|
|
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG. A natural loop
// has exactly one entry-point, which is called the header. Note that natural
// loops may actually be several loops that share the same header node.
//
// This analysis calculates the nesting structure of loops in a function. For
// each natural loop identified, this analysis identifies natural loops
// contained entirely within the loop and the basic blocks the make up the loop.
//
// It can calculate on the fly various bits of information, for example:
//
// * whether there is a preheader for the loop
// * the number of back edges to the header
// * whether or not a particular block branches out of the loop
// * the successor blocks of the loop
// * the loop depth
// * etc...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPINFO_H
#define LLVM_ANALYSIS_LOOPINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Pass.h"
#include <algorithm>
namespace llvm {
template<typename T> inline void RemoveFromVector(std::vector<T*> &V, T *N) { typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); assert(I != V.end() && "N is not in this list!"); V.erase(I); }
class DominatorTree; class LoopInfo; class Loop; class PHINode; class raw_ostream; template<class N, class M> class LoopInfoBase; template<class N, class M> class LoopBase;
//===----------------------------------------------------------------------===//
/// LoopBase class - Instances of this class are used to represent loops that
/// are detected in the flow graph
///
template<class BlockT, class LoopT> class LoopBase { LoopT *ParentLoop; // SubLoops - Loops contained entirely within this one.
std::vector<LoopT *> SubLoops;
// Blocks - The list of blocks in this loop. First entry is the header node.
std::vector<BlockT*> Blocks;
LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION; const LoopBase<BlockT, LoopT>& operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION; public: /// Loop ctor - This creates an empty loop.
LoopBase() : ParentLoop(0) {} ~LoopBase() { for (size_t i = 0, e = SubLoops.size(); i != e; ++i) delete SubLoops[i]; }
/// getLoopDepth - Return the nesting level of this loop. An outer-most
/// loop has depth 1, for consistency with loop depth values used for basic
/// blocks, where depth 0 is used for blocks not inside any loops.
unsigned getLoopDepth() const { unsigned D = 1; for (const LoopT *CurLoop = ParentLoop; CurLoop; CurLoop = CurLoop->ParentLoop) ++D; return D; } BlockT *getHeader() const { return Blocks.front(); } LoopT *getParentLoop() const { return ParentLoop; }
/// setParentLoop is a raw interface for bypassing addChildLoop.
void setParentLoop(LoopT *L) { ParentLoop = L; }
/// contains - Return true if the specified loop is contained within in
/// this loop.
///
bool contains(const LoopT *L) const { if (L == this) return true; if (L == 0) return false; return contains(L->getParentLoop()); }
/// contains - Return true if the specified basic block is in this loop.
///
bool contains(const BlockT *BB) const { return std::find(block_begin(), block_end(), BB) != block_end(); }
/// contains - Return true if the specified instruction is in this loop.
///
template<class InstT> bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
/// iterator/begin/end - Return the loops contained entirely within this loop.
///
const std::vector<LoopT *> &getSubLoops() const { return SubLoops; } std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; } typedef typename std::vector<LoopT *>::const_iterator iterator; typedef typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; iterator begin() const { return SubLoops.begin(); } iterator end() const { return SubLoops.end(); } reverse_iterator rbegin() const { return SubLoops.rbegin(); } reverse_iterator rend() const { return SubLoops.rend(); } bool empty() const { return SubLoops.empty(); }
/// getBlocks - Get a list of the basic blocks which make up this loop.
///
const std::vector<BlockT*> &getBlocks() const { return Blocks; } std::vector<BlockT*> &getBlocksVector() { return Blocks; } typedef typename std::vector<BlockT*>::const_iterator block_iterator; block_iterator block_begin() const { return Blocks.begin(); } block_iterator block_end() const { return Blocks.end(); }
/// getNumBlocks - Get the number of blocks in this loop in constant time.
unsigned getNumBlocks() const { return Blocks.size(); }
/// isLoopExiting - True if terminator in the block can branch to another
/// block that is outside of the current loop.
