|
|
//===- llvm/ADT/SmallString.h - 'Normally small' strings --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallString class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLSTRING_H
#define LLVM_ADT_SMALLSTRING_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
namespace llvm {
/// SmallString - A SmallString is just a SmallVector with methods and accessors
/// that make it work better as a string (e.g. operator+ etc).
template<unsigned InternalLen> class SmallString : public SmallVector<char, InternalLen> { public: /// Default ctor - Initialize to empty.
SmallString() {}
/// Initialize from a StringRef.
SmallString(StringRef S) : SmallVector<char, InternalLen>(S.begin(), S.end()) {}
/// Initialize with a range.
template<typename ItTy> SmallString(ItTy S, ItTy E) : SmallVector<char, InternalLen>(S, E) {}
/// Copy ctor.
SmallString(const SmallString &RHS) : SmallVector<char, InternalLen>(RHS) {}
// Note that in order to add new overloads for append & assign, we have to
// duplicate the inherited versions so as not to inadvertently hide them.
/// @}
/// @name String Assignment
/// @{
/// Assign from a repeated element.
void assign(size_t NumElts, char Elt) { this->SmallVectorImpl<char>::assign(NumElts, Elt); }
/// Assign from an iterator pair.
template<typename in_iter> void assign(in_iter S, in_iter E) { this->clear(); SmallVectorImpl<char>::append(S, E); }
/// Assign from a StringRef.
void assign(StringRef RHS) { this->clear(); SmallVectorImpl<char>::append(RHS.begin(), RHS.end()); }
/// Assign from a SmallVector.
void assign(const SmallVectorImpl<char> &RHS) { this->clear(); SmallVectorImpl<char>::append(RHS.begin(), RHS.end()); }
/// @}
/// @name String Concatenation
/// @{
/// Append from an iterator pair.
template<typename in_iter> void append(in_iter S, in_iter E) { SmallVectorImpl<char>::append(S, E); }
void append(size_t NumInputs, char Elt) { SmallVectorImpl<char>::append(NumInputs, Elt); }
/// Append from a StringRef.
void append(StringRef RHS) { SmallVectorImpl<char>::append(RHS.begin(), RHS.end()); }
/// Append from a SmallVector.
void append(const SmallVectorImpl<char> &RHS) { SmallVectorImpl<char>::append(RHS.begin(), RHS.end()); }
/// @}
/// @name String Comparison
/// @{
/// Check for string equality. This is more efficient than compare() when
/// the relative ordering of inequal strings isn't needed.
bool equals(StringRef RHS) const { return str().equals(RHS); }
/// Check for string equality, ignoring case.
bool equals_lower(StringRef RHS) const { return str().equals_lower(RHS); }
/// Compare two strings; the result is -1, 0, or 1 if this string is
/// lexicographically less than, equal to, or greater than the \p RHS.
int compare(StringRef RHS) const { return str().compare(RHS); }
/// compare_lower - Compare two strings, ignoring case.
int compare_lower(StringRef RHS) const { return str().compare_lower(RHS); }
/// compare_numeric - Compare two strings, treating sequences of digits as
/// numbers.
int compare_numeric(StringRef RHS) const { return str().compare_numeric(RHS); }
/// @}
/// @name String Predicates
/// @{
/// startswith - Check if this string starts with the given \p Prefix.
bool startswith(StringRef Prefix) const { return str().startswith(Prefix); }
/// endswith - Check if this string ends with the given \p Suffix.
bool endswith(StringRef Suffix) const { return str().endswith(Suffix); }
/// @}
/// @name String Searching
/// @{
/// find - Search for the first character \p C in the string.
///
/// \return - The index of the first occurrence of \p C, or npos if not
/// found.
size_t find(char C, size_t From = 0) const { return str().find(C, From); }
/// Search for the first string \p Str in the string.
///
/// \returns The index of the first occurrence of \p Str, or npos if not
/// found.
size_t find(StringRef Str, size_t From = 0) const { return str().find(Str, From); }
/// Search for the last character \p C in the string.
///
/// \returns The index of the last occurrence of \p C, or npos if not
/// found.
size_t rfind(char C, size_t From = StringRef::npos) const { return str().rfind(C, From); }
/// Search for the last string \p Str in the string.
///
/// \returns The index of the last occurrence of \p Str, or npos if not
/// found.
size_t rfind(StringRef Str) const { return str().rfind(Str); }
/// Find the first character in the string that is \p C, or npos if not
/// found. Same as find.
size_t find_first_of(char C, size_t From = 0) const { return str().find_first_of(C, From); }
/// Find the first character in the string that is in \p Chars, or npos if
/// not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_of(StringRef Chars, size_t From = 0) const { return str().find_first_of(Chars, From); }
/// Find the first character in the string that is not \p C or npos if not
/// found.
size_t find_first_not_of(char C, size_t From = 0) const { return str().find_first_not_of(C, From); }
/// Find the first character in the string that is not in the string
/// \p Chars, or npos if not found.
///
/// Complexity: O(size() + Chars.size())
size_t find_first_not_of(StringRef Chars, size_t From = 0) const { return str().find_first_not_of(Chars, From); }
/// Find the last character in the string that is \p C, or npos if not
/// found.
size_t find_last_of(char C, size_t From = StringRef::npos) const { return str().find_last_of(C, From); }
/// Find the last character in the string that is in \p C, or npos if not
/// found.
///
/// Complexity: O(size() + Chars.size())
size_t find_last_of( StringRef Chars, size_t From = StringRef::npos) const { return str().find_last_of(Chars, From); }
/// @}
/// @name Helpful Algorithms
/// @{
/// Return the number of occurrences of \p C in the string.
size_t count(char C) const { return str().count(C); }
/// Return the number of non-overlapped occurrences of \p Str in the
/// string.
size_t count(StringRef Str) const { return str().count(Str); }
/// @}
/// @name Substring Operations
/// @{
/// Return a reference to the substring from [Start, Start + N).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param N The number of characters to included in the substring. If \p N
/// exceeds the number of characters remaining in the string, the string
/// suffix (starting with \p Start) will be returned.
StringRef substr(size_t Start, size_t N = StringRef::npos) const { return str().substr(Start, N); }
/// Return a reference to the substring from [Start, End).
///
/// \param Start The index of the starting character in the substring; if
/// the index is npos or greater than the length of the string then the
/// empty substring will be returned.
///
/// \param End The index following the last character to include in the
/// substring. If this is npos, or less than \p Start, or exceeds the
/// number of characters remaining in the string, the string suffix
/// (starting with \p Start) will be returned.
StringRef slice(size_t Start, size_t End) const { return str().slice(Start, End); }
// Extra methods.
/// Explicit conversion to StringRef.
StringRef str() const { return StringRef(this->begin(), this->size()); }
// TODO: Make this const, if it's safe...
const char* c_str() { this->push_back(0); this->pop_back(); return this->data(); }
/// Implicit conversion to StringRef.
operator StringRef() const { return str(); }
// Extra operators.
const SmallString &operator=(StringRef RHS) { this->clear(); return *this += RHS; }
SmallString &operator+=(StringRef RHS) { this->append(RHS.begin(), RHS.end()); return *this; } SmallString &operator+=(char C) { this->push_back(C); return *this; } };
}
#endif
|