|
|
//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to represent and build scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm { class ConstantInt; class ConstantRange; class DominatorTree;
enum SCEVTypes { // These should be ordered in terms of increasing complexity to make the
// folders simpler.
scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUnknown, scCouldNotCompute };
//===--------------------------------------------------------------------===//
/// SCEVConstant - This class represents a constant integer value.
///
class SCEVConstant : public SCEV { friend class ScalarEvolution;
ConstantInt *V; SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : SCEV(ID, scConstant), V(v) {} public: ConstantInt *getValue() const { return V; }
Type *getType() const { return V->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } };
//===--------------------------------------------------------------------===//
/// SCEVCastExpr - This is the base class for unary cast operator classes.
///
class SCEVCastExpr : public SCEV { protected: const SCEV *Op; Type *Ty;
SCEVCastExpr(const FoldingSetNodeIDRef ID, unsigned SCEVTy, const SCEV *op, Type *ty);
public: const SCEV *getOperand() const { return Op; } Type *getType() const { return Ty; }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; } };
//===--------------------------------------------------------------------===//
/// SCEVTruncateExpr - This class represents a truncation of an integer value
/// to a smaller integer value.
///
class SCEVTruncateExpr : public SCEVCastExpr { friend class ScalarEvolution;
SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty);
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } };
//===--------------------------------------------------------------------===//
/// SCEVZeroExtendExpr - This class represents a zero extension of a small
/// integer value to a larger integer value.
///
class SCEVZeroExtendExpr : public SCEVCastExpr { friend class ScalarEvolution;
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty);
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scZeroExtend; } };
//===--------------------------------------------------------------------===//
/// SCEVSignExtendExpr - This class represents a sign extension of a small
/// integer value to a larger integer value.
///
class SCEVSignExtendExpr : public SCEVCastExpr { friend class ScalarEvolution;
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty);
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSignExtend; } };
//===--------------------------------------------------------------------===//
/// SCEVNAryExpr - This node is a base class providing common
/// functionality for n'ary operators.
///
class SCEVNAryExpr : public SCEV { protected: // Since SCEVs are immutable, ScalarEvolution allocates operand
// arrays with its SCEVAllocator, so this class just needs a simple
// pointer rather than a more elaborate vector-like data structure.
// This also avoids the need for a non-trivial destructor.
const SCEV *const *Operands; size_t NumOperands;
SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N) : SCEV(ID, T), Operands(O), NumOperands(N) {}
public: size_t getNumOperands() const { return NumOperands; } const SCEV *getOperand(unsigned i) const { assert(i < NumOperands && "Operand index out of range!"); return Operands[i]; }
typedef const SCEV *const *op_iterator; op_iterator op_begin() const { return Operands; } op_iterator op_end() const { return Operands + NumOperands; }
Type *getType() const { return getOperand(0)->getType(); }
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { return (NoWrapFlags)(SubclassData & Mask); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || S->getSCEVType() == scAddRecExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVCommutativeExpr - This node is the base class for n'ary commutative
/// operators.
///
class SCEVCommutativeExpr : public SCEVNAryExpr { protected: SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N) : SCEVNAryExpr(ID, T, O, N) {}
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr; }
/// Set flags for a non-recurrence without clearing previously set flags.
void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } };
//===--------------------------------------------------------------------===//
/// SCEVAddExpr - This node represents an addition of some number of SCEVs.
///
class SCEVAddExpr : public SCEVCommutativeExpr { friend class ScalarEvolution;
SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scAddExpr, O, N) { }
public: Type *getType() const { // Use the type of the last operand, which is likely to be a pointer
// type, if there is one. This doesn't usually matter, but it can help
// reduce casts when the expressions are expanded.
return getOperand(getNumOperands() - 1)->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
///
class SCEVMulExpr : public SCEVCommutativeExpr { friend class ScalarEvolution;
SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scMulExpr, O, N) { }
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVUDivExpr - This class represents a binary unsigned division operation.
///
class SCEVUDivExpr : public SCEV { friend class ScalarEvolution;
const SCEV *LHS; const SCEV *RHS; SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
public: const SCEV *getLHS() const { return LHS; } const SCEV *getRHS() const { return RHS; }
Type *getType() const { // In most cases the types of LHS and RHS will be the same, but in some
// crazy cases one or the other may be a pointer. ScalarEvolution doesn't
// depend on the type for correctness, but handling types carefully can
// avoid extra casts in the SCEVExpander. The LHS is more likely to be
// a pointer type than the RHS, so use the RHS' type here.
return getRHS()->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
/// count of the specified loop. This is the primary focus of the
/// ScalarEvolution framework; all the other SCEV subclasses are mostly just
/// supporting infrastructure to allow SCEVAddRecExpr expressions to be
/// created and analyzed.
