec_t b, Vector& result ); FORCEINLINE void VectorMultiply( const Vector& a, const Vector& b, Vector& result ); FORCEINLINE void VectorDivide( const Vector& a, vec_t b, Vector& result ); FORCEINLINE void VectorDivide( const Vector& a, const Vector& b, Vector& result ); inline void VectorScale ( const Vector& in, vec_t scale, Vector& result ); void VectorMA( const Vector& start, float scale, const Vector& direction, Vector& dest );
// Vector equality with tolerance
bool VectorsAreEqual( const Vector& src1, const Vector& src2, float tolerance = 0.0f );
#define VectorExpand(v) (v).x, (v).y, (v).z
// Normalization
// FIXME: Can't use quite yet
//vec_t VectorNormalize( Vector& v );
// Length
inline vec_t VectorLength( const Vector& v );
// Dot Product
FORCEINLINE vec_t DotProduct(const Vector& a, const Vector& b);
// Cross product
void CrossProduct(const Vector& a, const Vector& b, Vector& result );
// Store the min or max of each of x, y, and z into the result.
void VectorMin( const Vector &a, const Vector &b, Vector &result ); void VectorMax( const Vector &a, const Vector &b, Vector &result );
// Linearly interpolate between two vectors
void VectorLerp(const Vector& src1, const Vector& src2, vec_t t, Vector& dest ); Vector VectorLerp(const Vector& src1, const Vector& src2, vec_t t );
FORCEINLINE Vector ReplicateToVector( float x ) { return Vector( x, x, x ); }
FORCEINLINE bool PointWithinViewAngle( Vector const &vecSrcPosition, Vector const &vecTargetPosition, Vector const &vecLookDirection, float flCosHalfFOV ) { Vector vecDelta = vecTargetPosition - vecSrcPosition; float cosDiff = DotProduct( vecLookDirection, vecDelta ); if ( flCosHalfFOV <= 0 ) // >180
{ // signs are different, answer is implicit
if ( cosDiff > 0 ) return true;
// a/sqrt(b) > c == a^2 < b * c ^2
// IFF left and right sides are <= 0
float flLen2 = vecDelta.LengthSqr(); return ( cosDiff * cosDiff <= flLen2 * flCosHalfFOV * flCosHalfFOV ); } else // flCosHalfFOV > 0
{ // signs are different, answer is implicit
if ( cosDiff < 0 ) return false;
// a/sqrt(b) > c == a^2 > b * c ^2
// IFF left and right sides are >= 0
float flLen2 = vecDelta.LengthSqr(); return ( cosDiff * cosDiff >= flLen2 * flCosHalfFOV * flCosHalfFOV ); } }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Cross product
Vector CrossProduct( const Vector& a, const Vector& b );
// Random vector creation
Vector RandomVector( vec_t minVal, vec_t maxVal );
#endif
float RandomVectorInUnitSphere( Vector *pVector ); Vector RandomVectorInUnitSphere(); Vector RandomVectorInUnitSphere( IUniformRandomStream *pRnd );
float RandomVectorInUnitCircle( Vector2D *pVector );
Vector RandomVectorOnUnitSphere(); Vector RandomVectorOnUnitSphere( IUniformRandomStream *pRnd );
//-----------------------------------------------------------------------------
//
// Inlined Vector methods
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline Vector::Vector(void) { #ifdef _DEBUG
#ifdef VECTOR_PARANOIA
// Initialize to NAN to catch errors
x = y = z = VEC_T_NAN; #endif
#endif
}
inline Vector::Vector(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; CHECK_VALID(*this); }
//inline Vector::Vector(const float *pFloat)
//{
// Assert( pFloat );
// x = pFloat[0]; y = pFloat[1]; z = pFloat[2];
// CHECK_VALID(*this);
//}
#if 0
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
inline Vector::Vector(const Vector &vOther) { CHECK_VALID(vOther); x = vOther.x; y = vOther.y; z = vOther.z; } #endif
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void Vector::Init( vec_t ix, vec_t iy, vec_t iz ) { x = ix; y = iy; z = iz; CHECK_VALID(*this); }
#if !defined(__SPU__)
inline void Vector::Random( vec_t minVal, vec_t maxVal ) { x = RandomFloat( minVal, maxVal ); y = RandomFloat( minVal, maxVal ); z = RandomFloat( minVal, maxVal ); CHECK_VALID(*this); } #endif
// This should really be a single opcode on the PowerPC (move r0 onto the vec reg)
inline void Vector::Zero() { x = y = z = 0.0f; }
inline void VectorClear( Vector& a ) { a.x = a.y = a.z = 0.0f; }
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline Vector& Vector::operator=(const Vector &vOther) { CHECK_VALID(vOther); x=vOther.x; y=vOther.y; z=vOther.z; return *this; }
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Vector::operator[](int i) { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
inline vec_t Vector::operator[](int i) const { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* Vector::Base() { return (vec_t*)this; }
inline vec_t const* Vector::Base() const { return (vec_t const*)this; }
//-----------------------------------------------------------------------------
// Cast to Vector2D...
//-----------------------------------------------------------------------------
inline Vector2D& Vector::AsVector2D() { return *(Vector2D*)this; }
inline const Vector2D& Vector::AsVector2D() const { return *(const Vector2D*)this; }
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool Vector::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z); }
//-----------------------------------------------------------------------------
// IsReasonable?
//-----------------------------------------------------------------------------
inline bool Vector::IsReasonable( float range ) const { return ( Length() < range ); }
//-----------------------------------------------------------------------------
// Invalidate
//-----------------------------------------------------------------------------
inline void Vector::Invalidate() { //#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN; //#endif
//#endif
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool Vector::operator==( const Vector& src ) const { CHECK_VALID(src); CHECK_VALID(*this); return (src.x == x) && (src.y == y) && (src.z == z); }
inline bool Vector::operator!=( const Vector& src ) const { CHECK_VALID(src); CHECK_VALID(*this); return (src.x != x) || (src.y != y) || (src.z != z); }
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
FORCEINLINE void VectorCopy( const Vector& src, Vector& dst ) { CHECK_VALID(src); dst.x = src.x; dst.y = src.y; dst.z = src.z; }
inline void Vector::CopyToArray(float* rgfl) const { Assert( rgfl ); CHECK_VALID(*this); rgfl[0] = x, rgfl[1] = y, rgfl[2] = z; }
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
// #pragma message("TODO: these should be SSE")
inline void Vector::Negate() { CHECK_VALID(*this); x = -x; y = -y; z = -z; }
FORCEINLINE Vector& Vector::operator+=(const Vector& v) { CHECK_VALID(*this); CHECK_VALID(v); x+=v.x; y+=v.y; z += v.z; return *this; }
FORCEINLINE Vector& Vector::operator-=(const Vector& v) { CHECK_VALID(*this); CHECK_VALID(v); x-=v.x; y-=v.y; z -= v.z; return *this; }
FORCEINLINE Vector& Vector::operator*=(float fl) { x *= fl; y *= fl; z *= fl; CHECK_VALID(*this); return *this; }
FORCEINLINE Vector& Vector::operator*=(const Vector& v) { CHECK_VALID(v); x *= v.x; y *= v.y; z *= v.z; CHECK_VALID(*this); return *this; }
// this ought to be an opcode.