///
bool isLoopExiting(const BlockT *BB) const { typedef GraphTraits<const BlockT*> BlockTraits; for (typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB); SI != SE; ++SI) { if (!contains(*SI)) return true; } return false; }
/// getNumBackEdges - Calculate the number of back edges to the loop header
///
unsigned getNumBackEdges() const { unsigned NumBackEdges = 0; BlockT *H = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType I = InvBlockTraits::child_begin(H), E = InvBlockTraits::child_end(H); I != E; ++I) if (contains(*I)) ++NumBackEdges;
return NumBackEdges; }
//===--------------------------------------------------------------------===//
// APIs for simple analysis of the loop.
//
// Note that all of these methods can fail on general loops (ie, there may not
// be a preheader, etc). For best success, the loop simplification and
// induction variable canonicalization pass should be used to normalize loops
// for easy analysis. These methods assume canonical loops.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
BlockT *getExitingBlock() const;
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
BlockT *getExitBlock() const;
/// Edge type.
typedef std::pair<const BlockT*, const BlockT*> Edge;
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
BlockT *getLoopPreheader() const;
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
BlockT *getLoopPredecessor() const;
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
BlockT *getLoopLatch() const;
//===--------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
/// addChildLoop - Add the specified loop to be a child of this loop. This
/// updates the loop depth of the new child.
///
void addChildLoop(LoopT *NewChild) { assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); NewChild->ParentLoop = static_cast<LoopT *>(this); SubLoops.push_back(NewChild); }
/// removeChildLoop - This removes the specified child from being a subloop of
/// this loop. The loop is not deleted, as it will presumably be inserted
/// into another loop.
LoopT *removeChildLoop(iterator I) { assert(I != SubLoops.end() && "Cannot remove end iterator!"); LoopT *Child = *I; assert(Child->ParentLoop == this && "Child is not a child of this loop!"); SubLoops.erase(SubLoops.begin()+(I-begin())); Child->ParentLoop = 0; return Child; }
/// addBlockEntry - This adds a basic block directly to the basic block list.
/// This should only be used by transformations that create new loops. Other
/// transformations should use addBasicBlockToLoop.
void addBlockEntry(BlockT *BB) { Blocks.push_back(BB); }
/// moveToHeader - This method is used to move BB (which must be part of this
/// loop) to be the loop header of the loop (the block that dominates all
/// others).
void moveToHeader(BlockT *BB) { if (Blocks[0] == BB) return; for (unsigned i = 0; ; ++i) { assert(i != Blocks.size() && "Loop does not contain BB!"); if (Blocks[i] == BB) { Blocks[i] = Blocks[0]; Blocks[0] = BB; return; } } }
/// removeBlockFromLoop - This removes the specified basic block from the
/// current loop, updating the Blocks as appropriate. This does not update
/// the mapping in the LoopInfo class.
void removeBlockFromLoop(BlockT *BB) { RemoveFromVector(Blocks, BB); }
/// verifyLoop - Verify loop structure
void verifyLoop() const;
/// verifyLoop - Verify loop structure of this loop and all nested loops.
void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
void print(raw_ostream &OS, unsigned Depth = 0) const;
protected: friend class LoopInfoBase<BlockT, LoopT>; explicit LoopBase(BlockT *BB) : ParentLoop(0) { Blocks.push_back(BB); } };
template<class BlockT, class LoopT> raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { Loop.print(OS); return OS; }
// Implementation in LoopInfoImpl.h
#ifdef __GNUC__
__extension__ extern template class LoopBase<BasicBlock, Loop>; #endif
class Loop : public LoopBase<BasicBlock, Loop> { public: Loop() {}
/// isLoopInvariant - Return true if the specified value is loop invariant
///
bool isLoopInvariant(Value *V) const;
/// hasLoopInvariantOperands - Return true if all the operands of the
/// specified instruction are loop invariant.
bool hasLoopInvariantOperands(Instruction *I) const;
/// makeLoopInvariant - If the given value is an instruction inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the value after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt = 0) const;
/// makeLoopInvariant - If the given instruction is inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the instruction after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool makeLoopInvariant(Instruction *I, bool &Changed, Instruction *InsertPt = 0) const;
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable: an integer recurrence that starts at 0 and increments
/// by one each time through the loop. If so, return the phi node that
/// corresponds to it.
