|
|
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallVector class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLVECTOR_H
#define LLVM_ADT_SMALLVECTOR_H
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <memory>
namespace llvm {
/// SmallVectorBase - This is all the non-templated stuff common to all
/// SmallVectors.
class SmallVectorBase { protected: void *BeginX, *EndX, *CapacityX;
protected: SmallVectorBase(void *FirstEl, size_t Size) : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
/// grow_pod - This is an implementation of the grow() method which only works
/// on POD-like data types and is out of line to reduce code duplication.
void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
public: /// size_in_bytes - This returns size()*sizeof(T).
size_t size_in_bytes() const { return size_t((char*)EndX - (char*)BeginX); }
/// capacity_in_bytes - This returns capacity()*sizeof(T).
size_t capacity_in_bytes() const { return size_t((char*)CapacityX - (char*)BeginX); }
bool empty() const { return BeginX == EndX; } };
template <typename T, unsigned N> struct SmallVectorStorage;
/// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
/// which does not depend on whether the type T is a POD. The extra dummy
/// template argument is used by ArrayRef to avoid unnecessarily requiring T
/// to be complete.
template <typename T, typename = void> class SmallVectorTemplateCommon : public SmallVectorBase { private: template <typename, unsigned> friend struct SmallVectorStorage;
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
// don't want it to be automatically run, so we need to represent the space as
// something else. Use an array of char of sufficient alignment.
typedef llvm::AlignedCharArrayUnion<T> U; U FirstEl; // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
protected: SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
void grow_pod(size_t MinSizeInBytes, size_t TSize) { SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize); }
/// isSmall - Return true if this is a smallvector which has not had dynamic
/// memory allocated for it.
bool isSmall() const { return BeginX == static_cast<const void*>(&FirstEl); }
/// resetToSmall - Put this vector in a state of being small.
void resetToSmall() { BeginX = EndX = CapacityX = &FirstEl; }
void setEnd(T *P) { this->EndX = P; } public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T *iterator; typedef const T *const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator;
typedef T &reference; typedef const T &const_reference; typedef T *pointer; typedef const T *const_pointer;
// forward iterator creation methods.
iterator begin() { return (iterator)this->BeginX; } const_iterator begin() const { return (const_iterator)this->BeginX; } iterator end() { return (iterator)this->EndX; } const_iterator end() const { return (const_iterator)this->EndX; } protected: iterator capacity_ptr() { return (iterator)this->CapacityX; } const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} public:
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
size_type size() const { return end()-begin(); } size_type max_size() const { return size_type(-1) / sizeof(T); }
/// capacity - Return the total number of elements in the currently allocated
/// buffer.
size_t capacity() const { return capacity_ptr() - begin(); }
/// data - Return a pointer to the vector's buffer, even if empty().
pointer data() { return pointer(begin()); } /// data - Return a pointer to the vector's buffer, even if empty().
const_pointer data() const { return const_pointer(begin()); }
reference operator[](unsigned idx) { assert(begin() + idx < end()); return begin()[idx]; } const_reference operator[](unsigned idx) const { assert(begin() + idx < end()); return begin()[idx]; }
reference front() { assert(!empty()); return begin()[0]; } const_reference front() const { assert(!empty()); return begin()[0]; }
reference back() { assert(!empty()); return end()[-1]; } const_reference back() const { assert(!empty()); return end()[-1]; } };
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
/// implementations that are designed to work with non-POD-like T's.
template <typename T, bool isPodLike> class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { protected: SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
static void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } }
/// move - Use move-assignment to move the range [I, E) onto the
/// objects starting with "Dest". This is just <memory>'s
/// std::move, but not all stdlibs actually provide that.