FORCEINLINE Vector& Vector::operator+=(float fl) { x += fl; y += fl; z += fl; CHECK_VALID(*this); return *this; }
FORCEINLINE Vector& Vector::operator-=(float fl) { x -= fl; y -= fl; z -= fl; CHECK_VALID(*this); return *this; }
FORCEINLINE Vector& Vector::operator/=(float fl) { Assert( fl != 0.0f ); float oofl = 1.0f / fl; x *= oofl; y *= oofl; z *= oofl; CHECK_VALID(*this); return *this; }
FORCEINLINE Vector& Vector::operator/=(const Vector& v) { CHECK_VALID(v); Assert( v.x != 0.0f && v.y != 0.0f && v.z != 0.0f ); x /= v.x; y /= v.y; z /= v.z; CHECK_VALID(*this); return *this; }
// get the component of this vector parallel to some other given vector
inline Vector Vector::ProjectOnto( const Vector& onto ) { return onto * ( this->Dot(onto) / ( onto.LengthSqr() ) ); }
//-----------------------------------------------------------------------------
//
// Inlined Short Vector methods
//
//-----------------------------------------------------------------------------
inline void ShortVector::Init( short ix, short iy, short iz, short iw ) { x = ix; y = iy; z = iz; w = iw; }
FORCEINLINE void ShortVector::Set( const ShortVector& vOther ) { x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w; }
FORCEINLINE void ShortVector::Set( const short ix, const short iy, const short iz, const short iw ) { x = ix; y = iy; z = iz; w = iw; }
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline short ShortVector::operator[](int i) const { Assert( (i >= 0) && (i < 4) ); return ((short*)this)[i]; }
inline short& ShortVector::operator[](int i) { Assert( (i >= 0) && (i < 4) ); return ((short*)this)[i]; }
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline short* ShortVector::Base() { return (short*)this; }
inline short const* ShortVector::Base() const { return (short const*)this; }
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool ShortVector::operator==( const ShortVector& src ) const { return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w); }
inline bool ShortVector::operator!=( const ShortVector& src ) const { return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w); }
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
FORCEINLINE ShortVector& ShortVector::operator+=(const ShortVector& v) { x+=v.x; y+=v.y; z += v.z; w += v.w; return *this; }
FORCEINLINE ShortVector& ShortVector::operator-=(const ShortVector& v) { x-=v.x; y-=v.y; z -= v.z; w -= v.w; return *this; }
FORCEINLINE ShortVector& ShortVector::operator*=(float fl) { x = (short)(x * fl); y = (short)(y * fl); z = (short)(z * fl); w = (short)(w * fl); return *this; }
FORCEINLINE ShortVector& ShortVector::operator*=(const ShortVector& v) { x = (short)(x * v.x); y = (short)(y * v.y); z = (short)(z * v.z); w = (short)(w * v.w); return *this; }
FORCEINLINE ShortVector& ShortVector::operator/=(float fl) { Assert( fl != 0.0f ); float oofl = 1.0f / fl; x = (short)(x * oofl); y = (short)(y * oofl); z = (short)(z * oofl); w = (short)(w * oofl); return *this; }
FORCEINLINE ShortVector& ShortVector::operator/=(const ShortVector& v) { Assert( v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0 ); x = (short)(x / v.x); y = (short)(y / v.y); z = (short)(z / v.z); w = (short)(w / v.w); return *this; }
FORCEINLINE void ShortVectorMultiply( const ShortVector& src, float fl, ShortVector& res ) { Assert( IsFinite(fl) ); res.x = (short)(src.x * fl); res.y = (short)(src.y * fl); res.z = (short)(src.z * fl); res.w = (short)(src.w * fl); }
FORCEINLINE ShortVector ShortVector::operator*(float fl) const { ShortVector res; ShortVectorMultiply( *this, fl, res ); return res; }
//-----------------------------------------------------------------------------
//
// Inlined Integer Vector methods
//
//-----------------------------------------------------------------------------
inline void IntVector4D::Init( int ix, int iy, int iz, int iw ) { x = ix; y = iy; z = iz; w = iw; }
FORCEINLINE void IntVector4D::Set( const IntVector4D& vOther ) { x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w; }
FORCEINLINE void IntVector4D::Set( const int ix, const int iy, const int iz, const int iw ) { x = ix; y = iy; z = iz; w = iw; }
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline int IntVector4D::operator[](int i) const { Assert( (i >= 0) && (i < 4) ); return ((int*)this)[i]; }
inline int& IntVector4D::operator[](int i) { Assert( (i >= 0) && (i < 4) ); return ((int*)this)[i]; }
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline int* IntVector4D::Base() { return (int*)this; }
inline int const* IntVector4D::Base() const { return (int const*)this; }
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool IntVector4D::operator==( const IntVector4D& src ) const { return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w); }
inline bool IntVector4D::operator!=( const IntVector4D& src ) const { return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w); }
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
FORCEINLINE IntVector4D& IntVector4D::operator+=(const IntVector4D& v) { x+=v.x; y+=v.y; z += v.z; w += v.w; return *this; }
FORCEINLINE IntVector4D& IntVector4D::operator-=(const IntVector4D& v) { x-=v.x; y-=v.y; z -= v.z; w -= v.w; return *this; }
FORCEINLINE IntVector4D& IntVector4D::operator*=(float fl) { x = (int)(x * fl); y = (int)(y * fl); z = (int)(z * fl); w = (int)(w * fl); return *this; }
FORCEINLINE IntVector4D& IntVector4D::operator*=(const IntVector4D& v) { x = (int)(x * v.x); y = (int)(y * v.y); z = (int)(z * v.z); w = (int)(w * v.w); return *this; }
FORCEINLINE IntVector4D& IntVector4D::operator/=(float fl) { Assert( fl != 0.0f ); float oofl = 1.0f / fl; x = (int)(x * oofl); y = (int)(y * oofl); z = (int)(z * oofl); w = (int)(w * oofl); return *this; }
FORCEINLINE IntVector4D& IntVector4D::operator/=(const IntVector4D& v) { Assert( v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0 ); x = (int)(x / v.x); y = (int)(y / v.y); z = (int)(z / v.z); w = (int)(w / v.w); return *this; }
FORCEINLINE void IntVector4DMultiply( const IntVector4D& src, float fl, IntVector4D& res ) { Assert( IsFinite(fl) ); res.x = (int)(src.x * fl); res.y = (int)(src.y * fl); res.z = (int)(src.z * fl); res.w = (int)(src.w * fl); }
FORCEINLINE IntVector4D IntVector4D::operator*(float fl) const { IntVector4D res; IntVector4DMultiply( *this, fl, res ); return res; }
// =======================
FORCEINLINE void VectorAdd( const Vector& a, const Vector& b, Vector& c ) { CHECK_VALID(a); CHECK_VALID(b); c.x = a.x + b.x; c.y = a.y + b.y; c.z = a.z + b.z; }
FORCEINLINE void VectorSubtract( const Vector& a, const Vector& b, Vector& c ) { CHECK_VALID(a); CHECK_VALID(b); c.x = a.x - b.x; c.y = a.y - b.y; c.z = a.z - b.z; }
FORCEINLINE void VectorMultiply( const Vector& a, vec_t b, Vector& c ) { CHECK_VALID(a); Assert( IsFinite(b) ); c.x = a.x * b; c.y = a.y * b; c.z = a.z * b; }
FORCEINLINE void VectorMultiply( const Vector& a, const Vector& b, Vector& c ) { CHECK_VALID(a); CHECK_VALID(b); c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z; }
// for backwards compatability
inline void VectorScale ( const Vector& in, vec_t scale, Vector& result ) { VectorMultiply( in, scale, result ); }
FORCEINLINE void VectorDivide( const Vector& a, vec_t b, Vector& c ) { CHECK_VALID(a); Assert( b != 0.0f ); vec_t oob = 1.0f / b; c.x = a.x * oob; c.y = a.y * oob; c.z = a.z * oob; }
FORCEINLINE void VectorDivide( const Vector& a, const Vector& b, Vector& c ) { CHECK_VALID(a); CHECK_VALID(b); Assert( (b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f) ); c.x = a.x / b.x; c.y = a.y / b.y; c.z = a.z / b.z; }
// FIXME: Remove
