|
|
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BitVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdlib>
namespace llvm {
class BitVector { typedef unsigned long BitWord;
enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
BitWord *Bits; // Actual bits.
unsigned Size; // Size of bitvector in bits.
unsigned Capacity; // Size of allocated memory in BitWord.
public: // Encapsulation of a single bit.
class reference { friend class BitVector;
BitWord *WordRef; unsigned BitPos;
reference(); // Undefined
public: reference(BitVector &b, unsigned Idx) { WordRef = &b.Bits[Idx / BITWORD_SIZE]; BitPos = Idx % BITWORD_SIZE; }
~reference() {}
reference &operator=(reference t) { *this = bool(t); return *this; }
reference& operator=(bool t) { if (t) *WordRef |= 1L << BitPos; else *WordRef &= ~(1L << BitPos); return *this; }
operator bool() const { return ((*WordRef) & (1L << BitPos)) ? true : false; } };
/// BitVector default ctor - Creates an empty bitvector.
BitVector() : Size(0), Capacity(0) { Bits = 0; }
/// BitVector ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit BitVector(unsigned s, bool t = false) : Size(s) { Capacity = NumBitWords(s); Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); init_words(Bits, Capacity, t); if (t) clear_unused_bits(); }
/// BitVector copy ctor.
BitVector(const BitVector &RHS) : Size(RHS.size()) { if (Size == 0) { Bits = 0; Capacity = 0; return; }
Capacity = NumBitWords(RHS.size()); Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); }
#if LLVM_HAS_RVALUE_REFERENCES
BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) { RHS.Bits = 0; } #endif
~BitVector() { std::free(Bits); }
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const { return Size == 0; }
/// size - Returns the number of bits in this bitvector.
unsigned size() const { return Size; }
/// count - Returns the number of bits which are set.
unsigned count() const { unsigned NumBits = 0; for (unsigned i = 0; i < NumBitWords(size()); ++i) if (sizeof(BitWord) == 4) NumBits += CountPopulation_32((uint32_t)Bits[i]); else if (sizeof(BitWord) == 8) NumBits += CountPopulation_64(Bits[i]); else llvm_unreachable("Unsupported!"); return NumBits; }
/// any - Returns true if any bit is set.
bool any() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return true; return false; }
/// all - Returns true if all bits are set.
bool all() const { // TODO: Optimize this.
return count() == size(); }
/// none - Returns true if none of the bits are set.
bool none() const { return !any(); }
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) { if (sizeof(BitWord) == 4) return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]); if (sizeof(BitWord) == 8) return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); llvm_unreachable("Unsupported!"); } return -1; }
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const { ++Prev; if (Prev >= Size) return -1;
unsigned WordPos = Prev / BITWORD_SIZE; unsigned BitPos = Prev % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; // Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0) { if (sizeof(BitWord) == 4) return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy); if (sizeof(BitWord) == 8) return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy); llvm_unreachable("Unsupported!"); }
// Check subsequent words.
for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) if (Bits[i] != 0) { if (sizeof(BitWord) == 4) return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]); if (sizeof(BitWord) == 8) return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]); llvm_unreachable("Unsupported!"); } return -1; }
/// clear - Clear all bits.
void clear() { Size = 0; }
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) { if (N > Capacity * BITWORD_SIZE) { unsigned OldCapacity = Capacity; grow(N); init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t); }
// Set any old unused bits that are now included in the BitVector. This
// may set bits that are not included in the new vector, but we will clear
// them back out below.
if (N > Size) set_unused_bits(t);
// Update the size, and clear out any bits that are now unused
unsigned OldSize = Size; Size = N; if (t || N < OldSize) clear_unused_bits(); }
void reserve(unsigned N) { if (N > Capacity * BITWORD_SIZE) grow(N); }
// Set, reset, flip
BitVector &set() { init_words(Bits, Capacity, true); clear_unused_bits(); return *this; }
BitVector &set(unsigned Idx) { Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); return *this; }
/// set - Efficiently set a range of bits in [I, E)
BitVector &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = 1UL << (E % BITWORD_SIZE); BitWord IMask = 1UL << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] |= Mask; return *this; }
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] |= PrefixMask; I = RoundUpToAlignment(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = ~0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; Bits[I / BITWORD_SIZE] |= PostfixMask;
return *this; }
BitVector &reset() { init_words(Bits, Capacity, false); return *this; }
BitVector &reset(unsigned Idx) { Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); return *this; }
/// reset - Efficiently reset a range of bits in [I, E)
BitVector &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!");
if (I == E) return *this;
if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = 1UL << (E % BITWORD_SIZE); BitWord IMask = 1UL << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] &= ~Mask; return *this; }
BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] &= ~PrefixMask; I = RoundUpToAlignment(I, BITWORD_SIZE);
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = 0UL;
BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; Bits[I / BITWORD_SIZE] &= ~PostfixMask;
return *this; }
BitVector &flip() { for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] = ~Bits[i]; clear_unused_bits(); return *this; }
BitVector &flip(unsigned Idx) { Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE); return *this; }
// Indexing.
