|
|
//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of LoopInfo used for both Loops and
// MachineLoops.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
#define LLVM_ANALYSIS_LOOPINFOIMPL_H
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// APIs for simple analysis of the loop. See header notes.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>:: getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const { // Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits; for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) { // Not in current loop? It must be an exit block.
ExitingBlocks.push_back(*BI); break; } }
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT> BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const { SmallVector<BlockT*, 8> ExitingBlocks; getExitingBlocks(ExitingBlocks); if (ExitingBlocks.size() == 1) return ExitingBlocks[0]; return 0; }
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>:: getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const { // Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits; for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) // Not in current loop? It must be an exit block.
ExitBlocks.push_back(*I); }
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
template<class BlockT, class LoopT> BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const { SmallVector<BlockT*, 8> ExitBlocks; getExitBlocks(ExitBlocks); if (ExitBlocks.size() == 1) return ExitBlocks[0]; return 0; }
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>:: getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const { // Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); array_pod_sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits; for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) // Not in current loop? It must be an exit block.
ExitEdges.push_back(Edge(*BI, *I)); }
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
template<class BlockT, class LoopT> BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const { // Keep track of nodes outside the loop branching to the header...
BlockT *Out = getLoopPredecessor(); if (!Out) return 0;
// Make sure there is only one exit out of the preheader.
typedef GraphTraits<BlockT*> BlockTraits; typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); ++SI; if (SI != BlockTraits::child_end(Out)) return 0; // Multiple exits from the block, must not be a preheader.
// The predecessor has exactly one successor, so it is a preheader.
return Out; }
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
template<class BlockT, class LoopT> BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const { // Keep track of nodes outside the loop branching to the header...
BlockT *Out = 0;
// Loop over the predecessors of the header node...
BlockT *Header = getHeader(); typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header), PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) { typename InvBlockTraits::NodeType *N = *PI; if (!contains(N)) { // If the block is not in the loop...
if (Out && Out != N) return 0; // Multiple predecessors outside the loop
Out = N; } }
// Make sure there is only one exit out of the preheader.
assert(Out && "Header of loop has no predecessors from outside loop?"); return Out; }
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
template<class BlockT, class LoopT> BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const { BlockT *Header = getHeader(); typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header); typename InvBlockTraits::ChildIteratorType PE = InvBlockTraits::child_end(Header); BlockT *Latch = 0; for (; PI != PE; ++PI) { typename InvBlockTraits::NodeType *N = *PI; if (contains(N)) { if (Latch) return 0; Latch = N; } }
return Latch; }
//===----------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>:: addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) { assert((Blocks.empty() || LIB[getHeader()] == this) && "Incorrect LI specified for this loop!"); assert(NewBB && "Cannot add a null basic block to the loop!"); assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
LoopT *L = static_cast<LoopT *>(this);
// Add the loop mapping to the LoopInfo object...
LIB.BBMap[NewBB] = L;
// Add the basic block to this loop and all parent loops...
while (L) { L->Blocks.push_back(NewBB); L = L->getParentLoop(); } }
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>:: replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) { assert(OldChild->ParentLoop == this && "This loop is already broken!"); assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); typename std::vector<LoopT *>::iterator I = std::find(SubLoops.begin(), SubLoops.end(), OldChild); assert(I != SubLoops.end() && "OldChild not in loop!"); *I = NewChild; OldChild->ParentLoop = 0; NewChild->ParentLoop = static_cast<LoopT *>(this); }
/// verifyLoop - Verify loop structure
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>::verifyLoop() const { #ifndef NDEBUG
assert(!Blocks.empty() && "Loop header is missing");
// Setup for using a depth-first iterator to visit every block in the loop.