// For backwards compatability
inline void Vector::MulAdd(const Vector& a, const Vector& b, float scalar) { CHECK_VALID(a); CHECK_VALID(b); x = a.x + b.x * scalar; y = a.y + b.y * scalar; z = a.z + b.z * scalar; }
inline void VectorLerp(const Vector& src1, const Vector& src2, vec_t t, Vector& dest ) { CHECK_VALID(src1); CHECK_VALID(src2); dest.x = src1.x + (src2.x - src1.x) * t; dest.y = src1.y + (src2.y - src1.y) * t; dest.z = src1.z + (src2.z - src1.z) * t; }
inline Vector VectorLerp(const Vector& src1, const Vector& src2, vec_t t ) { Vector result; VectorLerp( src1, src2, t, result ); return result; }
//-----------------------------------------------------------------------------
// Temporary storage for vector results so const Vector& results can be returned
//-----------------------------------------------------------------------------
#if !defined(__SPU__)
inline Vector &AllocTempVector() { static Vector s_vecTemp[128]; static CInterlockedInt s_nIndex;
int nIndex; for (;;) { int nOldIndex = s_nIndex; nIndex = ( (nOldIndex + 0x10001) & 0x7F );
if ( s_nIndex.AssignIf( nOldIndex, nIndex ) ) { break; } ThreadPause(); } return s_vecTemp[nIndex]; } #endif
//-----------------------------------------------------------------------------
// dot, cross
//-----------------------------------------------------------------------------
FORCEINLINE vec_t DotProduct(const Vector& a, const Vector& b) { CHECK_VALID(a); CHECK_VALID(b); return( a.x*b.x + a.y*b.y + a.z*b.z ); }
// for backwards compatability
inline vec_t Vector::Dot( const Vector& vOther ) const { CHECK_VALID(vOther); return DotProduct( *this, vOther ); }
inline int Vector::LargestComponent() const { float flAbsx = fabs(x); float flAbsy = fabs(y); float flAbsz = fabs(z); if ( flAbsx > flAbsy ) { if ( flAbsx > flAbsz ) return X_INDEX; return Z_INDEX; } if ( flAbsy > flAbsz ) return Y_INDEX; return Z_INDEX; }
inline int Vector::SmallestComponent() const { float flAbsx = fabs( x ); float flAbsy = fabs( y ); float flAbsz = fabs( z ); if ( flAbsx < flAbsy ) { if ( flAbsx < flAbsz ) return X_INDEX; return Z_INDEX; } if ( flAbsy < flAbsz ) return Y_INDEX; return Z_INDEX; }
inline float Vector::LargestComponentValue() const { float flAbsX = fabs( x ); float flAbsY = fabs( y ); float flAbsZ = fabs( z ); return MAX( MAX( flAbsX, flAbsY ), flAbsZ ); }
inline float Vector::SmallestComponentValue() const { float flAbsX = fabs( x ); float flAbsY = fabs( y ); float flAbsZ = fabs( z ); return MIN( MIN( flAbsX, flAbsY ), flAbsZ ); }
inline void CrossProduct(const Vector& a, const Vector& b, Vector& result ) { CHECK_VALID(a); CHECK_VALID(b); Assert( &a != &result ); Assert( &b != &result ); result.x = a.y*b.z - a.z*b.y; result.y = a.z*b.x - a.x*b.z; result.z = a.x*b.y - a.y*b.x; }
inline vec_t DotProductAbs( const Vector &v0, const Vector &v1 ) { CHECK_VALID(v0); CHECK_VALID(v1); return FloatMakePositive(v0.x*v1.x) + FloatMakePositive(v0.y*v1.y) + FloatMakePositive(v0.z*v1.z); }
inline vec_t DotProductAbs( const Vector &v0, const float *v1 ) { return FloatMakePositive(v0.x * v1[0]) + FloatMakePositive(v0.y * v1[1]) + FloatMakePositive(v0.z * v1[2]); }
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t VectorLength( const Vector& v ) { CHECK_VALID(v); return (vec_t)FastSqrt(v.x*v.x + v.y*v.y + v.z*v.z); }
inline vec_t Vector::Length(void) const { CHECK_VALID(*this); return VectorLength( *this ); }
//-----------------------------------------------------------------------------
// Normalization
//-----------------------------------------------------------------------------
/*
// FIXME: Can't use until we're un-macroed in mathlib.h
inline vec_t VectorNormalize( Vector& v ) { Assert( v.IsValid() ); vec_t l = v.Length(); if (l != 0.0f) { v /= l; } else { // FIXME:
// Just copying the existing implemenation; shouldn't res.z == 0?
v.x = v.y = 0.0f; v.z = 1.0f; } return l; } */
// check a point against a box
bool Vector::WithinAABox( Vector const &boxmin, Vector const &boxmax) { return ( ( x >= boxmin.x ) && ( x <= boxmax.x) && ( y >= boxmin.y ) && ( y <= boxmax.y) && ( z >= boxmin.z ) && ( z <= boxmax.z) ); }
//-----------------------------------------------------------------------------
// Get the distance from this vector to the other one
//-----------------------------------------------------------------------------
inline vec_t Vector::DistTo(const Vector &vOther) const { Vector delta; VectorSubtract( *this, vOther, delta ); return delta.Length(); }
//-----------------------------------------------------------------------------
// Float equality with tolerance
//-----------------------------------------------------------------------------
inline bool FloatsAreEqual( float f1, float f2, float flTolerance ) { // Sergiy: the implementation in Source2 is very inefficient, trying to start with a clean slate here, hopefully will reintegrate back to Source2
const float flAbsToleranceThreshold = 0.000003814697265625; // 2 ^ -FLOAT_EQUALITY_NOISE_CUTOFF,
return fabsf( f1 - f2 ) <= flTolerance * ( fabsf( f1 ) + fabsf( f2 ) ) + flAbsToleranceThreshold; }
//-----------------------------------------------------------------------------
// Vector equality with percentage tolerance
// are all components within flPercentageTolerance (expressed as a percentage of the larger component, per component)?
// and all components have the same sign
//-----------------------------------------------------------------------------
inline bool VectorsAreWithinPercentageTolerance( const Vector& src1, const Vector& src2, float flPercentageTolerance ) { if ( !FloatsAreEqual( src1.x, src2.x, flPercentageTolerance ) ) return false;
if ( !FloatsAreEqual( src1.y, src2.y, flPercentageTolerance ) ) return false;
return ( FloatsAreEqual( src1.z, src2.z, flPercentageTolerance ) ); }
//-----------------------------------------------------------------------------
// Vector equality with tolerance
//-----------------------------------------------------------------------------
inline bool VectorsAreEqual( const Vector& src1, const Vector& src2, float tolerance ) { if (FloatMakePositive(src1.x - src2.x) > tolerance) return false; if (FloatMakePositive(src1.y - src2.y) > tolerance) return false; return (FloatMakePositive(src1.z - src2.z) <= tolerance); }
//-----------------------------------------------------------------------------
// Computes the closest point to vecTarget no farther than flMaxDist from vecStart
//-----------------------------------------------------------------------------
inline void ComputeClosestPoint( const Vector& vecStart, float flMaxDist, const Vector& vecTarget, Vector *pResult ) { Vector vecDelta; VectorSubtract( vecTarget, vecStart, vecDelta ); float flDistSqr = vecDelta.LengthSqr(); if ( flDistSqr <= flMaxDist * flMaxDist ) { *pResult = vecTarget; } else { vecDelta /= FastSqrt( flDistSqr ); VectorMA( vecStart, flMaxDist, vecDelta, *pResult ); } }
//-----------------------------------------------------------------------------
// Takes the absolute value of a vector
//-----------------------------------------------------------------------------
inline void VectorAbs( const Vector& src, Vector& dst ) { dst.x = FloatMakePositive(src.x); dst.y = FloatMakePositive(src.y); dst.z = FloatMakePositive(src.z); }
inline Vector VectorAbs( const Vector& src ) { return Vector( fabsf( src.x ), fabsf( src.y ), fabsf( src.z ) ); }
//-----------------------------------------------------------------------------
//
// Slow methods
//
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// Returns a vector with the min or max in X, Y, and Z.