///
/// The IndVarSimplify pass transforms loops to have a canonical induction
/// variable.
///
PHINode *getCanonicalInductionVariable() const;
/// isLCSSAForm - Return true if the Loop is in LCSSA form
bool isLCSSAForm(DominatorTree &DT) const;
/// isLoopSimplifyForm - Return true if the Loop is in the form that
/// the LoopSimplify form transforms loops to, which is sometimes called
/// normal form.
bool isLoopSimplifyForm() const;
/// isSafeToClone - Return true if the loop body is safe to clone in practice.
bool isSafeToClone() const;
/// Returns true if the loop is annotated parallel.
///
/// A parallel loop can be assumed to not contain any dependencies between
/// iterations by the compiler. That is, any loop-carried dependency checking
/// can be skipped completely when parallelizing the loop on the target
/// machine. Thus, if the parallel loop information originates from the
/// programmer, e.g. via the OpenMP parallel for pragma, it is the
/// programmer's responsibility to ensure there are no loop-carried
/// dependencies. The final execution order of the instructions across
/// iterations is not guaranteed, thus, the end result might or might not
/// implement actual concurrent execution of instructions across multiple
/// iterations.
bool isAnnotatedParallel() const;
/// hasDedicatedExits - Return true if no exit block for the loop
/// has a predecessor that is outside the loop.
bool hasDedicatedExits() const;
/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
/// These are the blocks _outside of the current loop_ which are branched to.
/// This assumes that loop exits are in canonical form.
///
void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
/// block, return that block. Otherwise return null.
BasicBlock *getUniqueExitBlock() const;
void dump() const;
private: friend class LoopInfoBase<BasicBlock, Loop>; explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} };
//===----------------------------------------------------------------------===//
/// LoopInfo - This class builds and contains all of the top level loop
/// structures in the specified function.
///
template<class BlockT, class LoopT> class LoopInfoBase { // BBMap - Mapping of basic blocks to the inner most loop they occur in
DenseMap<BlockT *, LoopT *> BBMap; std::vector<LoopT *> TopLevelLoops; friend class LoopBase<BlockT, LoopT>; friend class LoopInfo;
void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION; LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION; public: LoopInfoBase() { } ~LoopInfoBase() { releaseMemory(); }
void releaseMemory() { for (typename std::vector<LoopT *>::iterator I = TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear(); }
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef typename std::vector<LoopT *>::const_iterator iterator; typedef typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; iterator begin() const { return TopLevelLoops.begin(); } iterator end() const { return TopLevelLoops.end(); } reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } reverse_iterator rend() const { return TopLevelLoops.rend(); } bool empty() const { return TopLevelLoops.empty(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(const_cast<BlockT*>(BB)); }
/// operator[] - same as getLoopFor...
///
const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
/// getLoopDepth - Return the loop nesting level of the specified block. A
/// depth of 0 means the block is not inside any loop.
///
unsigned getLoopDepth(const BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; }
// isLoopHeader - True if the block is a loop header node
bool isLoopHeader(BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L && L->getHeader() == BB; }
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
LoopT *removeLoop(iterator I) { assert(I != end() && "Cannot remove end iterator!"); LoopT *L = *I; assert(L->getParentLoop() == 0 && "Not a top-level loop!"); TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); return L; }
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
void changeLoopFor(BlockT *BB, LoopT *L) { if (!L) { BBMap.erase(BB); return; } BBMap[BB] = L; }
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { typename std::vector<LoopT *>::iterator I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); assert(I != TopLevelLoops.end() && "Old loop not at top level!"); *I = NewLoop; assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && "Loops already embedded into a subloop!"); }
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
void addTopLevelLoop(LoopT *New) { assert(New->getParentLoop() == 0 && "Loop already in subloop!"); TopLevelLoops.push_back(New); }
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BlockT *BB) { typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB); if (I != BBMap.end()) { for (LoopT *L = I->second; L; L = L->getParentLoop()) L->removeBlockFromLoop(BB);
BBMap.erase(I); } }
// Internals
static bool isNotAlreadyContainedIn(const LoopT *SubLoop, const LoopT *ParentLoop) { if (SubLoop == 0) return true; if (SubLoop == ParentLoop) return false; return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); }
/// Create the loop forest using a stable algorithm.
