|
|
//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallBitVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLBITVECTOR_H
#define LLVM_ADT_SMALLBITVECTOR_H
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
/// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array),
/// optimized for the case when the array is small. It contains one
/// pointer-sized field, which is directly used as a plain collection of bits
/// when possible, or as a pointer to a larger heap-allocated array when
/// necessary. This allows normal "small" cases to be fast without losing
/// generality for large inputs.
///
class SmallBitVector { // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
// unnecessary level of indirection. It would be more efficient to use a
// pointer to memory containing size, allocation size, and the array of bits.
uintptr_t X;
enum { // The number of bits in this class.
NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
// One bit is used to discriminate between small and large mode. The
// remaining bits are used for the small-mode representation.
SmallNumRawBits = NumBaseBits - 1,
// A few more bits are used to store the size of the bit set in small mode.
// Theoretically this is a ceil-log2. These bits are encoded in the most
// significant bits of the raw bits.
SmallNumSizeBits = (NumBaseBits == 32 ? 5 : NumBaseBits == 64 ? 6 : SmallNumRawBits),
// The remaining bits are used to store the actual set in small mode.
SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits };
public: // Encapsulation of a single bit.
class reference { SmallBitVector &TheVector; unsigned BitPos;
public: reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
reference& operator=(reference t) { *this = bool(t); return *this; }
reference& operator=(bool t) { if (t) TheVector.set(BitPos); else TheVector.reset(BitPos); return *this; }
operator bool() const { return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos); } };
private: bool isSmall() const { return X & uintptr_t(1); }
BitVector *getPointer() const { assert(!isSmall()); return reinterpret_cast<BitVector *>(X); }
void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { X = 1; setSmallSize(NewSize); setSmallBits(NewSmallBits); }
void switchToLarge(BitVector *BV) { X = reinterpret_cast<uintptr_t>(BV); assert(!isSmall() && "Tried to use an unaligned pointer"); }
// Return all the bits used for the "small" representation; this includes
// bits for the size as well as the element bits.
uintptr_t getSmallRawBits() const { assert(isSmall()); return X >> 1; }
void setSmallRawBits(uintptr_t NewRawBits) { assert(isSmall()); X = (NewRawBits << 1) | uintptr_t(1); }
// Return the size.
size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
void setSmallSize(size_t Size) { setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); }
// Return the element bits.
uintptr_t getSmallBits() const { return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize()); }
void setSmallBits(uintptr_t NewBits) { setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) | (getSmallSize() << SmallNumDataBits)); }
public: /// SmallBitVector default ctor - Creates an empty bitvector.
SmallBitVector() : X(1) {}
/// SmallBitVector ctor - Creates a bitvector of specified number of bits. All
/// bits are initialized to the specified value.
explicit SmallBitVector(unsigned s, bool t = false) { if (s <= SmallNumDataBits) switchToSmall(t ? ~uintptr_t(0) : 0, s); else switchToLarge(new BitVector(s, t)); }
/// SmallBitVector copy ctor.
SmallBitVector(const SmallBitVector &RHS) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.getPointer())); }
#if LLVM_HAS_RVALUE_REFERENCES
SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) { RHS.X = 1; } #endif
~SmallBitVector() { if (!isSmall()) delete getPointer(); }
/// empty - Tests whether there are no bits in this bitvector.
bool empty() const { return isSmall() ? getSmallSize() == 0 : getPointer()->empty(); }
/// size - Returns the number of bits in this bitvector.
size_t size() const { return isSmall() ? getSmallSize() : getPointer()->size(); }
/// count - Returns the number of bits which are set.
unsigned count() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (NumBaseBits == 32) return CountPopulation_32(Bits); if (NumBaseBits == 64) return CountPopulation_64(Bits); llvm_unreachable("Unsupported!"); } return getPointer()->count(); }
/// any - Returns true if any bit is set.
bool any() const { if (isSmall()) return getSmallBits() != 0; return getPointer()->any(); }
/// all - Returns true if all bits are set.