template<typename It1, typename It2> static It2 move(It1 I, It1 E, It2 Dest) { #if LLVM_HAS_RVALUE_REFERENCES
for (; I != E; ++I, ++Dest) *Dest = ::std::move(*I); return Dest; #else
return ::std::copy(I, E, Dest); #endif
}
/// move_backward - Use move-assignment to move the range
/// [I, E) onto the objects ending at "Dest", moving objects
/// in reverse order. This is just <algorithm>'s
/// std::move_backward, but not all stdlibs actually provide that.
template<typename It1, typename It2> static It2 move_backward(It1 I, It1 E, It2 Dest) { #if LLVM_HAS_RVALUE_REFERENCES
while (I != E) *--Dest = ::std::move(*--E); return Dest; #else
return ::std::copy_backward(I, E, Dest); #endif
}
/// uninitialized_move - Move the range [I, E) into the uninitialized
/// memory starting with "Dest", constructing elements as needed.
template<typename It1, typename It2> static void uninitialized_move(It1 I, It1 E, It2 Dest) { #if LLVM_HAS_RVALUE_REFERENCES
for (; I != E; ++I, ++Dest) ::new ((void*) &*Dest) T(::std::move(*I)); #else
::std::uninitialized_copy(I, E, Dest); #endif
}
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized
/// memory starting with "Dest", constructing elements as needed.
template<typename It1, typename It2> static void uninitialized_copy(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(I, E, Dest); }
/// grow - Grow the allocated memory (without initializing new
/// elements), doubling the size of the allocated memory.
/// Guarantees space for at least one more element, or MinSize more
/// elements if specified.
void grow(size_t MinSize = 0); public: void push_back(const T &Elt) { if (this->EndX < this->CapacityX) { Retry: ::new ((void*) this->end()) T(Elt); this->setEnd(this->end()+1); return; } this->grow(); goto Retry; }
#if LLVM_HAS_RVALUE_REFERENCES
void push_back(T &&Elt) { if (this->EndX < this->CapacityX) { Retry: ::new ((void*) this->end()) T(::std::move(Elt)); this->setEnd(this->end()+1); return; } this->grow(); goto Retry; } #endif
void pop_back() { this->setEnd(this->end()-1); this->end()->~T(); } };
// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool isPodLike> void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) { size_t CurCapacity = this->capacity(); size_t CurSize = this->size(); // Always grow, even from zero.
size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2)); if (NewCapacity < MinSize) NewCapacity = MinSize; T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
// Move the elements over.
this->uninitialized_move(this->begin(), this->end(), NewElts);
// Destroy the original elements.
destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall()) free(this->begin());
this->setEnd(NewElts+CurSize); this->BeginX = NewElts; this->CapacityX = this->begin()+NewCapacity; }
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
/// implementations that are designed to work with POD-like T's.
template <typename T> class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { protected: SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
// No need to do a destroy loop for POD's.
static void destroy_range(T *, T *) {}
/// move - Use move-assignment to move the range [I, E) onto the
/// objects starting with "Dest". For PODs, this is just memcpy.
template<typename It1, typename It2> static It2 move(It1 I, It1 E, It2 Dest) { return ::std::copy(I, E, Dest); }
/// move_backward - Use move-assignment to move the range
/// [I, E) onto the objects ending at "Dest", moving objects
/// in reverse order.
template<typename It1, typename It2> static It2 move_backward(It1 I, It1 E, It2 Dest) { return ::std::copy_backward(I, E, Dest); }
/// uninitialized_move - Move the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2> static void uninitialized_move(It1 I, It1 E, It2 Dest) { // Just do a copy.
uninitialized_copy(I, E, Dest); }
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2> static void uninitialized_copy(It1 I, It1 E, It2 Dest) { // Arbitrary iterator types; just use the basic implementation.
std::uninitialized_copy(I, E, Dest); }
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename T1, typename T2> static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) { // Use memcpy for PODs iterated by pointers (which includes SmallVector
// iterators): std::uninitialized_copy optimizes to memmove, but we can
// use memcpy here.
