|
|
//===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines the BitstreamReader class. This class can be used to
// read an arbitrary bitstream, regardless of its contents.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_BITCODE_BITSTREAMREADER_H
#define LLVM_BITCODE_BITSTREAMREADER_H
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Bitcode/BitCodes.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/StreamableMemoryObject.h"
#include <climits>
#include <string>
#include <vector>
namespace llvm {
class Deserializer;
/// BitstreamReader - This class is used to read from an LLVM bitcode stream,
/// maintaining information that is global to decoding the entire file. While
/// a file is being read, multiple cursors can be independently advanced or
/// skipped around within the file. These are represented by the
/// BitstreamCursor class.
class BitstreamReader { public: /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks.
/// These describe abbreviations that all blocks of the specified ID inherit.
struct BlockInfo { unsigned BlockID; std::vector<BitCodeAbbrev*> Abbrevs; std::string Name;
std::vector<std::pair<unsigned, std::string> > RecordNames; }; private: OwningPtr<StreamableMemoryObject> BitcodeBytes;
std::vector<BlockInfo> BlockInfoRecords;
/// IgnoreBlockInfoNames - This is set to true if we don't care about the
/// block/record name information in the BlockInfo block. Only llvm-bcanalyzer
/// uses this.
bool IgnoreBlockInfoNames;
BitstreamReader(const BitstreamReader&) LLVM_DELETED_FUNCTION; void operator=(const BitstreamReader&) LLVM_DELETED_FUNCTION; public: BitstreamReader() : IgnoreBlockInfoNames(true) { }
BitstreamReader(const unsigned char *Start, const unsigned char *End) { IgnoreBlockInfoNames = true; init(Start, End); }
BitstreamReader(StreamableMemoryObject *bytes) { BitcodeBytes.reset(bytes); }
void init(const unsigned char *Start, const unsigned char *End) { assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes"); BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End)); }
StreamableMemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
~BitstreamReader() { // Free the BlockInfoRecords.
while (!BlockInfoRecords.empty()) { BlockInfo &Info = BlockInfoRecords.back(); // Free blockinfo abbrev info.
for (unsigned i = 0, e = static_cast<unsigned>(Info.Abbrevs.size()); i != e; ++i) Info.Abbrevs[i]->dropRef(); BlockInfoRecords.pop_back(); } }
/// CollectBlockInfoNames - This is called by clients that want block/record
/// name information.
void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; } bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; }
//===--------------------------------------------------------------------===//
// Block Manipulation
//===--------------------------------------------------------------------===//
/// hasBlockInfoRecords - Return true if we've already read and processed the
/// block info block for this Bitstream. We only process it for the first
/// cursor that walks over it.
bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); }
/// getBlockInfo - If there is block info for the specified ID, return it,
/// otherwise return null.
const BlockInfo *getBlockInfo(unsigned BlockID) const { // Common case, the most recent entry matches BlockID.
if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back();
for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size()); i != e; ++i) if (BlockInfoRecords[i].BlockID == BlockID) return &BlockInfoRecords[i]; return 0; }
BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (const BlockInfo *BI = getBlockInfo(BlockID)) return *const_cast<BlockInfo*>(BI);
// Otherwise, add a new record.
BlockInfoRecords.push_back(BlockInfo()); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); } };
/// BitstreamEntry - When advancing through a bitstream cursor, each advance can
/// discover a few different kinds of entries:
/// Error - Malformed bitcode was found.
/// EndBlock - We've reached the end of the current block, (or the end of the
/// file, which is treated like a series of EndBlock records.
/// SubBlock - This is the start of a new subblock of a specific ID.
/// Record - This is a record with a specific AbbrevID.
///
struct BitstreamEntry { enum { Error, EndBlock, SubBlock, Record } Kind;
unsigned ID;
static BitstreamEntry getError() { BitstreamEntry E; E.Kind = Error; return E; } static BitstreamEntry getEndBlock() { BitstreamEntry E; E.Kind = EndBlock; return E; } static BitstreamEntry getSubBlock(unsigned ID) { BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E; } static BitstreamEntry getRecord(unsigned AbbrevID) { BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E; } };
/// BitstreamCursor - This represents a position within a bitcode file. There
/// may be multiple independent cursors reading within one bitstream, each
/// maintaining their own local state.
///
/// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
/// be passed by value.
class BitstreamCursor { friend class Deserializer; BitstreamReader *BitStream; size_t NextChar;
/// CurWord/word_t - This is the current data we have pulled from the stream
/// but have not returned to the client. This is specifically and
/// intentionally defined to follow the word size of the host machine for
/// efficiency. We use word_t in places that are aware of this to make it
/// perfectly explicit what is going on.
typedef uint32_t word_t; word_t CurWord;
/// BitsInCurWord - This is the number of bits in CurWord that are valid. This
/// is always from [0...31/63] inclusive (depending on word size).
unsigned BitsInCurWord;
// CurCodeSize - This is the declared size of code values used for the current
// block, in bits.
unsigned CurCodeSize;
/// CurAbbrevs - Abbrevs installed at in this block.
std::vector<BitCodeAbbrev*> CurAbbrevs;
struct Block { unsigned PrevCodeSize; std::vector<BitCodeAbbrev*> PrevAbbrevs; explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} };
/// BlockScope - This tracks the codesize of parent blocks.