//-----------------------------------------------------------------------------
inline Vector Vector::Min(const Vector &vOther) const { return Vector(x < vOther.x ? x : vOther.x, y < vOther.y ? y : vOther.y, z < vOther.z ? z : vOther.z); }
inline Vector Vector::Max(const Vector &vOther) const { return Vector(x > vOther.x ? x : vOther.x, y > vOther.y ? y : vOther.y, z > vOther.z ? z : vOther.z); }
//-----------------------------------------------------------------------------
// arithmetic operations
//-----------------------------------------------------------------------------
inline Vector Vector::operator-(void) const { return Vector(-x,-y,-z); }
inline Vector Vector::operator+(const Vector& v) const { Vector res; VectorAdd( *this, v, res ); return res; }
inline Vector Vector::operator-(const Vector& v) const { Vector res; VectorSubtract( *this, v, res ); return res; }
inline Vector Vector::operator*(float fl) const { Vector res; VectorMultiply( *this, fl, res ); return res; }
inline Vector Vector::operator*(const Vector& v) const { Vector res; VectorMultiply( *this, v, res ); return res; }
inline Vector Vector::operator/(float fl) const { Vector res; VectorDivide( *this, fl, res ); return res; }
inline Vector Vector::operator/(const Vector& v) const { Vector res; VectorDivide( *this, v, res ); return res; }
inline Vector operator*(float fl, const Vector& v) { return v * fl; }
//-----------------------------------------------------------------------------
// cross product
//-----------------------------------------------------------------------------
inline Vector Vector::Cross(const Vector& vOther) const { Vector res; CrossProduct( *this, vOther, res ); return res; }
//-----------------------------------------------------------------------------
// 2D
//-----------------------------------------------------------------------------
inline vec_t Vector::Length2D(void) const { return (vec_t)FastSqrt(x*x + y*y); }
inline vec_t Vector::Length2DSqr(void) const { return (x*x + y*y); }
inline Vector CrossProduct(const Vector& a, const Vector& b) { return Vector( a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x ); }
inline void VectorMin( const Vector &a, const Vector &b, Vector &result ) { result.x = fpmin(a.x, b.x); result.y = fpmin(a.y, b.y); result.z = fpmin(a.z, b.z); }
inline void VectorMax( const Vector &a, const Vector &b, Vector &result ) { result.x = fpmax(a.x, b.x); result.y = fpmax(a.y, b.y); result.z = fpmax(a.z, b.z); }
// and when you want to return the vector rather than cause a LHS with it...
inline Vector VectorMin( const Vector &a, const Vector &b ) { return Vector( fpmin(a.x, b.x), fpmin(a.y, b.y), fpmin(a.z, b.z) ); }
inline Vector VectorMax( const Vector &a, const Vector &b ) { return Vector( fpmax(a.x, b.x), fpmax(a.y, b.y), fpmax(a.z, b.z) ); }
inline float ComputeVolume( const Vector &vecMins, const Vector &vecMaxs ) { Vector vecDelta; VectorSubtract( vecMaxs, vecMins, vecDelta ); return DotProduct( vecDelta, vecDelta ); }
#if !defined(__SPU__)
// Get a random vector.
inline Vector RandomVector( float minVal, float maxVal ) { Vector random; random.Random( minVal, maxVal ); return random; } #endif
#endif //slow
//-----------------------------------------------------------------------------
// Helper debugging stuff....
//-----------------------------------------------------------------------------
inline bool operator==( float const* f, const Vector& v ) { // AIIIEEEE!!!!
Assert(0); return false; }
inline bool operator==( const Vector& v, float const* f ) { // AIIIEEEE!!!!
Assert(0); return false; }
inline bool operator!=( float const* f, const Vector& v ) { // AIIIEEEE!!!!
Assert(0); return false; }
inline bool operator!=( const Vector& v, float const* f ) { // AIIIEEEE!!!!
Assert(0); return false; }
// return a vector perpendicular to another, with smooth variation. The difference between this and
// something like VectorVectors is that there are now discontinuities. _unlike_ VectorVectors,
// you won't get an "u
void VectorPerpendicularToVector( Vector const &in, Vector *pvecOut );
inline const Vector VectorPerpendicularToVector( const Vector &in ) { Vector out; VectorPerpendicularToVector( in, &out ); return out; }
//-----------------------------------------------------------------------------
// AngularImpulse
//-----------------------------------------------------------------------------
// AngularImpulse are exponetial maps (an axis scaled by a "twist" angle in degrees)
typedef Vector AngularImpulse;
#ifndef VECTOR_NO_SLOW_OPERATIONS
#if !defined(__SPU__)
inline AngularImpulse RandomAngularImpulse( float minVal, float maxVal ) { AngularImpulse angImp; angImp.Random( minVal, maxVal ); return angImp; } #endif
#endif
//-----------------------------------------------------------------------------
// Quaternion
//-----------------------------------------------------------------------------
class RadianEuler; class DegreeEuler; class QAngle;
class Quaternion // same data-layout as engine's vec4_t,
{ // which is a vec_t[4]
public: inline Quaternion(void) { // Initialize to NAN to catch errors
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
x = y = z = w = VEC_T_NAN; #endif
#endif
} inline Quaternion(vec_t ix, vec_t iy, vec_t iz, vec_t iw) : x(ix), y(iy), z(iz), w(iw) { } inline explicit Quaternion( RadianEuler const &angle ); inline explicit Quaternion( DegreeEuler const &angle );
inline void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f, vec_t iw=0.0f) { x = ix; y = iy; z = iz; w = iw; } inline void Init( const Vector &vImaginaryPart, float flRealPart ){ x = vImaginaryPart.x; y = vImaginaryPart.y; z = vImaginaryPart.z; w = flRealPart; }
bool IsValid() const; void Invalidate();
bool operator==( const Quaternion &src ) const; bool operator!=( const Quaternion &src ) const;
inline Quaternion Conjugate() const { return Quaternion( -x, -y, -z, w ); }
//
const Vector GetForward()const; const Vector GetLeft()const; const Vector GetUp()const;
vec_t* Base() { return ( vec_t* )this; } const vec_t* Base() const { return (vec_t*)this; }
// convenience for debugging
inline void Print() const;
// Imaginary part
Vector &ImaginaryPart() { return *( Vector* )this; } const Vector &ImaginaryPart() const { return *( Vector* )this; } float& RealPart() { return w; } float RealPart() const { return w; } inline QAngle ToQAngle() const; inline struct matrix3x4_t ToMatrix() const;
// array access...
