|
|
//===--- ImmutableMap.h - Immutable (functional) map interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImmutableMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_IMMUTABLEMAP_H
#define LLVM_ADT_IMMUTABLEMAP_H
#include "llvm/ADT/ImmutableSet.h"
namespace llvm {
/// ImutKeyValueInfo -Traits class used by ImmutableMap. While both the first
/// and second elements in a pair are used to generate profile information,
/// only the first element (the key) is used by isEqual and isLess.
template <typename T, typename S> struct ImutKeyValueInfo { typedef const std::pair<T,S> value_type; typedef const value_type& value_type_ref; typedef const T key_type; typedef const T& key_type_ref; typedef const S data_type; typedef const S& data_type_ref;
static inline key_type_ref KeyOfValue(value_type_ref V) { return V.first; }
static inline data_type_ref DataOfValue(value_type_ref V) { return V.second; }
static inline bool isEqual(key_type_ref L, key_type_ref R) { return ImutContainerInfo<T>::isEqual(L,R); } static inline bool isLess(key_type_ref L, key_type_ref R) { return ImutContainerInfo<T>::isLess(L,R); }
static inline bool isDataEqual(data_type_ref L, data_type_ref R) { return ImutContainerInfo<S>::isEqual(L,R); }
static inline void Profile(FoldingSetNodeID& ID, value_type_ref V) { ImutContainerInfo<T>::Profile(ID, V.first); ImutContainerInfo<S>::Profile(ID, V.second); } };
template <typename KeyT, typename ValT, typename ValInfo = ImutKeyValueInfo<KeyT,ValT> > class ImmutableMap { public: typedef typename ValInfo::value_type value_type; typedef typename ValInfo::value_type_ref value_type_ref; typedef typename ValInfo::key_type key_type; typedef typename ValInfo::key_type_ref key_type_ref; typedef typename ValInfo::data_type data_type; typedef typename ValInfo::data_type_ref data_type_ref; typedef ImutAVLTree<ValInfo> TreeTy;
protected: TreeTy* Root;
public: /// Constructs a map from a pointer to a tree root. In general one
/// should use a Factory object to create maps instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableMap(const TreeTy* R) : Root(const_cast<TreeTy*>(R)) { if (Root) { Root->retain(); } } ImmutableMap(const ImmutableMap &X) : Root(X.Root) { if (Root) { Root->retain(); } } ImmutableMap &operator=(const ImmutableMap &X) { if (Root != X.Root) { if (X.Root) { X.Root->retain(); } if (Root) { Root->release(); } Root = X.Root; } return *this; } ~ImmutableMap() { if (Root) { Root->release(); } }
class Factory { typename TreeTy::Factory F; const bool Canonicalize;
public: Factory(bool canonicalize = true) : Canonicalize(canonicalize) {} Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) : F(Alloc), Canonicalize(canonicalize) {}
ImmutableMap getEmptyMap() { return ImmutableMap(F.getEmptyTree()); }
ImmutableMap add(ImmutableMap Old, key_type_ref K, data_type_ref D) { TreeTy *T = F.add(Old.Root, std::pair<key_type,data_type>(K,D)); return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T); }
ImmutableMap remove(ImmutableMap Old, key_type_ref K) { TreeTy *T = F.remove(Old.Root,K); return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T); }
typename TreeTy::Factory *getTreeFactory() const { return const_cast<typename TreeTy::Factory *>(&F); }
private: Factory(const Factory& RHS) LLVM_DELETED_FUNCTION; void operator=(const Factory& RHS) LLVM_DELETED_FUNCTION; };
bool contains(key_type_ref K) const { return Root ? Root->contains(K) : false; }
bool operator==(const ImmutableMap &RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; }
bool operator!=(const ImmutableMap &RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; }
TreeTy *getRoot() const { if (Root) { Root->retain(); } return Root; }
TreeTy *getRootWithoutRetain() const { return Root; } void manualRetain() { if (Root) Root->retain(); } void manualRelease() { if (Root) Root->release(); }
bool isEmpty() const { return !Root; }
//===--------------------------------------------------===//
// Foreach - A limited form of map iteration.
//===--------------------------------------------------===//
private: template <typename Callback> struct CBWrapper { Callback C; void operator()(value_type_ref V) { C(V.first,V.second); } };
template <typename Callback> struct CBWrapperRef { Callback &C; CBWrapperRef(Callback& c) : C(c) {}
void operator()(value_type_ref V) { C(V.first,V.second); } };
public: template <typename Callback> void foreach(Callback& C) { if (Root) { CBWrapperRef<Callback> CB(C); Root->foreach(CB); } }
template <typename Callback> void foreach() { if (Root) { CBWrapper<Callback> CB; Root->foreach(CB); } }
//===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); }
//===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator { typename TreeTy::iterator itr;
iterator() {} iterator(TreeTy* t) : itr(t) {} friend class ImmutableMap;
public: typedef typename ImmutableMap<KeyT,ValT,ValInfo>::value_type value_type; typedef typename ImmutableMap<KeyT,ValT,ValInfo>::value_type_ref reference; typedef typename iterator::value_type *pointer; typedef std::bidirectional_iterator_tag iterator_category;
typename iterator::reference operator*() const { return itr->getValue(); } typename iterator::pointer operator->() const { return &itr->getValue(); }
key_type_ref getKey() const { return itr->getValue().first; } data_type_ref getData() const { return itr->getValue().second; }
iterator& operator++() { ++itr; return *this; } iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } iterator& operator--() { --itr; return *this; } iterator operator--(int) { iterator tmp(*this); --itr; return tmp; }
bool operator==(const iterator& RHS) const { return RHS.itr == itr; } bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } };
iterator begin() const { return iterator(Root); } iterator end() const { return iterator(); }
data_type* lookup(key_type_ref K) const { if (Root) { TreeTy* T = Root->find(K); if (T) return &T->getValue().second; }
return 0; } /// getMaxElement - Returns the <key,value> pair in the ImmutableMap for
/// which key is the highest in the ordering of keys in the map. This
/// method returns NULL if the map is empty.