bool all() const { if (isSmall()) return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1; return getPointer()->all(); }
/// none - Returns true if none of the bits are set.
bool none() const { if (isSmall()) return getSmallBits() == 0; return getPointer()->none(); }
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (Bits == 0) return -1; if (NumBaseBits == 32) return CountTrailingZeros_32(Bits); if (NumBaseBits == 64) return CountTrailingZeros_64(Bits); llvm_unreachable("Unsupported!"); } return getPointer()->find_first(); }
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Prev) const { if (isSmall()) { uintptr_t Bits = getSmallBits(); // Mask off previous bits.
Bits &= ~uintptr_t(0) << (Prev + 1); if (Bits == 0 || Prev + 1 >= getSmallSize()) return -1; if (NumBaseBits == 32) return CountTrailingZeros_32(Bits); if (NumBaseBits == 64) return CountTrailingZeros_64(Bits); llvm_unreachable("Unsupported!"); } return getPointer()->find_next(Prev); }
/// clear - Clear all bits.
void clear() { if (!isSmall()) delete getPointer(); switchToSmall(0, 0); }
/// resize - Grow or shrink the bitvector.
void resize(unsigned N, bool t = false) { if (!isSmall()) { getPointer()->resize(N, t); } else if (SmallNumDataBits >= N) { uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0; setSmallSize(N); setSmallBits(NewBits | getSmallBits()); } else { BitVector *BV = new BitVector(N, t); uintptr_t OldBits = getSmallBits(); for (size_t i = 0, e = getSmallSize(); i != e; ++i) (*BV)[i] = (OldBits >> i) & 1; switchToLarge(BV); } }
void reserve(unsigned N) { if (isSmall()) { if (N > SmallNumDataBits) { uintptr_t OldBits = getSmallRawBits(); size_t SmallSize = getSmallSize(); BitVector *BV = new BitVector(SmallSize); for (size_t i = 0; i < SmallSize; ++i) if ((OldBits >> i) & 1) BV->set(i); BV->reserve(N); switchToLarge(BV); } } else { getPointer()->reserve(N); } }
// Set, reset, flip
SmallBitVector &set() { if (isSmall()) setSmallBits(~uintptr_t(0)); else getPointer()->set(); return *this; }
SmallBitVector &set(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); else getPointer()->set(Idx); return *this; }
/// set - Efficiently set a range of bits in [I, E)
SmallBitVector &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!"); if (I == E) return *this; if (isSmall()) { uintptr_t EMask = ((uintptr_t)1) << E; uintptr_t IMask = ((uintptr_t)1) << I; uintptr_t Mask = EMask - IMask; setSmallBits(getSmallBits() | Mask); } else getPointer()->set(I, E); return *this; }
SmallBitVector &reset() { if (isSmall()) setSmallBits(0); else getPointer()->reset(); return *this; }
SmallBitVector &reset(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); else getPointer()->reset(Idx); return *this; }
/// reset - Efficiently reset a range of bits in [I, E)
SmallBitVector &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!"); if (I == E) return *this; if (isSmall()) { uintptr_t EMask = ((uintptr_t)1) << E; uintptr_t IMask = ((uintptr_t)1) << I; uintptr_t Mask = EMask - IMask; setSmallBits(getSmallBits() & ~Mask); } else getPointer()->reset(I, E); return *this; }
SmallBitVector &flip() { if (isSmall()) setSmallBits(~getSmallBits()); else getPointer()->flip(); return *this; }
SmallBitVector &flip(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); else getPointer()->flip(Idx); return *this; }
// No argument flip.
