|
|
//===- llvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominanceFrontier class, which calculate and holds the
// dominance frontier for a function.
//
// This should be considered deprecated, don't add any more uses of this data
// structure.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER_H
#define LLVM_ANALYSIS_DOMINANCEFRONTIER_H
#include "llvm/Analysis/Dominators.h"
#include <map>
#include <set>
namespace llvm { //===----------------------------------------------------------------------===//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
///
class DominanceFrontierBase : public FunctionPass { public: typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
protected: DomSetMapType Frontiers; std::vector<BasicBlock*> Roots; const bool IsPostDominators;
public: DominanceFrontierBase(char &ID, bool isPostDom) : FunctionPass(ID), IsPostDominators(isPostDom) {}
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
virtual void releaseMemory() { Frontiers.clear(); }
// Accessor interface:
typedef DomSetMapType::iterator iterator; typedef DomSetMapType::const_iterator const_iterator; iterator begin() { return Frontiers.begin(); } const_iterator begin() const { return Frontiers.begin(); } iterator end() { return Frontiers.end(); } const_iterator end() const { return Frontiers.end(); } iterator find(BasicBlock *B) { return Frontiers.find(B); } const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) { assert(find(BB) == end() && "Block already in DominanceFrontier!"); return Frontiers.insert(std::make_pair(BB, frontier)).first; }
/// removeBlock - Remove basic block BB's frontier.
void removeBlock(BasicBlock *BB) { assert(find(BB) != end() && "Block is not in DominanceFrontier!"); for (iterator I = begin(), E = end(); I != E; ++I) I->second.erase(BB); Frontiers.erase(BB); }
void addToFrontier(iterator I, BasicBlock *Node) { assert(I != end() && "BB is not in DominanceFrontier!"); I->second.insert(Node); }
void removeFromFrontier(iterator I, BasicBlock *Node) { assert(I != end() && "BB is not in DominanceFrontier!"); assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB"); I->second.erase(Node); }
/// compareDomSet - Return false if two domsets match. Otherwise
/// return true;
bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const { std::set<BasicBlock *> tmpSet; for (DomSetType::const_iterator I = DS2.begin(), E = DS2.end(); I != E; ++I) tmpSet.insert(*I);
for (DomSetType::const_iterator I = DS1.begin(), E = DS1.end(); I != E; ) { BasicBlock *Node = *I++;
if (tmpSet.erase(Node) == 0) // Node is in DS1 but not in DS2.
return true; }
if (!tmpSet.empty()) // There are nodes that are in DS2 but not in DS1.
return true;
// DS1 and DS2 matches.
return false; }
/// compare - Return true if the other dominance frontier base matches
/// this dominance frontier base. Otherwise return false.
bool compare(DominanceFrontierBase &Other) const { DomSetMapType tmpFrontiers; for (DomSetMapType::const_iterator I = Other.begin(), E = Other.end(); I != E; ++I) tmpFrontiers.insert(std::make_pair(I->first, I->second));
for (DomSetMapType::iterator I = tmpFrontiers.begin(), E = tmpFrontiers.end(); I != E; ) { BasicBlock *Node = I->first; const_iterator DFI = find(Node); if (DFI == end()) return true;
if (compareDomSet(I->second, DFI->second)) return true;
++I; tmpFrontiers.erase(Node); }
if (!tmpFrontiers.empty()) return true;
return false; }
/// print - Convert to human readable form
///
virtual void print(raw_ostream &OS, const Module* = 0) const;
/// dump - Dump the dominance frontier to dbgs().
void dump() const; };
//===-------------------------------------
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
/// used to compute a forward dominator frontiers.
///
class DominanceFrontier : public DominanceFrontierBase { virtual void anchor(); public: static char ID; // Pass ID, replacement for typeid
DominanceFrontier() : DominanceFrontierBase(ID, false) { initializeDominanceFrontierPass(*PassRegistry::getPassRegistry()); }
BasicBlock *getRoot() const { assert(Roots.size() == 1 && "Should always have entry node!"); return Roots[0]; }
virtual bool runOnFunction(Function &) { Frontiers.clear(); DominatorTree &DT = getAnalysis<DominatorTree>(); Roots = DT.getRoots(); assert(Roots.size() == 1 && "Only one entry block for forward domfronts!"); calculate(DT, DT[Roots[0]]); return false; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<DominatorTree>(); }
const DomSetType &calculate(const DominatorTree &DT, const DomTreeNode *Node); };
} // End llvm namespace
#endif
|