value_type* getMaxElement() const { return Root ? &(Root->getMaxElement()->getValue()) : 0; }
//===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
static inline void Profile(FoldingSetNodeID& ID, const ImmutableMap& M) { ID.AddPointer(M.Root); }
inline void Profile(FoldingSetNodeID& ID) const { return Profile(ID,*this); } };
// NOTE: This will possibly become the new implementation of ImmutableMap some day.
template <typename KeyT, typename ValT, typename ValInfo = ImutKeyValueInfo<KeyT,ValT> > class ImmutableMapRef { public: typedef typename ValInfo::value_type value_type; typedef typename ValInfo::value_type_ref value_type_ref; typedef typename ValInfo::key_type key_type; typedef typename ValInfo::key_type_ref key_type_ref; typedef typename ValInfo::data_type data_type; typedef typename ValInfo::data_type_ref data_type_ref; typedef ImutAVLTree<ValInfo> TreeTy; typedef typename TreeTy::Factory FactoryTy; protected: TreeTy *Root; FactoryTy *Factory; public: /// Constructs a map from a pointer to a tree root. In general one
/// should use a Factory object to create maps instead of directly
/// invoking the constructor, but there are cases where make this
/// constructor public is useful.
explicit ImmutableMapRef(const TreeTy* R, FactoryTy *F) : Root(const_cast<TreeTy*>(R)), Factory(F) { if (Root) { Root->retain(); } }
explicit ImmutableMapRef(const ImmutableMap<KeyT, ValT> &X, typename ImmutableMap<KeyT, ValT>::Factory &F) : Root(X.getRootWithoutRetain()), Factory(F.getTreeFactory()) { if (Root) { Root->retain(); } } ImmutableMapRef(const ImmutableMapRef &X) : Root(X.Root), Factory(X.Factory) { if (Root) { Root->retain(); } }
ImmutableMapRef &operator=(const ImmutableMapRef &X) { if (Root != X.Root) { if (X.Root) X.Root->retain(); if (Root) Root->release(); Root = X.Root; Factory = X.Factory; } return *this; }
~ImmutableMapRef() { if (Root) Root->release(); } static inline ImmutableMapRef getEmptyMap(FactoryTy *F) { return ImmutableMapRef(0, F); }
void manualRetain() { if (Root) Root->retain(); }
void manualRelease() { if (Root) Root->release(); }
ImmutableMapRef add(key_type_ref K, data_type_ref D) const { TreeTy *NewT = Factory->add(Root, std::pair<key_type, data_type>(K, D)); return ImmutableMapRef(NewT, Factory); }
ImmutableMapRef remove(key_type_ref K) const { TreeTy *NewT = Factory->remove(Root, K); return ImmutableMapRef(NewT, Factory); } bool contains(key_type_ref K) const { return Root ? Root->contains(K) : false; } ImmutableMap<KeyT, ValT> asImmutableMap() const { return ImmutableMap<KeyT, ValT>(Factory->getCanonicalTree(Root)); } bool operator==(const ImmutableMapRef &RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; } bool operator!=(const ImmutableMapRef &RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; } bool isEmpty() const { return !Root; } //===--------------------------------------------------===//
// For testing.
//===--------------------------------------------------===//
void verify() const { if (Root) Root->verify(); } //===--------------------------------------------------===//
// Iterators.
//===--------------------------------------------------===//
class iterator { typename TreeTy::iterator itr; iterator() {} iterator(TreeTy* t) : itr(t) {} friend class ImmutableMapRef; public: value_type_ref operator*() const { return itr->getValue(); } value_type* operator->() const { return &itr->getValue(); } key_type_ref getKey() const { return itr->getValue().first; } data_type_ref getData() const { return itr->getValue().second; } iterator& operator++() { ++itr; return *this; } iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } iterator& operator--() { --itr; return *this; } iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } bool operator==(const iterator& RHS) const { return RHS.itr == itr; } bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } }; iterator begin() const { return iterator(Root); } iterator end() const { return iterator(); } data_type* lookup(key_type_ref K) const { if (Root) { TreeTy* T = Root->find(K); if (T) return &T->getValue().second; } return 0; } /// getMaxElement - Returns the <key,value> pair in the ImmutableMap for
/// which key is the highest in the ordering of keys in the map. This
/// method returns NULL if the map is empty.
value_type* getMaxElement() const { return Root ? &(Root->getMaxElement()->getValue()) : 0; } //===--------------------------------------------------===//
// Utility methods.
//===--------------------------------------------------===//
unsigned getHeight() const { return Root ? Root->getHeight() : 0; } static inline void Profile(FoldingSetNodeID& ID, const ImmutableMapRef &M) { ID.AddPointer(M.Root); } inline void Profile(FoldingSetNodeID& ID) const { return Profile(ID, *this); } }; } // end namespace llvm
#endif
|