SmallVector<Block, 8> BlockScope;
public: BitstreamCursor() : BitStream(0), NextChar(0) { } BitstreamCursor(const BitstreamCursor &RHS) : BitStream(0), NextChar(0) { operator=(RHS); }
explicit BitstreamCursor(BitstreamReader &R) : BitStream(&R) { NextChar = 0; CurWord = 0; BitsInCurWord = 0; CurCodeSize = 2; }
void init(BitstreamReader &R) { freeState();
BitStream = &R; NextChar = 0; CurWord = 0; BitsInCurWord = 0; CurCodeSize = 2; }
~BitstreamCursor() { freeState(); }
void operator=(const BitstreamCursor &RHS);
void freeState();
bool isEndPos(size_t pos) { return BitStream->getBitcodeBytes().isObjectEnd(static_cast<uint64_t>(pos)); }
bool canSkipToPos(size_t pos) const { // pos can be skipped to if it is a valid address or one byte past the end.
return pos == 0 || BitStream->getBitcodeBytes().isValidAddress( static_cast<uint64_t>(pos - 1)); }
uint32_t getWord(size_t pos) { uint8_t buf[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; BitStream->getBitcodeBytes().readBytes(pos, sizeof(buf), buf, NULL); return *reinterpret_cast<support::ulittle32_t *>(buf); }
bool AtEndOfStream() { return BitsInCurWord == 0 && isEndPos(NextChar); }
/// getAbbrevIDWidth - Return the number of bits used to encode an abbrev #.
unsigned getAbbrevIDWidth() const { return CurCodeSize; }
/// GetCurrentBitNo - Return the bit # of the bit we are reading.
uint64_t GetCurrentBitNo() const { return NextChar*CHAR_BIT - BitsInCurWord; }
BitstreamReader *getBitStreamReader() { return BitStream; } const BitstreamReader *getBitStreamReader() const { return BitStream; }
/// Flags that modify the behavior of advance().
enum { /// AF_DontPopBlockAtEnd - If this flag is used, the advance() method does
/// not automatically pop the block scope when the end of a block is
/// reached.
AF_DontPopBlockAtEnd = 1,
/// AF_DontAutoprocessAbbrevs - If this flag is used, abbrev entries are
/// returned just like normal records.
AF_DontAutoprocessAbbrevs = 2 };
/// advance - Advance the current bitstream, returning the next entry in the
/// stream.
BitstreamEntry advance(unsigned Flags = 0) { while (1) { unsigned Code = ReadCode(); if (Code == bitc::END_BLOCK) { // Pop the end of the block unless Flags tells us not to.
if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd()) return BitstreamEntry::getError(); return BitstreamEntry::getEndBlock(); }
if (Code == bitc::ENTER_SUBBLOCK) return BitstreamEntry::getSubBlock(ReadSubBlockID());
if (Code == bitc::DEFINE_ABBREV && !(Flags & AF_DontAutoprocessAbbrevs)) { // We read and accumulate abbrev's, the client can't do anything with
// them anyway.
ReadAbbrevRecord(); continue; }
return BitstreamEntry::getRecord(Code); } }
/// advanceSkippingSubblocks - This is a convenience function for clients that
/// don't expect any subblocks. This just skips over them automatically.
BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) { while (1) { // If we found a normal entry, return it.
BitstreamEntry Entry = advance(Flags); if (Entry.Kind != BitstreamEntry::SubBlock) return Entry;
// If we found a sub-block, just skip over it and check the next entry.
if (SkipBlock()) return BitstreamEntry::getError(); } }
/// JumpToBit - Reset the stream to the specified bit number.
void JumpToBit(uint64_t BitNo) { uintptr_t ByteNo = uintptr_t(BitNo/8) & ~(sizeof(word_t)-1); unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1)); assert(canSkipToPos(ByteNo) && "Invalid location");
// Move the cursor to the right word.