///
/// All operands of an AddRec are required to be loop invariant.
///
class SCEVAddRecExpr : public SCEVNAryExpr { friend class ScalarEvolution;
const Loop *L;
SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N, const Loop *l) : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
public: const SCEV *getStart() const { return Operands[0]; } const Loop *getLoop() const { return L; }
/// getStepRecurrence - This method constructs and returns the recurrence
/// indicating how much this expression steps by. If this is a polynomial
/// of degree N, it returns a chrec of degree N-1.
/// We cannot determine whether the step recurrence has self-wraparound.
const SCEV *getStepRecurrence(ScalarEvolution &SE) const { if (isAffine()) return getOperand(1); return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, op_end()), getLoop(), FlagAnyWrap); }
/// isAffine - Return true if this is an affine AddRec (i.e., it represents
/// an expressions A+B*x where A and B are loop invariant values.
bool isAffine() const { // We know that the start value is invariant. This expression is thus
// affine iff the step is also invariant.
return getNumOperands() == 2; }
/// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
/// represents an expressions A+B*x+C*x^2 where A, B and C are loop
/// invariant values. This corresponds to an addrec of the form {L,+,M,+,N}
bool isQuadratic() const { return getNumOperands() == 3; }
/// Set flags for a recurrence without clearing any previously set flags.
/// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
/// to make it easier to propagate flags.
void setNoWrapFlags(NoWrapFlags Flags) { if (Flags & (FlagNUW | FlagNSW)) Flags = ScalarEvolution::setFlags(Flags, FlagNW); SubclassData |= Flags; }
/// evaluateAtIteration - Return the value of this chain of recurrences at
/// the specified iteration number.
const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
/// getNumIterationsInRange - Return the number of iterations of this loop
/// that produce values in the specified constant range. Another way of
/// looking at this is that it returns the first iteration number where the
/// value is not in the condition, thus computing the exit count. If the
/// iteration count can't be computed, an instance of SCEVCouldNotCompute is
/// returned.
const SCEV *getNumIterationsInRange(ConstantRange Range, ScalarEvolution &SE) const;
/// getPostIncExpr - Return an expression representing the value of
/// this expression one iteration of the loop ahead.
const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const { return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE))); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddRecExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVSMaxExpr - This class represents a signed maximum selection.
///
class SCEVSMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution;
SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { // Max never overflows.
setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); }
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVUMaxExpr - This class represents an unsigned maximum selection.
///
class SCEVUMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution;
SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { // Max never overflows.
setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); }
public: /// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } };
//===--------------------------------------------------------------------===//
/// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
/// value, and only represent it as its LLVM Value. This is the "bottom"
/// value for the analysis.
///
class SCEVUnknown : public SCEV, private CallbackVH { friend class ScalarEvolution;
// Implement CallbackVH.
virtual void deleted(); virtual void allUsesReplacedWith(Value *New);
/// SE - The parent ScalarEvolution value. This is used to update
/// the parent's maps when the value associated with a SCEVUnknown
/// is deleted or RAUW'd.
ScalarEvolution *SE;
/// Next - The next pointer in the linked list of all
/// SCEVUnknown instances owned by a ScalarEvolution.
SCEVUnknown *Next;
SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se, SCEVUnknown *next) : SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
public: Value *getValue() const { return getValPtr(); }
/// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
/// constant representing a type size, alignment, or field offset in
/// a target-independent manner, and hasn't happened to have been
/// folded with other operations into something unrecognizable. This
/// is mainly only useful for pretty-printing and other situations
/// where it isn't absolutely required for these to succeed.
bool isSizeOf(Type *&AllocTy) const; bool isAlignOf(Type *&AllocTy) const; bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
Type *getType() const { return getValPtr()->getType(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } };
/// SCEVVisitor - This class defines a simple visitor class that may be used
/// for various SCEV analysis purposes.
template<typename SC, typename RetVal=void> struct SCEVVisitor { RetVal visit(const SCEV *S) { switch (S->getSCEVType()) { case scConstant: return ((SC*)this)->visitConstant((const SCEVConstant*)S); case scTruncate: return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); case scZeroExtend: return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); case scSignExtend: return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); case scAddExpr: return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); case scMulExpr: return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); case scUDivExpr: return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); case scAddRecExpr: return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); case scSMaxExpr: return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); case scUMaxExpr: return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); case scUnknown: return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); case scCouldNotCompute: return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); default: llvm_unreachable("Unknown SCEV type!"); } }
RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); } };
/// Visit all nodes in the expression tree using worklist traversal.