reference operator[](unsigned Idx) { assert (Idx < Size && "Out-of-bounds Bit access."); return reference(*this, Idx); }
bool operator[](unsigned Idx) const { assert (Idx < Size && "Out-of-bounds Bit access."); BitWord Mask = 1L << (Idx % BITWORD_SIZE); return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; }
bool test(unsigned Idx) const { return (*this)[Idx]; }
/// Test if any common bits are set.
bool anyCommon(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) if (Bits[i] & RHS.Bits[i]) return true; return false; }
// Comparison operators.
bool operator==(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if (Bits[i] != RHS.Bits[i]) return false;
// Verify that any extra words are all zeros.
if (i != ThisWords) { for (; i != ThisWords; ++i) if (Bits[i]) return false; } else if (i != RHSWords) { for (; i != RHSWords; ++i) if (RHS.Bits[i]) return false; } return true; }
bool operator!=(const BitVector &RHS) const { return !(*this == RHS); }
/// Intersection, union, disjoint union.
BitVector &operator&=(const BitVector &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= RHS.Bits[i];
// Any bits that are just in this bitvector become zero, because they aren't
// in the RHS bit vector. Any words only in RHS are ignored because they
// are already zero in the LHS.
for (; i != ThisWords; ++i) Bits[i] = 0;
return *this; }
/// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
BitVector &reset(const BitVector &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= ~RHS.Bits[i]; return *this; }
/// test - Check if (This - RHS) is zero.
/// This is the same as reset(RHS) and any().
bool test(const BitVector &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if ((Bits[i] & ~RHS.Bits[i]) != 0) return true;
for (; i != ThisWords ; ++i) if (Bits[i] != 0) return true;
return false; }
BitVector &operator|=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) Bits[i] |= RHS.Bits[i]; return *this; }
BitVector &operator^=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) Bits[i] ^= RHS.Bits[i]; return *this; }
// Assignment operator.
const BitVector &operator=(const BitVector &RHS) { if (this == &RHS) return *this;
Size = RHS.size(); unsigned RHSWords = NumBitWords(Size); if (Size <= Capacity * BITWORD_SIZE) { if (Size) std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); clear_unused_bits(); return *this; }
// Grow the bitvector to have enough elements.
Capacity = RHSWords; BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
// Destroy the old bits.
std::free(Bits); Bits = NewBits;
return *this; }
#if LLVM_HAS_RVALUE_REFERENCES
const BitVector &operator=(BitVector &&RHS) { if (this == &RHS) return *this;
std::free(Bits); Bits = RHS.Bits; Size = RHS.Size; Capacity = RHS.Capacity;
RHS.Bits = 0;
return *this; } #endif
void swap(BitVector &RHS) { std::swap(Bits, RHS.Bits); std::swap(Size, RHS.Size); std::swap(Capacity, RHS.Capacity); }
//===--------------------------------------------------------------------===//
// Portable bit mask operations.
//===--------------------------------------------------------------------===//
//
// These methods all operate on arrays of uint32_t, each holding 32 bits. The
// fixed word size makes it easier to work with literal bit vector constants
// in portable code.
//
// The LSB in each word is the lowest numbered bit. The size of a portable
// bit mask is always a whole multiple of 32 bits. If no bit mask size is
// given, the bit mask is assumed to cover the entire BitVector.
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<true, false>(Mask, MaskWords); }
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<false, false>(Mask, MaskWords); }
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<true, true>(Mask, MaskWords); }
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<false, true>(Mask, MaskWords); }
private: unsigned NumBitWords(unsigned S) const { return (S + BITWORD_SIZE-1) / BITWORD_SIZE; }
// Set the unused bits in the high words.
void set_unused_bits(bool t = true) { // Set high words first.
unsigned UsedWords = NumBitWords(Size); if (Capacity > UsedWords) init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
// Then set any stray high bits of the last used word.
unsigned ExtraBits = Size % BITWORD_SIZE; if (ExtraBits) { BitWord ExtraBitMask = ~0UL << ExtraBits; if (t) Bits[UsedWords-1] |= ExtraBitMask; else Bits[UsedWords-1] &= ~ExtraBitMask; } }
// Clear the unused bits in the high words.
void clear_unused_bits() { set_unused_bits(false); }
void grow(unsigned NewSize) { Capacity = std::max(NumBitWords(NewSize), Capacity * 2); Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
clear_unused_bits(); }
void init_words(BitWord *B, unsigned NumWords, bool t) { memset(B, 0 - (int)t, NumWords*sizeof(BitWord)); }
template<bool AddBits, bool InvertMask> void applyMask(const uint32_t *Mask, unsigned MaskWords) { assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size."); MaskWords = std::min(MaskWords, (size() + 31) / 32); const unsigned Scale = BITWORD_SIZE / 32; unsigned i; for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { BitWord BW = Bits[i]; // This inner loop should unroll completely when BITWORD_SIZE > 32.
for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) BW |= BitWord(M) << b; else BW &= ~(BitWord(M) << b); } Bits[i] = BW; } for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) Bits[i] |= BitWord(M) << b; else Bits[i] &= ~(BitWord(M) << b); } if (AddBits) clear_unused_bits(); } };
} // End llvm namespace
namespace std { /// Implement std::swap in terms of BitVector swap.
inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); } }
#endif
|