vec_t operator[](int i) const; vec_t& operator[](int i);
inline Quaternion operator+( void ) const { return *this; } inline Quaternion operator-( void ) const { return Quaternion( -x, -y, -z, -w ); }
vec_t x, y, z, w; };
// Random Quaternion that is UNIFORMLY distributed over the S^3
// should be good for random generation of orientation for unit tests and for game
// NOTE: Nothing trivial like Quaternion(RandomAngle(0,180)) will do the trick ,
// one needs to take special care to generate a uniformly distributed quaternion.
const Quaternion RandomQuaternion(); const Quaternion RandomQuaternion(); inline const Quaternion Conjugate( const Quaternion &q ) { return Quaternion( -q.x, -q.y, -q.z, q.w ); }
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Quaternion::operator[](int i) { Assert( (i >= 0) && (i < 4) ); return ((vec_t*)this)[i]; }
inline vec_t Quaternion::operator[](int i) const { Assert( (i >= 0) && (i < 4) ); return ((vec_t*)this)[i]; }
//-----------------------------------------------------------------------------
// Equality test
//-----------------------------------------------------------------------------
inline bool Quaternion::operator==( const Quaternion &src ) const { return ( x == src.x ) && ( y == src.y ) && ( z == src.z ) && ( w == src.w ); }
inline bool Quaternion::operator!=( const Quaternion &src ) const { return !operator==( src ); }
//-----------------------------------------------------------------------------
// Debugging only
//-----------------------------------------------------------------------------
void Quaternion::Print() const { #ifndef _CERT
#if !defined(__SPU__)
Msg("q{ %.3fi + %.3fj + %.3fk + %.3f }", x, y, z, w ); #endif
#endif
}
//-----------------------------------------------------------------------------
// Binaray operators
//-----------------------------------------------------------------------------
inline Quaternion operator+( const Quaternion& q1, const Quaternion& q2 ) { return Quaternion( q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w ); }
inline Quaternion operator-( const Quaternion& q1, const Quaternion& q2 ) { return Quaternion( q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w ); }
inline Quaternion operator*( float s, const Quaternion& q ) { return Quaternion( s * q.x, s * q.y, s * q.z, s * q.w ); }
inline Quaternion operator*( const Quaternion& q, float s ) { return Quaternion( q.x * s, q.y * s, q.z * s, q.w * s ); }
inline Quaternion operator/( const Quaternion& q, float s ) { Assert( s != 0.0f ); return Quaternion( q.x / s, q.y / s, q.z / s, q.w / s ); }
//-----------------------------------------------------------------------------
// Quaternion equality with tolerance
//-----------------------------------------------------------------------------
inline bool QuaternionsAreEqual( const Quaternion& src1, const Quaternion& src2, float tolerance ) { if (FloatMakePositive(src1.x - src2.x) > tolerance) return false; if (FloatMakePositive(src1.y - src2.y) > tolerance) return false; if (FloatMakePositive(src1.z - src2.z) > tolerance) return false; return (FloatMakePositive(src1.w - src2.w) <= tolerance); }
//-----------------------------------------------------------------------------
// Here's where we add all those lovely SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 QuaternionAligned : public Quaternion { public: inline QuaternionAligned(void) {}; inline QuaternionAligned(vec_t X, vec_t Y, vec_t Z, vec_t W) { Init(X,Y,Z,W); }
operator Quaternion * () { return this; } operator const Quaternion * () { return this; }
#ifdef VECTOR_NO_SLOW_OPERATIONS
private: // No copy constructors allowed if we're in optimal mode
QuaternionAligned(const QuaternionAligned& vOther); QuaternionAligned(const Quaternion &vOther);
#else
public: explicit QuaternionAligned(const Quaternion &vOther) { Init(vOther.x, vOther.y, vOther.z, vOther.w); }
QuaternionAligned& operator=(const Quaternion &vOther) { Init(vOther.x, vOther.y, vOther.z, vOther.w); return *this; }
QuaternionAligned& operator=(const QuaternionAligned &vOther) { // we know we're aligned, so use simd
// we can't use the convenient abstract interface coz it gets declared later
#ifdef _X360
XMStoreVector4A(Base(), XMLoadVector4A(vOther.Base())); #elif _WIN32
_mm_store_ps(Base(), _mm_load_ps( vOther.Base() )); #else
Init(vOther.x, vOther.y, vOther.z, vOther.w); #endif
return *this; }
#endif
#if !defined(NO_MALLOC_OVERRIDE)
void* operator new[] ( size_t nSize) { return MemAlloc_AllocAligned(nSize, 16); }
void* operator new[] ( size_t nSize, const char *pFileName, int nLine) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); }
void* operator new[] ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); }
void operator delete[] ( void* p) { MemAlloc_FreeAligned(p); }
void operator delete[] ( void* p, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); }
void operator delete[] ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); }
// please don't allocate a single quaternion...
void* operator new ( size_t nSize ) { return MemAlloc_AllocAligned(nSize, 16); } void* operator new ( size_t nSize, const char *pFileName, int nLine ) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); } void* operator new ( size_t nSize, int /*nBlockUse*/, const char *pFileName, int nLine ) { return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine); } void operator delete ( void* p) { MemAlloc_FreeAligned(p); }
void operator delete ( void* p, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); }
void operator delete ( void* p, int /*nBlockUse*/, const char *pFileName, int nLine) { MemAlloc_FreeAligned(p, pFileName, nLine); } #endif
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Src data hasn't changed, but work data is of a form more friendly for SPU
//-----------------------------------------------------------------------------
#if defined( _PS3 )
//typedef Vector BoneVector;
typedef VectorAligned BoneVector; typedef QuaternionAligned BoneQuaternion; typedef QuaternionAligned BoneQuaternionAligned; #else
typedef Vector BoneVector; typedef Quaternion BoneQuaternion; typedef QuaternionAligned BoneQuaternionAligned; #endif
//-----------------------------------------------------------------------------
// Radian Euler angle aligned to axis (NOT ROLL/PITCH/YAW)
//-----------------------------------------------------------------------------
class QAngle; #define VEC_DEG2RAD( a ) (a) * (3.14159265358979323846f / 180.0f)
#define VEC_RAD2DEG( a ) (a) * (180.0f / 3.14159265358979323846f)
class RadianEuler { public: inline RadianEuler(void) { } inline RadianEuler(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; } inline explicit RadianEuler( Quaternion const &q ); inline explicit RadianEuler( QAngle const &angles ); inline explicit RadianEuler( DegreeEuler const &angles );
// Initialization
inline void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f) { x = ix; y = iy; z = iz; }
// conversion to qangle
QAngle ToQAngle( void ) const; bool IsValid() const; void Invalidate();
inline vec_t *Base() { return &x; } inline const vec_t *Base() const { return &x; }
// array access...
vec_t operator[](int i) const; vec_t& operator[](int i);
vec_t x, y, z; };
extern void AngleQuaternion( RadianEuler const &angles, Quaternion &qt ); extern void QuaternionAngles( Quaternion const &q, RadianEuler &angles ); inline Quaternion::Quaternion(RadianEuler const &angle) { AngleQuaternion( angle, *this ); }
inline bool Quaternion::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w); }
FORCEINLINE float QuaternionLength( const Quaternion &q ) { return sqrtf( q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w ); }
FORCEINLINE bool QuaternionIsNormalized( const Quaternion &q, float flTolerance = 1e-6f ) { float flLen = QuaternionLength( q ); return ( fabs( flLen - 1.0 ) < flTolerance ); }
inline void Quaternion::Invalidate() { //#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = w = VEC_T_NAN; //#endif
//#endif
}
inline RadianEuler::RadianEuler(Quaternion const &q) { QuaternionAngles( q, *this ); }
inline void VectorCopy( RadianEuler const& src, RadianEuler &dst ) { CHECK_VALID(src); dst.x = src.x; dst.y = src.y; dst.z = src.z; }
inline void VectorScale( RadianEuler const& src, float b, RadianEuler &dst ) { CHECK_VALID(src); Assert( IsFinite(b) ); dst.x = src.x * b; dst.y = src.y * b; dst.z = src.z * b; }
inline bool RadianEuler::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z); }
inline void RadianEuler::Invalidate() { //#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN; //#endif
//#endif
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& RadianEuler::operator[](int i) { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
inline vec_t RadianEuler::operator[](int i) const { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
//-----------------------------------------------------------------------------
// Degree Euler angle aligned to axis (NOT ROLL/PITCH/YAW)
//-----------------------------------------------------------------------------
class DegreeEuler { public: ///\name Initialization
//@{
inline DegreeEuler(void) ///< Create with un-initialized components. If VECTOR_PARANOIA is set, will init with NANS.