NextChar = ByteNo; BitsInCurWord = 0; CurWord = 0;
// Skip over any bits that are already consumed.
if (WordBitNo) { if (sizeof(word_t) > 4) Read64(WordBitNo); else Read(WordBitNo); } }
uint32_t Read(unsigned NumBits) { assert(NumBits && NumBits <= 32 && "Cannot return zero or more than 32 bits!");
// If the field is fully contained by CurWord, return it quickly.
if (BitsInCurWord >= NumBits) { uint32_t R = uint32_t(CurWord) & (~0U >> (32-NumBits)); CurWord >>= NumBits; BitsInCurWord -= NumBits; return R; }
// If we run out of data, stop at the end of the stream.
if (isEndPos(NextChar)) { CurWord = 0; BitsInCurWord = 0; return 0; }
uint32_t R = uint32_t(CurWord);
// Read the next word from the stream.
uint8_t Array[sizeof(word_t)] = {0};
BitStream->getBitcodeBytes().readBytes(NextChar, sizeof(Array), Array, NULL);
// Handle big-endian byte-swapping if necessary.
support::detail::packed_endian_specific_integral <word_t, support::little, support::unaligned> EndianValue; memcpy(&EndianValue, Array, sizeof(Array));
CurWord = EndianValue;
NextChar += sizeof(word_t);
// Extract NumBits-BitsInCurWord from what we just read.
unsigned BitsLeft = NumBits-BitsInCurWord;
// Be careful here, BitsLeft is in the range [1..32]/[1..64] inclusive.
R |= uint32_t((CurWord & (word_t(~0ULL) >> (sizeof(word_t)*8-BitsLeft))) << BitsInCurWord);
// BitsLeft bits have just been used up from CurWord. BitsLeft is in the
// range [1..32]/[1..64] so be careful how we shift.
if (BitsLeft != sizeof(word_t)*8) CurWord >>= BitsLeft; else CurWord = 0; BitsInCurWord = sizeof(word_t)*8-BitsLeft; return R; }
uint64_t Read64(unsigned NumBits) { if (NumBits <= 32) return Read(NumBits);
uint64_t V = Read(32); return V | (uint64_t)Read(NumBits-32) << 32; }
uint32_t ReadVBR(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return Piece;
uint32_t Result = 0; unsigned NextBit = 0; while (1) { Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
if ((Piece & (1U << (NumBits-1))) == 0) return Result;
NextBit += NumBits-1; Piece = Read(NumBits); } }
// ReadVBR64 - Read a VBR that may have a value up to 64-bits in size. The
// chunk size of the VBR must still be <= 32 bits though.
uint64_t ReadVBR64(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return uint64_t(Piece);
uint64_t Result = 0; unsigned NextBit = 0; while (1) { Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit;
if ((Piece & (1U << (NumBits-1))) == 0) return Result;
NextBit += NumBits-1; Piece = Read(NumBits); } }
private: void SkipToFourByteBoundary() { // If word_t is 64-bits and if we've read less than 32 bits, just dump
// the bits we have up to the next 32-bit boundary.
if (sizeof(word_t) > 4 && BitsInCurWord >= 32) { CurWord >>= BitsInCurWord-32; BitsInCurWord = 32; return; }
BitsInCurWord = 0; CurWord = 0; } public:
unsigned ReadCode() { return Read(CurCodeSize); }
// Block header:
// [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
/// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for
/// the block.
unsigned ReadSubBlockID() { return ReadVBR(bitc::BlockIDWidth); }
/// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip
/// over the body of this block. If the block record is malformed, return
/// true.
bool SkipBlock() { // Read and ignore the codelen value. Since we are skipping this block, we
// don't care what code widths are used inside of it.
ReadVBR(bitc::CodeLenWidth); SkipToFourByteBoundary(); unsigned NumFourBytes = Read(bitc::BlockSizeWidth);
// Check that the block wasn't partially defined, and that the offset isn't
// bogus.
size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8; if (AtEndOfStream() || !canSkipToPos(SkipTo/8)) return true;
JumpToBit(SkipTo); return false; }
/// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter
/// the block, and return true if the block has an error.
bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = 0);
bool ReadBlockEnd() { if (BlockScope.empty()) return true;
// Block tail:
// [END_BLOCK, <align4bytes>]
SkipToFourByteBoundary();
popBlockScope(); return false; }
private:
void popBlockScope() { CurCodeSize = BlockScope.back().PrevCodeSize;
// Delete abbrevs from popped scope.
for (unsigned i = 0, e = static_cast<unsigned>(CurAbbrevs.size()); i != e; ++i) CurAbbrevs[i]->dropRef();
BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); BlockScope.pop_back(); }
//===--------------------------------------------------------------------===//
// Record Processing
//===--------------------------------------------------------------------===//
private: void readAbbreviatedLiteral(const BitCodeAbbrevOp &Op, SmallVectorImpl<uint64_t> &Vals); void readAbbreviatedField(const BitCodeAbbrevOp &Op, SmallVectorImpl<uint64_t> &Vals); void skipAbbreviatedField(const BitCodeAbbrevOp &Op);
public:
/// getAbbrev - Return the abbreviation for the specified AbbrevId.
const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); return CurAbbrevs[AbbrevNo]; }
/// skipRecord - Read the current record and discard it.
void skipRecord(unsigned AbbrevID);
unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals, StringRef *Blob = 0);
//===--------------------------------------------------------------------===//
// Abbrev Processing
//===--------------------------------------------------------------------===//
void ReadAbbrevRecord();
bool ReadBlockInfoBlock(); };
} // End llvm namespace
#endif
|