|
|
//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
#define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/Dominators.h"
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
// A Fast Algorithm for Finding Dominators in a Flowgraph
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
// out that the theoretically slower O(n*log(n)) implementation is actually
// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
//
//===----------------------------------------------------------------------===//
namespace llvm {
template<class GraphT> unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* V, unsigned N) { // This is more understandable as a recursive algorithm, but we can't use the
// recursive algorithm due to stack depth issues. Keep it here for
// documentation purposes.
#if 0
InfoRec &VInfo = DT.Info[DT.Roots[i]]; VInfo.DFSNum = VInfo.Semi = ++N; VInfo.Label = V;
Vertex.push_back(V); // Vertex[n] = V;
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { InfoRec &SuccVInfo = DT.Info[*SI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = V; N = DTDFSPass(DT, *SI, N); } } #else
bool IsChildOfArtificialExit = (N != 0);
SmallVector<std::pair<typename GraphT::NodeType*, typename GraphT::ChildIteratorType>, 32> Worklist; Worklist.push_back(std::make_pair(V, GraphT::child_begin(V))); while (!Worklist.empty()) { typename GraphT::NodeType* BB = Worklist.back().first; typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = DT.Info[BB];
// First time we visited this BB?
if (NextSucc == GraphT::child_begin(BB)) { BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = BB;
DT.Vertex.push_back(BB); // Vertex[n] = V;
if (IsChildOfArtificialExit) BBInfo.Parent = 1;
IsChildOfArtificialExit = false; }
// store the DFS number of the current BB - the reference to BBInfo might
// get invalidated when processing the successors.
unsigned BBDFSNum = BBInfo.DFSNum;
// If we are done with this block, remove it from the worklist.
if (NextSucc == GraphT::child_end(BB)) { Worklist.pop_back(); continue; }
// Increment the successor number for the next time we get to it.
++Worklist.back().second; // Visit the successor next, if it isn't already visited.
typename GraphT::NodeType* Succ = *NextSucc;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo = DT.Info[Succ]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = BBDFSNum; Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ))); } } #endif
return N; }
template<class GraphT> typename GraphT::NodeType* Eval(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType *VIn, unsigned LastLinked) { typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo = DT.Info[VIn]; if (VInInfo.DFSNum < LastLinked) return VIn;
SmallVector<typename GraphT::NodeType*, 32> Work; SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
if (VInInfo.Parent >= LastLinked) Work.push_back(VIn); while (!Work.empty()) { typename GraphT::NodeType* V = Work.back(); typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo = DT.Info[V]; typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
// Process Ancestor first
if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) { Work.push_back(VAncestor); continue; } Work.pop_back();
// Update VInfo based on Ancestor info
if (VInfo.Parent < LastLinked) continue;
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo = DT.Info[VAncestor]; typename GraphT::NodeType* VAncestorLabel = VAInfo.Label; typename GraphT::NodeType* VLabel = VInfo.Label; if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Parent = VAInfo.Parent; }
return VInInfo.Label; }
template<class FuncT, class NodeT> void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT, FuncT& F) { typedef GraphTraits<NodeT> GraphT;
unsigned N = 0; bool MultipleRoots = (DT.Roots.size() > 1); if (MultipleRoots) { typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = DT.Info[NULL]; BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = NULL;
DT.Vertex.push_back(NULL); // Vertex[n] = V;
}
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size()); i != e; ++i) N = DFSPass<GraphT>(DT, DT.Roots[i], N);
// it might be that some blocks did not get a DFS number (e.g., blocks of
// infinite loops). In these cases an artificial exit node is required.
MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
// When naively implemented, the Lengauer-Tarjan algorithm requires a separate
// bucket for each vertex. However, this is unnecessary, because each vertex
// is only placed into a single bucket (that of its semidominator), and each
// vertex's bucket is processed before it is added to any bucket itself.
//
// Instead of using a bucket per vertex, we use a single array Buckets that
// has two purposes. Before the vertex V with preorder number i is processed,
// Buckets[i] stores the index of the first element in V's bucket. After V's
// bucket is processed, Buckets[i] stores the index of the next element in the
// bucket containing V, if any.
SmallVector<unsigned, 32> Buckets; Buckets.resize(N + 1); for (unsigned i = 1; i <= N; ++i) Buckets[i] = i;
for (unsigned i = N; i >= 2; --i) { typename GraphT::NodeType* W = DT.Vertex[i]; typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo = DT.Info[W];
// Step #2: Implicitly define the immediate dominator of vertices
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) { typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1); DT.IDoms[V] = DT.Info[U].Semi < i ? U : W; }
// Step #3: Calculate the semidominators of all vertices
// initialize the semi dominator to point to the parent node
WInfo.Semi = WInfo.Parent; typedef GraphTraits<Inverse<NodeT> > InvTraits; for (typename InvTraits::ChildIteratorType CI = InvTraits::child_begin(W), E = InvTraits::child_end(W); CI != E; ++CI) { typename InvTraits::NodeType *N = *CI; if (DT.Info.count(N)) { // Only if this predecessor is reachable!
unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } }
// If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
// necessarily parent(V). In this case, set idom(V) here and avoid placing
// V into a bucket.
if (WInfo.Semi == WInfo.Parent) { DT.IDoms[W] = DT.Vertex[WInfo.Parent]; } else { Buckets[i] = Buckets[WInfo.Semi]; Buckets[WInfo.Semi] = i; } }
if (N >= 1) { typename GraphT::NodeType* Root = DT.Vertex[1]; for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) { typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; DT.IDoms[V] = Root; } }
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeType* W = DT.Vertex[i]; typename GraphT::NodeType*& WIDom = DT.IDoms[W]; if (WIDom != DT.Vertex[DT.Info[W].Semi]) WIDom = DT.IDoms[WIDom]; }
if (DT.Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
// which postdominates all real exits if there are multiple exit blocks, or
// an infinite loop.
typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
DT.DomTreeNodes[Root] = DT.RootNode = new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
// Loop over all of the reachable blocks in the function...
for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeType* W = DT.Vertex[i];
DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W]; if (BBNode) continue; // Haven't calculated this node yet?
typename GraphT::NodeType* ImmDom = DT.getIDom(W);
assert(ImmDom || DT.DomTreeNodes[NULL]);
// Get or calculate the node for the immediate dominator
DomTreeNodeBase<typename GraphT::NodeType> *IDomNode = DT.getNodeForBlock(ImmDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DomTreeNodeBase<typename GraphT::NodeType> *C = new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode); DT.DomTreeNodes[W] = IDomNode->addChild(C); }
// Free temporary memory used to construct idom's
DT.IDoms.clear(); DT.Info.clear(); std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
DT.updateDFSNumbers(); }
}
#endif
|