{ // Initialize to NAN to catch errors
#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN; #endif
} inline DegreeEuler( vec_t X, vec_t Y, vec_t Z ) { x = X; y = Y; z = Z; } inline explicit DegreeEuler( Quaternion const &q ); inline explicit DegreeEuler( QAngle const &angles ); inline explicit DegreeEuler( RadianEuler const &angles );
// Initialization
inline void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f) { x = ix; y = iy; z = iz; }
inline QAngle ToQAngle() const;
// conversion to qangle
bool IsValid() const; void Invalidate();
inline vec_t *Base() { return &x; } inline const vec_t *Base() const { return &x; }
// array access...
vec_t operator[](int i) const; vec_t& operator[](int i);
vec_t x, y, z; };
//-----------------------------------------------------------------------------
// DegreeEuler equality with tolerance
//-----------------------------------------------------------------------------
inline bool DegreeEulersAreEqual( const DegreeEuler& src1, const DegreeEuler& src2, float tolerance = 0.0f ) { if (FloatMakePositive(src1.x - src2.x) > tolerance) return false; if (FloatMakePositive(src1.y - src2.y) > tolerance) return false; return (FloatMakePositive(src1.z - src2.z) <= tolerance); }
/*
extern void AngleQuaternion( DegreeEuler const &angles, Quaternion &qt ); extern void QuaternionAngles( Quaternion const &q, DegreeEuler &angles ); extern void QuaternionVectorsFLU( Quaternion const &q, Vector *pForward, Vector *pLeft, Vector *pUp ); */
inline Quaternion::Quaternion( DegreeEuler const &angles ) { RadianEuler radians( angles ); AngleQuaternion( radians, *this ); }
inline DegreeEuler::DegreeEuler( RadianEuler const &angles ) { Init( VEC_RAD2DEG( angles.x ), VEC_RAD2DEG( angles.y ), VEC_RAD2DEG( angles.z ) ); }
inline RadianEuler::RadianEuler( DegreeEuler const &angles ) { Init( VEC_DEG2RAD( angles.x ), VEC_DEG2RAD( angles.y ), VEC_DEG2RAD( angles.z ) ); }
inline DegreeEuler::DegreeEuler( Quaternion const &q ) { RadianEuler radians( q ); Init( VEC_RAD2DEG( radians.x ), VEC_RAD2DEG( radians.y ), VEC_RAD2DEG( radians.z ) ); }
inline bool DegreeEuler::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z); }
inline void DegreeEuler::Invalidate() { //#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN; //#endif
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& DegreeEuler::operator[](int i) { AssertDbg( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
inline vec_t DegreeEuler::operator[](int i) const { AssertDbg( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
//-----------------------------------------------------------------------------
// Degree Euler QAngle pitch, yaw, roll
//-----------------------------------------------------------------------------
class QAngleByValue;
class QAngle { public: // Members
vec_t x, y, z;
// Construction/destruction
QAngle(void); QAngle(vec_t X, vec_t Y, vec_t Z); #ifndef _PS3
// QAngle(RadianEuler const &angles); // evil auto type promotion!!!
#endif
// Allow pass-by-value
operator QAngleByValue &() { return *((QAngleByValue *)(this)); } operator const QAngleByValue &() const { return *((const QAngleByValue *)(this)); }
// Initialization
void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f); void Random( vec_t minVal, vec_t maxVal );
// Got any nasty NAN's?
bool IsValid() const; void Invalidate();
// array access...
vec_t operator[](int i) const; vec_t& operator[](int i);
// Base address...
vec_t* Base(); vec_t const* Base() const; // equality
bool operator==(const QAngle& v) const; bool operator!=(const QAngle& v) const;
// arithmetic operations
QAngle& operator+=(const QAngle &v); QAngle& operator-=(const QAngle &v); QAngle& operator*=(float s); QAngle& operator/=(float s);
// Get the vector's magnitude.
vec_t Length() const; vec_t LengthSqr() const;
// negate the QAngle components
//void Negate();
// No assignment operators either...
QAngle& operator=( const QAngle& src );
void Normalize(); void NormalizePositive();
inline struct matrix3x4_t ToMatrix() const; inline Quaternion ToQuaternion() const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// copy constructors
// arithmetic operations
QAngle operator-(void) const; QAngle operator+(const QAngle& v) const; QAngle operator-(const QAngle& v) const; QAngle operator*(float fl) const; QAngle operator/(float fl) const; #else
private: // No copy constructors allowed if we're in optimal mode
QAngle(const QAngle& vOther);
#endif
};
// Zero the object -- necessary for CNetworkVar and possibly other cases.