memcpy(Dest, I, (E-I)*sizeof(T)); }
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(size_t MinSize = 0) { this->grow_pod(MinSize*sizeof(T), sizeof(T)); } public: void push_back(const T &Elt) { if (this->EndX < this->CapacityX) { Retry: memcpy(this->end(), &Elt, sizeof(T)); this->setEnd(this->end()+1); return; } this->grow(); goto Retry; } void pop_back() { this->setEnd(this->end()-1); } };
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T> class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> { typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION; public: typedef typename SuperClass::iterator iterator; typedef typename SuperClass::size_type size_type;
protected: // Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) { }
public: ~SmallVectorImpl() { // Destroy the constructed elements in the vector.
this->destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall()) free(this->begin()); }
void clear() { this->destroy_range(this->begin(), this->end()); this->EndX = this->BeginX; }
void resize(unsigned N) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->setEnd(this->begin()+N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(N); std::uninitialized_fill(this->end(), this->begin()+N, T()); this->setEnd(this->begin()+N); } }
void resize(unsigned N, const T &NV) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->setEnd(this->begin()+N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(N); std::uninitialized_fill(this->end(), this->begin()+N, NV); this->setEnd(this->begin()+N); } }
void reserve(unsigned N) { if (this->capacity() < N) this->grow(N); }
T pop_back_val() { #if LLVM_HAS_RVALUE_REFERENCES
T Result = ::std::move(this->back()); #else
T Result = this->back(); #endif
this->pop_back(); return Result; }
void swap(SmallVectorImpl &RHS);
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter> void append(in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end())) this->grow(this->size()+NumInputs);
// Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, this->end()); this->setEnd(this->end() + NumInputs); }
/// append - Add the specified range to the end of the SmallVector.
///
void append(size_type NumInputs, const T &Elt) { // Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end())) this->grow(this->size()+NumInputs);
// Copy the new elements over.
std::uninitialized_fill_n(this->end(), NumInputs, Elt); this->setEnd(this->end() + NumInputs); }
void assign(unsigned NumElts, const T &Elt) { clear(); if (this->capacity() < NumElts) this->grow(NumElts); this->setEnd(this->begin()+NumElts); std::uninitialized_fill(this->begin(), this->end(), Elt); }
iterator erase(iterator I) { assert(I >= this->begin() && "Iterator to erase is out of bounds."); assert(I < this->end() && "Erasing at past-the-end iterator.");
iterator N = I; // Shift all elts down one.
this->move(I+1, this->end(), I); // Drop the last elt.
this->pop_back(); return(N); }
iterator erase(iterator S, iterator E) { assert(S >= this->begin() && "Range to erase is out of bounds."); assert(S <= E && "Trying to erase invalid range."); assert(E <= this->end() && "Trying to erase past the end.");
iterator N = S; // Shift all elts down.
iterator I = this->move(E, this->end(), S); // Drop the last elts.
this->destroy_range(I, this->end()); this->setEnd(I); return(N); }
#if LLVM_HAS_RVALUE_REFERENCES
iterator insert(iterator I, T &&Elt) { if (I == this->end()) { // Important special case for empty vector.
this->push_back(::std::move(Elt)); return this->end()-1; }
assert(I >= this->begin() && "Insertion iterator is out of bounds."); assert(I <= this->end() && "Inserting past the end of the vector.");
if (this->EndX < this->CapacityX) { Retry: ::new ((void*) this->end()) T(::std::move(this->back())); this->setEnd(this->end()+1); // Push everything else over.
this->move_backward(I, this->end()-1, this->end());
// If we just moved the element we're inserting, be sure to update
// the reference.