SmallVector<BlockT*, 8> ExitBBs; getExitBlocks(ExitBBs); llvm::SmallPtrSet<BlockT*, 8> VisitSet; VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> > BI = df_ext_begin(getHeader(), VisitSet), BE = df_ext_end(getHeader(), VisitSet);
// Keep track of the number of BBs visited.
unsigned NumVisited = 0;
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end());
// Check the individual blocks.
for ( ; BI != BE; ++BI) { BlockT *BB = *BI; bool HasInsideLoopSuccs = false; bool HasInsideLoopPreds = false; SmallVector<BlockT *, 2> OutsideLoopPreds;
typedef GraphTraits<BlockT*> BlockTraits; for (typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB); SI != SE; ++SI) if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) { HasInsideLoopSuccs = true; break; } typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB); PI != PE; ++PI) { BlockT *N = *PI; if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N)) HasInsideLoopPreds = true; else OutsideLoopPreds.push_back(N); }
if (BB == getHeader()) { assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); } else if (!OutsideLoopPreds.empty()) { // A non-header loop shouldn't be reachable from outside the loop,
// though it is permitted if the predecessor is not itself actually
// reachable.
BlockT *EntryBB = BB->getParent()->begin(); for (df_iterator<BlockT *> NI = df_begin(EntryBB), NE = df_end(EntryBB); NI != NE; ++NI) for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) assert(*NI != OutsideLoopPreds[i] && "Loop has multiple entry points!"); } assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!"); assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!"); assert(BB != getHeader()->getParent()->begin() && "Loop contains function entry block!");
NumVisited++; }
assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
// Check the subloops.
for (iterator I = begin(), E = end(); I != E; ++I) // Each block in each subloop should be contained within this loop.
for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); BI != BE; ++BI) { assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) && "Loop does not contain all the blocks of a subloop!"); }
// Check the parent loop pointer.
if (ParentLoop) { assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) != ParentLoop->end() && "Loop is not a subloop of its parent!"); } #endif
}
/// verifyLoop - Verify loop structure of this loop and all nested loops.
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>::verifyLoopNest( DenseSet<const LoopT*> *Loops) const { Loops->insert(static_cast<const LoopT *>(this)); // Verify this loop.
verifyLoop(); // Verify the subloops.
for (iterator I = begin(), E = end(); I != E; ++I) (*I)->verifyLoopNest(Loops); }
template<class BlockT, class LoopT> void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const { OS.indent(Depth*2) << "Loop at depth " << getLoopDepth() << " containing: ";
for (unsigned i = 0; i < getBlocks().size(); ++i) { if (i) OS << ","; BlockT *BB = getBlocks()[i]; WriteAsOperand(OS, BB, false); if (BB == getHeader()) OS << "<header>"; if (BB == getLoopLatch()) OS << "<latch>"; if (isLoopExiting(BB)) OS << "<exiting>"; } OS << "\n";
for (iterator I = begin(), E = end(); I != E; ++I) (*I)->print(OS, Depth+2); }
//===----------------------------------------------------------------------===//
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
/// result does / not depend on use list (block predecessor) order.
///
/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template<class BlockT, class LoopT> static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges, LoopInfoBase<BlockT, LoopT> *LI, DominatorTreeBase<BlockT> &DomTree) { typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
unsigned NumBlocks = 0; unsigned NumSubloops = 0;
// Perform a backward CFG traversal using a worklist.
std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end()); while (!ReverseCFGWorklist.empty()) { BlockT *PredBB = ReverseCFGWorklist.back(); ReverseCFGWorklist.pop_back();
LoopT *Subloop = LI->getLoopFor(PredBB); if (!Subloop) { if (!DomTree.isReachableFromEntry(PredBB)) continue;
// This is an undiscovered block. Map it to the current loop.
LI->changeLoopFor(PredBB, L); ++NumBlocks; if (PredBB == L->getHeader()) continue; // Push all block predecessors on the worklist.
ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), InvBlockTraits::child_begin(PredBB), InvBlockTraits::child_end(PredBB)); } else { // This is a discovered block. Find its outermost discovered loop.
while (LoopT *Parent = Subloop->getParentLoop()) Subloop = Parent;
// If it is already discovered to be a subloop of this loop, continue.
if (Subloop == L) continue;
// Discover a subloop of this loop.