inline void EnsureValidValue( QAngle &x ) { x.Init(); }
//-----------------------------------------------------------------------------
// Allows us to specifically pass the vector by value when we need to
//-----------------------------------------------------------------------------
class QAngleByValue : public QAngle { public: // Construction/destruction:
QAngleByValue(void) : QAngle() {} QAngleByValue(vec_t X, vec_t Y, vec_t Z) : QAngle( X, Y, Z ) {} QAngleByValue(const QAngleByValue& vOther) { *this = vOther; } };
inline void VectorAdd( const QAngle& a, const QAngle& b, QAngle& result ) { CHECK_VALID(a); CHECK_VALID(b); result.x = a.x + b.x; result.y = a.y + b.y; result.z = a.z + b.z; }
inline void VectorMA( const QAngle &start, float scale, const QAngle &direction, QAngle &dest ) { CHECK_VALID(start); CHECK_VALID(direction); dest.x = start.x + scale * direction.x; dest.y = start.y + scale * direction.y; dest.z = start.z + scale * direction.z; }
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline QAngle::QAngle(void) { #ifdef _DEBUG
#ifdef VECTOR_PARANOIA
// Initialize to NAN to catch errors
x = y = z = VEC_T_NAN; #endif
#endif
}
inline QAngle::QAngle(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; CHECK_VALID(*this); }
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void QAngle::Init( vec_t ix, vec_t iy, vec_t iz ) { x = ix; y = iy; z = iz; CHECK_VALID(*this); }
extern float AngleNormalize( float angle ); extern float AngleNormalizePositive( float angle );
inline void QAngle::Normalize() { x = AngleNormalize( x ); y = AngleNormalize( y ); z = AngleNormalize( z ); }
inline void QAngle::NormalizePositive() { x = AngleNormalizePositive( x ); y = AngleNormalizePositive( y ); z = AngleNormalizePositive( z ); }
#if !defined(__SPU__)
inline void QAngle::Random( vec_t minVal, vec_t maxVal ) { x = RandomFloat( minVal, maxVal ); y = RandomFloat( minVal, maxVal ); z = RandomFloat( minVal, maxVal ); CHECK_VALID(*this); } #endif
#ifndef VECTOR_NO_SLOW_OPERATIONS
#if !defined(__SPU__)
inline QAngle RandomAngle( float minVal, float maxVal ) { Vector random; random.Random( minVal, maxVal ); QAngle ret( random.x, random.y, random.z ); return ret; } #endif
#endif
inline RadianEuler::RadianEuler(QAngle const &angles) { Init( angles.z * 3.14159265358979323846f / 180.f, angles.x * 3.14159265358979323846f / 180.f, angles.y * 3.14159265358979323846f / 180.f ); }
inline DegreeEuler::DegreeEuler( QAngle const &angles ) { Init( angles.z, angles.x, angles.y ); }
inline QAngle RadianEuler::ToQAngle( void) const { return QAngle( VEC_RAD2DEG( y ), VEC_RAD2DEG( z ), VEC_RAD2DEG( x ) ); }
inline QAngle DegreeEuler::ToQAngle() const { return QAngle( y, z, x ); }
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline QAngle& QAngle::operator=(const QAngle &vOther) { CHECK_VALID(vOther); x=vOther.x; y=vOther.y; z=vOther.z; return *this; }
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& QAngle::operator[](int i) { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
inline vec_t QAngle::operator[](int i) const { Assert( (i >= 0) && (i < 3) ); return ((vec_t*)this)[i]; }
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* QAngle::Base() { return (vec_t*)this; }
inline vec_t const* QAngle::Base() const { return (vec_t const*)this; }
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool QAngle::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z); }
//-----------------------------------------------------------------------------
// Invalidate
//-----------------------------------------------------------------------------
inline void QAngle::Invalidate() { //#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN; //#endif
//#endif
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool QAngle::operator==( const QAngle& src ) const { CHECK_VALID(src); CHECK_VALID(*this); return (src.x == x) && (src.y == y) && (src.z == z); }
inline bool QAngle::operator!=( const QAngle& src ) const { CHECK_VALID(src); CHECK_VALID(*this); return (src.x != x) || (src.y != y) || (src.z != z); }
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
inline void VectorCopy( const QAngle& src, QAngle& dst ) { CHECK_VALID(src); dst.x = src.x; dst.y = src.y; dst.z = src.z; }
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
inline QAngle& QAngle::operator+=(const QAngle& v) { CHECK_VALID(*this); CHECK_VALID(v); x+=v.x; y+=v.y; z += v.z; return *this; }
inline QAngle& QAngle::operator-=(const QAngle& v) { CHECK_VALID(*this); CHECK_VALID(v); x-=v.x; y-=v.y; z -= v.z; return *this; }
inline QAngle& QAngle::operator*=(float fl) { x *= fl; y *= fl; z *= fl; CHECK_VALID(*this); return *this; }
inline QAngle& QAngle::operator/=(float fl) { Assert( fl != 0.0f ); float oofl = 1.0f / fl; x *= oofl; y *= oofl; z *= oofl; CHECK_VALID(*this); return *this; }
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t QAngle::Length( ) const { CHECK_VALID(*this); return (vec_t)FastSqrt( LengthSqr( ) ); }
inline vec_t QAngle::LengthSqr( ) const { CHECK_VALID(*this); return x * x + y * y + z * z; }
//-----------------------------------------------------------------------------
// Vector equality with tolerance
//-----------------------------------------------------------------------------
inline bool QAnglesAreEqual( const QAngle& src1, const QAngle& src2, float tolerance = 0.0f ) { if (FloatMakePositive(src1.x - src2.x) > tolerance) return false; if (FloatMakePositive(src1.y - src2.y) > tolerance) return false; return (FloatMakePositive(src1.z - src2.z) <= tolerance); }
//-----------------------------------------------------------------------------
// arithmetic operations (SLOW!!)
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline QAngle QAngle::operator-(void) const { QAngle ret(-x,-y,-z); return ret; }
inline QAngle QAngle::operator+(const QAngle& v) const { QAngle res; res.x = x + v.x; res.y = y + v.y; res.z = z + v.z; return res; }
inline QAngle QAngle::operator-(const QAngle& v) const { QAngle res; res.x = x - v.x; res.y = y - v.y; res.z = z - v.z; return res; }
inline QAngle QAngle::operator*(float fl) const { QAngle res; res.x = x * fl; res.y = y * fl; res.z = z * fl; return res; }
inline QAngle QAngle::operator/(float fl) const { QAngle res; res.x = x / fl; res.y = y / fl; res.z = z / fl; return res; }
inline QAngle operator*(float fl, const QAngle& v) { QAngle ret( v * fl ); return ret; }
#endif // VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// NOTE: These are not completely correct. The representations are not equivalent
// unless the QAngle represents a rotational impulse along a coordinate axis (x,y,z)
inline void QAngleToAngularImpulse( const QAngle &angles, AngularImpulse &impulse ) { impulse.x = angles.z; impulse.y = angles.x; impulse.z = angles.y; }
inline void AngularImpulseToQAngle( const AngularImpulse &impulse, QAngle &angles ) { angles.x = impulse.y; angles.y = impulse.z; angles.z = impulse.x; }
inline QAngle Quaternion::ToQAngle() const { extern void QuaternionAngles( const Quaternion &q, QAngle &angles );
QAngle anglesOut; QuaternionAngles( *this, anglesOut ); return anglesOut; }
#if !defined( _X360 ) && !defined( _PS3 )
FORCEINLINE vec_t InvRSquared( const float* v ) { return 1.0 / MAX( 1.0, v[0] * v[0] + v[1] * v[1] + v[2] * v[2] ); }
FORCEINLINE vec_t InvRSquared( const Vector &v ) { return InvRSquared( v.Base() ); }
#else
// call directly
#if defined(__SPU__)
FORCEINLINE float _VMX_InvRSquared( Vector &v ) #else
FORCEINLINE float _VMX_InvRSquared( const Vector &v ) #endif
{ #if !defined (_PS3)
XMVECTOR xmV = XMVector3ReciprocalLength( XMLoadVector3( v.Base() ) ); xmV = XMVector3Dot( xmV, xmV ); return xmV.x; #else //!_PS3
vector_float_union vRet; vec_float4 v0, v1, vIn, vOut; vector unsigned char permMask; v0 = vec_ld( 0, v.Base() ); permMask = vec_lvsl( 0, v.Base() ); v1 = vec_ld( 11, v.Base() ); vIn = vec_perm(v0, v1, permMask); vOut = vec_madd( vIn, vIn, _VEC_ZEROF ); vec_float4 vTmp = vec_sld( vIn, vIn, 4 ); vec_float4 vTmp2 = vec_sld( vIn, vIn, 8 ); vOut = vec_madd( vTmp, vTmp, vOut ); vOut = vec_madd( vTmp2, vTmp2, vOut ); vOut = vec_re( vec_add(vOut, _VEC_EPSILONF) ); vec_st(vOut,0,&vRet.vf); float ret = vRet.f[0]; return ret; #endif //!_PS3
}
#define InvRSquared(x) _VMX_InvRSquared(x)
#endif // _X360
#if !defined( _X360 ) && !defined( _PS3 )
// FIXME: Change this back to a #define once we get rid of the vec_t version
float VectorNormalize( Vector& v );
// FIXME: Obsolete version of VectorNormalize, once we remove all the friggin float*s
FORCEINLINE float VectorNormalize( float * v ) { return VectorNormalize(*(reinterpret_cast<Vector *>(v))); }
#else
#if !defined( _PS3 )
// modified version of Microsoft's XMVector3Length
// microsoft's version will return INF for very small vectors
// e.g. Vector vTest(7.98555446e-20,-6.85012984e-21,0); VectorNormalize( vTest );
// so we clamp to epsilon instead of checking for zero
XMFINLINE XMVECTOR XMVector3Length_Fixed ( FXMVECTOR V ) { // Returns a QNaN on infinite vectors.