T *EltPtr = &Elt; if (I <= EltPtr && EltPtr < this->EndX) ++EltPtr;
*I = ::std::move(*EltPtr); return I; } size_t EltNo = I-this->begin(); this->grow(); I = this->begin()+EltNo; goto Retry; } #endif
iterator insert(iterator I, const T &Elt) { if (I == this->end()) { // Important special case for empty vector.
this->push_back(Elt); return this->end()-1; }
assert(I >= this->begin() && "Insertion iterator is out of bounds."); assert(I <= this->end() && "Inserting past the end of the vector.");
if (this->EndX < this->CapacityX) { Retry: ::new ((void*) this->end()) T(this->back()); this->setEnd(this->end()+1); // Push everything else over.
this->move_backward(I, this->end()-1, this->end());
// If we just moved the element we're inserting, be sure to update
// the reference.
const T *EltPtr = &Elt; if (I <= EltPtr && EltPtr < this->EndX) ++EltPtr;
*I = *EltPtr; return I; } size_t EltNo = I-this->begin(); this->grow(); I = this->begin()+EltNo; goto Retry; }
iterator insert(iterator I, size_type NumToInsert, const T &Elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt); return this->begin()+InsertElt; }
assert(I >= this->begin() && "Insertion iterator is out of bounds."); assert(I <= this->end() && "Inserting past the end of the vector.");
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
this->move_backward(I, OldEnd-NumToInsert, OldEnd);
std::fill_n(I, NumToInsert, Elt); return I; }
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Move over the elements that we're about to overwrite.
T *OldEnd = this->end(); this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; }
template<typename ItTy> iterator insert(iterator I, ItTy From, ItTy To) { // Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
if (I == this->end()) { // Important special case for empty vector.
append(From, To); return this->begin()+InsertElt; }
assert(I >= this->begin() && "Insertion iterator is out of bounds."); assert(I <= this->end() && "Inserting past the end of the vector.");
size_t NumToInsert = std::distance(From, To);
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
this->move_backward(I, OldEnd-NumToInsert, OldEnd);
std::copy(From, To, I); return I; }
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Move over the elements that we're about to overwrite.
T *OldEnd = this->end(); this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
for (T *J = I; NumOverwritten > 0; --NumOverwritten) { *J = *From; ++J; ++From; }
// Insert the non-overwritten middle part.
this->uninitialized_copy(From, To, OldEnd); return I; }
SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
#if LLVM_HAS_RVALUE_REFERENCES
SmallVectorImpl &operator=(SmallVectorImpl &&RHS); #endif
bool operator==(const SmallVectorImpl &RHS) const { if (this->size() != RHS.size()) return false; return std::equal(this->begin(), this->end(), RHS.begin()); } bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); }
bool operator<(const SmallVectorImpl &RHS) const { return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); }
/// Set the array size to \p N, which the current array must have enough
/// capacity for.
///
/// This does not construct or destroy any elements in the vector.
///
/// Clients can use this in conjunction with capacity() to write past the end
/// of the buffer when they know that more elements are available, and only
/// update the size later. This avoids the cost of value initializing elements
/// which will only be overwritten.
void set_size(unsigned N) { assert(N <= this->capacity()); this->setEnd(this->begin() + N); } };
template <typename T> void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { if (this == &RHS) return;
// We can only avoid copying elements if neither vector is small.
if (!this->isSmall() && !RHS.isSmall()) { std::swap(this->BeginX, RHS.BeginX); std::swap(this->EndX, RHS.EndX); std::swap(this->CapacityX, RHS.CapacityX); return; } if (RHS.size() > this->capacity()) this->grow(RHS.size()); if (this->size() > RHS.capacity()) RHS.grow(this->size());
// Swap the shared elements.
size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i) std::swap((*this)[i], RHS[i]);
// Copy over the extra elts.
if (this->size() > RHS.size()) { size_t EltDiff = this->size() - RHS.size(); this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); RHS.setEnd(RHS.end()+EltDiff); this->destroy_range(this->begin()+NumShared, this->end()); this->setEnd(this->begin()+NumShared); } else if (RHS.size() > this->size()) { size_t EltDiff = RHS.size() - this->size(); this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); this->setEnd(this->end() + EltDiff); this->destroy_range(RHS.begin()+NumShared, RHS.end()); RHS.setEnd(RHS.begin()+NumShared); } }
template <typename T> SmallVectorImpl<T> &SmallVectorImpl<T>:: operator=(const SmallVectorImpl<T> &RHS) { // Avoid self-assignment.