Subloop->setParentLoop(L); ++NumSubloops; NumBlocks += Subloop->getBlocks().capacity(); PredBB = Subloop->getHeader(); // Continue traversal along predecessors that are not loop-back edges from
// within this subloop tree itself. Note that a predecessor may directly
// reach another subloop that is not yet discovered to be a subloop of
// this loop, which we must traverse.
for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(PredBB), PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) { if (LI->getLoopFor(*PI) != Subloop) ReverseCFGWorklist.push_back(*PI); } } } L->getSubLoopsVector().reserve(NumSubloops); L->getBlocksVector().reserve(NumBlocks); }
namespace { /// Populate all loop data in a stable order during a single forward DFS.
template<class BlockT, class LoopT> class PopulateLoopsDFS { typedef GraphTraits<BlockT*> BlockTraits; typedef typename BlockTraits::ChildIteratorType SuccIterTy;
LoopInfoBase<BlockT, LoopT> *LI; DenseSet<const BlockT *> VisitedBlocks; std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
public: PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li): LI(li) {}
void traverse(BlockT *EntryBlock);
protected: void insertIntoLoop(BlockT *Block);
BlockT *dfsSource() { return DFSStack.back().first; } SuccIterTy &dfsSucc() { return DFSStack.back().second; } SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
void pushBlock(BlockT *Block) { DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block))); } }; } // anonymous
/// Top-level driver for the forward DFS within the loop.
template<class BlockT, class LoopT> void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) { pushBlock(EntryBlock); VisitedBlocks.insert(EntryBlock); while (!DFSStack.empty()) { // Traverse the leftmost path as far as possible.
while (dfsSucc() != dfsSuccEnd()) { BlockT *BB = *dfsSucc(); ++dfsSucc(); if (!VisitedBlocks.insert(BB).second) continue;
// Push the next DFS successor onto the stack.
pushBlock(BB); } // Visit the top of the stack in postorder and backtrack.
insertIntoLoop(dfsSource()); DFSStack.pop_back(); } }
/// Add a single Block to its ancestor loops in PostOrder. If the block is a
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
template<class BlockT, class LoopT> void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) { LoopT *Subloop = LI->getLoopFor(Block); if (Subloop && Block == Subloop->getHeader()) { // We reach this point once per subloop after processing all the blocks in
// the subloop.
if (Subloop->getParentLoop()) Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); else LI->addTopLevelLoop(Subloop);
// For convenience, Blocks and Subloops are inserted in postorder. Reverse
// the lists, except for the loop header, which is always at the beginning.
std::reverse(Subloop->getBlocksVector().begin()+1, Subloop->getBlocksVector().end()); std::reverse(Subloop->getSubLoopsVector().begin(), Subloop->getSubLoopsVector().end());
Subloop = Subloop->getParentLoop(); } for (; Subloop; Subloop = Subloop->getParentLoop()) Subloop->getBlocksVector().push_back(Block); }
/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
/// interleaved with backward CFG traversals within each subloop
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
/// Block vectors are then populated during a single forward CFG traversal
/// (PopulateLoopDFS).
///
/// During the two CFG traversals each block is seen three times:
/// 1) Discovered and mapped by a reverse CFG traversal.
/// 2) Visited during a forward DFS CFG traversal.
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template<class BlockT, class LoopT> void LoopInfoBase<BlockT, LoopT>:: Analyze(DominatorTreeBase<BlockT> &DomTree) {
// Postorder traversal of the dominator tree.
DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode(); for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot), DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
BlockT *Header = DomIter->getBlock(); SmallVector<BlockT *, 4> Backedges;
// Check each predecessor of the potential loop header.
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header), PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
BlockT *Backedge = *PI;
// If Header dominates predBB, this is a new loop. Collect the backedges.
if (DomTree.dominates(Header, Backedge) && DomTree.isReachableFromEntry(Backedge)) { Backedges.push_back(Backedge); } } // Perform a backward CFG traversal to discover and map blocks in this loop.
if (!Backedges.empty()) { LoopT *L = new LoopT(Header); discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree); } } // Perform a single forward CFG traversal to populate block and subloop
// vectors for all loops.
PopulateLoopsDFS<BlockT, LoopT> DFS(this); DFS.traverse(DomRoot->getBlock()); }
// Debugging
template<class BlockT, class LoopT> void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const { for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->print(OS); #if 0
for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) OS << "BB '" << I->first->getName() << "' level = " << I->second->getLoopDepth() << "\n"; #endif
}
} // End llvm namespace
#endif
|