static CONST XMVECTOR g_fl4SmallVectorEpsilon = {1e-24f,1e-24f,1e-24f,1e-24f};
XMVECTOR D; XMVECTOR Rsq; XMVECTOR Rcp; XMVECTOR Zero; XMVECTOR RT; XMVECTOR Result; XMVECTOR Length; XMVECTOR H;
H = __vspltisw(1); D = __vmsum3fp(V, V); H = __vcfsx(H, 1); Rsq = __vrsqrtefp(D); RT = __vmulfp(D, H); Rcp = __vmulfp(Rsq, Rsq); H = __vnmsubfp(RT, Rcp, H); Rsq = __vmaddfp(Rsq, H, Rsq); Zero = __vspltisw(0); Result = __vcmpgefp( g_fl4SmallVectorEpsilon, D ); Length = __vmulfp(D, Rsq); Result = __vsel(Length, Zero, Result);
return Result; } #endif
// call directly
FORCEINLINE float _VMX_VectorNormalize( Vector &vec ) { #if !defined _PS3
float mag = XMVector3Length_Fixed( XMLoadVector3( vec.Base() ) ).x; float den = 1.f / (mag + FLT_EPSILON ); vec.x *= den; vec.y *= den; vec.z *= den; return mag; #else // !_PS3
vec_float4 vIn; vec_float4 v0, v1; vector unsigned char permMask; v0 = vec_ld( 0, vec.Base() ); permMask = vec_lvsl( 0, vec.Base() ); v1 = vec_ld( 11, vec.Base() ); vIn = vec_perm(v0, v1, permMask); float mag = vmathV3Length((VmathVector3 *)&vIn); float den = 1.f / (mag + FLT_EPSILON ); vec.x *= den; vec.y *= den; vec.z *= den; return mag; #endif // !_PS3
} // FIXME: Change this back to a #define once we get rid of the vec_t version
FORCEINLINE float VectorNormalize( Vector& v ) { return _VMX_VectorNormalize( v ); } // FIXME: Obsolete version of VectorNormalize, once we remove all the friggin float*s
FORCEINLINE float VectorNormalize( float *pV ) { return _VMX_VectorNormalize(*(reinterpret_cast<Vector*>(pV))); }
#endif // _X360
#if !defined( _X360 ) && !defined( _PS3 )
FORCEINLINE void VectorNormalizeFast (Vector& vec) { float ool = FastRSqrt( FLT_EPSILON + vec.x * vec.x + vec.y * vec.y + vec.z * vec.z );
vec.x *= ool; vec.y *= ool; vec.z *= ool; } #else
// call directly
FORCEINLINE void VectorNormalizeFast( Vector &vec ) { #if !defined (_PS3)
XMVECTOR xmV = XMVector3LengthEst( XMLoadVector3( vec.Base() ) ); float den = 1.f / (xmV.x + FLT_EPSILON); vec.x *= den; vec.y *= den; vec.z *= den; #else // !_PS3
vector_float_union vVec;
vec_float4 vIn, vOut, vOOLen, vDot;
// load
vec_float4 v0, v1; vector unsigned char permMask; v0 = vec_ld( 0, vec.Base() ); permMask = vec_lvsl( 0, vec.Base() ); v1 = vec_ld( 11, vec.Base() ); vIn = vec_perm(v0, v1, permMask);
// vec.vec
vOut = vec_madd( vIn, vIn, _VEC_ZEROF ); vec_float4 vTmp = vec_sld( vIn, vIn, 4 ); vec_float4 vTmp2 = vec_sld( vIn, vIn, 8 ); vOut = vec_madd( vTmp, vTmp, vOut ); vOut = vec_madd( vTmp2, vTmp2, vOut );
// splat dot to all
vDot = vec_splat( vOut, 0 );
vOOLen = vec_rsqrte( vec_add( vDot, _VEC_EPSILONF ) );
// vec * 1.0/sqrt(vec.vec)
vOut = vec_madd( vIn, vOOLen, _VEC_ZEROF );
// store
vec_st(vOut,0,&vVec.vf);
// store vec
vec.x = vVec.f[0]; vec.y = vVec.f[1]; vec.z = vVec.f[2];
#endif // !_PS3
}
#endif // _X360
inline vec_t Vector::NormalizeInPlace() { return VectorNormalize( *this ); }
inline vec_t Vector::NormalizeInPlaceSafe( const Vector &vFallback ) { float flLength = VectorNormalize( *this ); if ( flLength == 0.0f ) { *this = vFallback; } return flLength; }
inline Vector Vector::Normalized() const { Vector norm = *this; VectorNormalize( norm ); return norm; }
inline Vector Vector::NormalizedSafe( const Vector &vFallback )const { Vector vNorm = *this; float flLength = VectorNormalize( vNorm ); return ( flLength != 0.0f ) ? vNorm : vFallback; }
inline bool Vector::IsLengthGreaterThan( float val ) const { return LengthSqr() > val*val; }
inline bool Vector::IsLengthLessThan( float val ) const { return LengthSqr() < val*val; }
inline const Vector ScaleVector( const Vector & a, const Vector & b ) { return Vector( a.x * b.x, a.y * b.y, a.z * b.z ); }
inline const Quaternion Exp( const Vector &v ) { float theta = v.Length(); if ( theta < 0.001f ) { // limit case, cos(theta) ~= 1 - theta^2/2 + theta^4/24
// sin(theta)/theta ~= 1 - theta^2/6 + theta^4/120
float theta2_2 = theta * theta * 0.5f, theta4_24 = theta2_2 * theta2_2 * ( 1.0f / 6.0f ); float k = 1.0f - theta2_2 * ( 1.0f / 3.0f ) + theta4_24 * 0.05f; return Quaternion( k * v.x, k * v.y, k * v.z, 1 - theta2_2 + theta4_24 ); } else { float k = sinf( theta ) / theta; return Quaternion( k * v.x, k * v.y, k * v.z, cosf( theta ) ); } }
inline const Vector QuaternionLog( const Quaternion &q ) { Vector axis = q.ImaginaryPart(); float sinTheta = axis.Length(), factor; if ( sinTheta > 0.001f ) { // there's some substantial rotation; if w < 0, it's an over-180-degree rotation (in real space)
float theta = asinf( MIN( sinTheta, 1.0f ) ); factor = ( q.w < 0.0f ? M_PI_F - theta : theta ) / sinTheta; } else { // ArcSin[x]/x = 1 + x^2/6 + x^4 * 3/40 + o( x^5 )
float sinTheta2 = sinTheta * sinTheta; float sinTheta4 = sinTheta2 * sinTheta2; factor = ( 1 + sinTheta2 * ( 1.0f / 6.0f ) + sinTheta4 * ( 3.0f / 40.0f ) ); if ( q.w < 0 ) { factor = -factor; // because the axis of rotation is not defined, we'll just consider this rotation to be close enough to identity
} } return axis * factor; }
inline float Snap( float a, float flSnap ) { return floorf( a / flSnap + 0.5f ) * flSnap; }
inline const Vector Snap( const Vector &a, float flSnap ) { return Vector( Snap( a.x, flSnap ), Snap( a.y, flSnap ), Snap( a.z, flSnap ) ); }
#endif
|