///
/// Visitor implements:
/// // return true to follow this node.
/// bool follow(const SCEV *S);
/// // return true to terminate the search.
/// bool isDone();
template<typename SV> class SCEVTraversal { SV &Visitor; SmallVector<const SCEV *, 8> Worklist; SmallPtrSet<const SCEV *, 8> Visited;
void push(const SCEV *S) { if (Visited.insert(S) && Visitor.follow(S)) Worklist.push_back(S); } public: SCEVTraversal(SV& V): Visitor(V) {}
void visitAll(const SCEV *Root) { push(Root); while (!Worklist.empty() && !Visitor.isDone()) { const SCEV *S = Worklist.pop_back_val();
switch (S->getSCEVType()) { case scConstant: case scUnknown: break; case scTruncate: case scZeroExtend: case scSignExtend: push(cast<SCEVCastExpr>(S)->getOperand()); break; case scAddExpr: case scMulExpr: case scSMaxExpr: case scUMaxExpr: case scAddRecExpr: { const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); I != E; ++I) { push(*I); } break; } case scUDivExpr: { const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); push(UDiv->getLHS()); push(UDiv->getRHS()); break; } case scCouldNotCompute: llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); default: llvm_unreachable("Unknown SCEV kind!"); } } } };
/// Use SCEVTraversal to visit all nodes in the givien expression tree.
template<typename SV> void visitAll(const SCEV *Root, SV& Visitor) { SCEVTraversal<SV> T(Visitor); T.visitAll(Root); }
/// The SCEVRewriter takes a scalar evolution expression and copies all its
/// components. The result after a rewrite is an identical SCEV.
struct SCEVRewriter : public SCEVVisitor<SCEVRewriter, const SCEV*> { public: SCEVRewriter(ScalarEvolution &S) : SE(S) {}
virtual ~SCEVRewriter() {}
virtual const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; }
virtual const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getTruncateExpr(Operand, Expr->getType()); }
virtual const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getZeroExtendExpr(Operand, Expr->getType()); }
virtual const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getSignExtendExpr(Operand, Expr->getType()); }
virtual const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getAddExpr(Operands); }
virtual const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getMulExpr(Operands); }
virtual const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS())); }
virtual const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getAddRecExpr(Operands, Expr->getLoop(), Expr->getNoWrapFlags()); }
virtual const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getSMaxExpr(Operands); }
virtual const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getUMaxExpr(Operands); }
virtual const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; }
virtual const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
protected: ScalarEvolution &SE; };
typedef DenseMap<const Value*, Value*> ValueToValueMap;
/// The SCEVParameterRewriter takes a scalar evolution expression and updates
/// the SCEVUnknown components following the Map (Value -> Value).
struct SCEVParameterRewriter: public SCEVRewriter { public: static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToValueMap &Map) { SCEVParameterRewriter Rewriter(SE, Map); return Rewriter.visit(Scev); } SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M) : SCEVRewriter(S), Map(M) {}
virtual const SCEV *visitUnknown(const SCEVUnknown *Expr) { Value *V = Expr->getValue(); if (Map.count(V)) return SE.getUnknown(Map[V]); return Expr; }
private: ValueToValueMap ⤅ };
typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
/// The SCEVApplyRewriter takes a scalar evolution expression and applies
/// the Map (Loop -> SCEV) to all AddRecExprs.
struct SCEVApplyRewriter: public SCEVRewriter { public: static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, ScalarEvolution &SE) { SCEVApplyRewriter Rewriter(SE, Map); return Rewriter.visit(Scev); } SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M) : SCEVRewriter(S), Map(M) {}
virtual const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i)));
const Loop *L = Expr->getLoop(); const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
if (0 == Map.count(L)) return Res;
const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res; return Rec->evaluateAtIteration(Map[L], SE); }
private: LoopToScevMapT ⤅ };
/// Applies the Map (Loop -> SCEV) to the given Scev.
static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map, ScalarEvolution &SE) { return SCEVApplyRewriter::rewrite(Scev, Map, SE); }
}
#endif
|