SmallBitVector operator~() const { return SmallBitVector(*this).flip(); }
// Indexing.
reference operator[](unsigned Idx) { assert(Idx < size() && "Out-of-bounds Bit access."); return reference(*this, Idx); }
bool operator[](unsigned Idx) const { assert(Idx < size() && "Out-of-bounds Bit access."); if (isSmall()) return ((getSmallBits() >> Idx) & 1) != 0; return getPointer()->operator[](Idx); }
bool test(unsigned Idx) const { return (*this)[Idx]; }
/// Test if any common bits are set.
bool anyCommon(const SmallBitVector &RHS) const { if (isSmall() && RHS.isSmall()) return (getSmallBits() & RHS.getSmallBits()) != 0; if (!isSmall() && !RHS.isSmall()) return getPointer()->anyCommon(*RHS.getPointer());
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) if (test(i) && RHS.test(i)) return true; return false; }
// Comparison operators.
bool operator==(const SmallBitVector &RHS) const { if (size() != RHS.size()) return false; if (isSmall()) return getSmallBits() == RHS.getSmallBits(); else return *getPointer() == *RHS.getPointer(); }
bool operator!=(const SmallBitVector &RHS) const { return !(*this == RHS); }
// Intersection, union, disjoint union.
SmallBitVector &operator&=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() & RHS.getSmallBits()); else if (!RHS.isSmall()) getPointer()->operator&=(*RHS.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); getPointer()->operator&=(*Copy.getPointer()); } return *this; }
SmallBitVector &operator|=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() | RHS.getSmallBits()); else if (!RHS.isSmall()) getPointer()->operator|=(*RHS.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); getPointer()->operator|=(*Copy.getPointer()); } return *this; }
SmallBitVector &operator^=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() ^ RHS.getSmallBits()); else if (!RHS.isSmall()) getPointer()->operator^=(*RHS.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); getPointer()->operator^=(*Copy.getPointer()); } return *this; }
// Assignment operator.
const SmallBitVector &operator=(const SmallBitVector &RHS) { if (isSmall()) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.getPointer())); } else { if (!RHS.isSmall()) *getPointer() = *RHS.getPointer(); else { delete getPointer(); X = RHS.X; } } return *this; }
#if LLVM_HAS_RVALUE_REFERENCES
const SmallBitVector &operator=(SmallBitVector &&RHS) { if (this != &RHS) { clear(); swap(RHS); } return *this; } #endif
void swap(SmallBitVector &RHS) { std::swap(X, RHS.X); }
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
/// This computes "*this |= Mask".
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask<true, false>(Mask, MaskWords); else getPointer()->setBitsInMask(Mask, MaskWords); }
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
/// Don't resize. This computes "*this &= ~Mask".
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask<false, false>(Mask, MaskWords); else getPointer()->clearBitsInMask(Mask, MaskWords); }
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this |= ~Mask".
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask<true, true>(Mask, MaskWords); else getPointer()->setBitsNotInMask(Mask, MaskWords); }
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
/// Don't resize. This computes "*this &= Mask".
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask<false, true>(Mask, MaskWords); else getPointer()->clearBitsNotInMask(Mask, MaskWords); }
private: template<bool AddBits, bool InvertMask> void applyMask(const uint32_t *Mask, unsigned MaskWords) { assert((NumBaseBits == 64 || NumBaseBits == 32) && "Unsupported word size"); if (NumBaseBits == 64 && MaskWords >= 2) { uint64_t M = Mask[0] | (uint64_t(Mask[1]) << 32); if (InvertMask) M = ~M; if (AddBits) setSmallBits(getSmallBits() | M); else setSmallBits(getSmallBits() & ~M); } else { uint32_t M = Mask[0]; if (InvertMask) M = ~M; if (AddBits) setSmallBits(getSmallBits() | M); else setSmallBits(getSmallBits() & ~M); } } };
inline SmallBitVector operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result &= RHS; return Result; }
inline SmallBitVector operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result |= RHS; return Result; }
inline SmallBitVector operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result ^= RHS; return Result; }
} // End llvm namespace
namespace std { /// Implement std::swap in terms of BitVector swap.
inline void swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { LHS.swap(RHS); } }
#endif
|