if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements.
iterator NewEnd; if (RHSSize) NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); else NewEnd = this->begin();
// Destroy excess elements.
this->destroy_range(NewEnd, this->end());
// Trim.
this->setEnd(NewEnd); return *this; }
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
// FIXME: don't do this if they're efficiently moveable.
if (this->capacity() < RHSSize) { // Destroy current elements.
this->destroy_range(this->begin(), this->end()); this->setEnd(this->begin()); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements.
std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); }
// Copy construct the new elements in place.
this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
// Set end.
this->setEnd(this->begin()+RHSSize); return *this; }
#if LLVM_HAS_RVALUE_REFERENCES
template <typename T> SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { // Avoid self-assignment.
if (this == &RHS) return *this;
// If the RHS isn't small, clear this vector and then steal its buffer.
if (!RHS.isSmall()) { this->destroy_range(this->begin(), this->end()); if (!this->isSmall()) free(this->begin()); this->BeginX = RHS.BeginX; this->EndX = RHS.EndX; this->CapacityX = RHS.CapacityX; RHS.resetToSmall(); return *this; }
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements.
iterator NewEnd = this->begin(); if (RHSSize) NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
// Destroy excess elements and trim the bounds.
this->destroy_range(NewEnd, this->end()); this->setEnd(NewEnd);
// Clear the RHS.
RHS.clear();
return *this; }
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
// FIXME: this may not actually make any sense if we can efficiently move
// elements.
if (this->capacity() < RHSSize) { // Destroy current elements.
this->destroy_range(this->begin(), this->end()); this->setEnd(this->begin()); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements.
this->move(RHS.begin(), RHS.end(), this->begin()); }
// Move-construct the new elements in place.
this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
// Set end.
this->setEnd(this->begin()+RHSSize);
RHS.clear(); return *this; } #endif
/// Storage for the SmallVector elements which aren't contained in
/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
/// element is in the base class. This is specialized for the N=1 and N=0 cases
/// to avoid allocating unnecessary storage.
template <typename T, unsigned N> struct SmallVectorStorage { typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1]; }; template <typename T> struct SmallVectorStorage<T, 1> {}; template <typename T> struct SmallVectorStorage<T, 0> {};
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold. This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// Note that this does not attempt to be exception safe.
///
template <typename T, unsigned N> class SmallVector : public SmallVectorImpl<T> { /// Storage - Inline space for elements which aren't stored in the base class.
SmallVectorStorage<T, N> Storage; public: SmallVector() : SmallVectorImpl<T>(N) { }
explicit SmallVector(unsigned Size, const T &Value = T()) : SmallVectorImpl<T>(N) { this->assign(Size, Value); }
template<typename ItTy> SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { this->append(S, E); }
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { if (!RHS.empty()) SmallVectorImpl<T>::operator=(RHS); }
const SmallVector &operator=(const SmallVector &RHS) { SmallVectorImpl<T>::operator=(RHS); return *this; }
#if LLVM_HAS_RVALUE_REFERENCES
SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { if (!RHS.empty()) SmallVectorImpl<T>::operator=(::std::move(RHS)); }
const SmallVector &operator=(SmallVector &&RHS) { SmallVectorImpl<T>::operator=(::std::move(RHS)); return *this; } #endif
};
template<typename T, unsigned N> static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { return X.capacity_in_bytes(); }
} // End llvm namespace
namespace std { /// Implement std::swap in terms of SmallVector swap.
template<typename T> inline void swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { LHS.swap(RHS); }
/// Implement std::swap in terms of SmallVector swap.
template<typename T, unsigned N> inline void swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { LHS.swap(RHS); } }
#endif
|