void Analyze(DominatorTreeBase<BlockT> &DomTree);
// Debugging
void print(raw_ostream &OS) const; };
// Implementation in LoopInfoImpl.h
#ifdef __GNUC__
__extension__ extern template class LoopInfoBase<BasicBlock, Loop>; #endif
class LoopInfo : public FunctionPass { LoopInfoBase<BasicBlock, Loop> LI; friend class LoopBase<BasicBlock, Loop>;
void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION; LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION; public: static char ID; // Pass identification, replacement for typeid
LoopInfo() : FunctionPass(ID) { initializeLoopInfoPass(*PassRegistry::getPassRegistry()); }
LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator; typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator; inline iterator begin() const { return LI.begin(); } inline iterator end() const { return LI.end(); } inline reverse_iterator rbegin() const { return LI.rbegin(); } inline reverse_iterator rend() const { return LI.rend(); } bool empty() const { return LI.empty(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
inline Loop *getLoopFor(const BasicBlock *BB) const { return LI.getLoopFor(BB); }
/// operator[] - same as getLoopFor...
///
inline const Loop *operator[](const BasicBlock *BB) const { return LI.getLoopFor(BB); }
/// getLoopDepth - Return the loop nesting level of the specified block. A
/// depth of 0 means the block is not inside any loop.
///
inline unsigned getLoopDepth(const BasicBlock *BB) const { return LI.getLoopDepth(BB); }
// isLoopHeader - True if the block is a loop header node
inline bool isLoopHeader(BasicBlock *BB) const { return LI.isLoopHeader(BB); }
/// runOnFunction - Calculate the natural loop information.
///
virtual bool runOnFunction(Function &F);
virtual void verifyAnalysis() const;
virtual void releaseMemory() { LI.releaseMemory(); }
virtual void print(raw_ostream &O, const Module* M = 0) const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
inline void changeLoopFor(BasicBlock *BB, Loop *L) { LI.changeLoopFor(BB, L); }
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { LI.changeTopLevelLoop(OldLoop, NewLoop); }
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
inline void addTopLevelLoop(Loop *New) { LI.addTopLevelLoop(New); }
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BasicBlock *BB) { LI.removeBlock(BB); }
/// updateUnloop - Update LoopInfo after removing the last backedge from a
/// loop--now the "unloop". This updates the loop forest and parent loops for
/// each block so that Unloop is no longer referenced, but the caller must
/// actually delete the Unloop object.
void updateUnloop(Loop *Unloop);
/// replacementPreservesLCSSAForm - Returns true if replacing From with To
/// everywhere is guaranteed to preserve LCSSA form.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { // Preserving LCSSA form is only problematic if the replacing value is an
// instruction.
Instruction *I = dyn_cast<Instruction>(To); if (!I) return true; // If both instructions are defined in the same basic block then replacement
// cannot break LCSSA form.
if (I->getParent() == From->getParent()) return true; // If the instruction is not defined in a loop then it can safely replace
// anything.
Loop *ToLoop = getLoopFor(I->getParent()); if (!ToLoop) return true; // If the replacing instruction is defined in the same loop as the original
// instruction, or in a loop that contains it as an inner loop, then using
// it as a replacement will not break LCSSA form.
return ToLoop->contains(getLoopFor(From->getParent())); } };
// Allow clients to walk the list of nested loops...
template <> struct GraphTraits<const Loop*> { typedef const Loop NodeType; typedef LoopInfo::iterator ChildIteratorType;
static NodeType *getEntryNode(const Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } };
template <> struct GraphTraits<Loop*> { typedef Loop NodeType; typedef LoopInfo::iterator ChildIteratorType;
static NodeType *getEntryNode(Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } };
} // End llvm namespace
#endif
|