|
|
//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <climits>
namespace llvm { class CoalescerPair; class LiveIntervals; class MachineInstr; class MachineRegisterInfo; class TargetRegisterInfo; class raw_ostream;
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
/// definition and use points.
///
class VNInfo { public: typedef BumpPtrAllocator Allocator;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction.
SlotIndex def;
/// VNInfo constructor.
VNInfo(unsigned i, SlotIndex d) : id(i), def(d) { }
/// VNInfo construtor, copies values from orig, except for the value number.
VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) { }
/// Copy from the parameter into this VNInfo.
void copyFrom(VNInfo &src) { def = src.def; }
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instrucions may have been eliminated).
/// PHI-defs begin at a block boundary, all other defs begin at register or
/// EC slots.
bool isPHIDef() const { return def.isBlock(); }
/// Returns true if this value is unused.
bool isUnused() const { return !def.isValid(); }
/// Mark this value as unused.
void markUnused() { def = SlotIndex(); } };
/// LiveRange structure - This represents a simple register range in the
/// program, with an inclusive start point and an exclusive end point.
/// These ranges are rendered as [start,end).
struct LiveRange { SlotIndex start; // Start point of the interval (inclusive)
SlotIndex end; // End point of the interval (exclusive)
VNInfo *valno; // identifier for the value contained in this interval.
LiveRange() : valno(0) {}
LiveRange(SlotIndex S, SlotIndex E, VNInfo *V) : start(S), end(E), valno(V) { assert(S < E && "Cannot create empty or backwards range"); }
/// contains - Return true if the index is covered by this range.
///
bool contains(SlotIndex I) const { return start <= I && I < end; }
/// containsRange - Return true if the given range, [S, E), is covered by
/// this range.
bool containsRange(SlotIndex S, SlotIndex E) const { assert((S < E) && "Backwards interval?"); return (start <= S && S < end) && (start < E && E <= end); }
bool operator<(const LiveRange &LR) const { return start < LR.start || (start == LR.start && end < LR.end); } bool operator==(const LiveRange &LR) const { return start == LR.start && end == LR.end; }
void dump() const; void print(raw_ostream &os) const; };
template <> struct isPodLike<LiveRange> { static const bool value = true; };
raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
inline bool operator<(SlotIndex V, const LiveRange &LR) { return V < LR.start; }
inline bool operator<(const LiveRange &LR, SlotIndex V) { return LR.start < V; }
/// LiveInterval - This class represents some number of live ranges for a
/// register or value. This class also contains a bit of register allocator
/// state.
class LiveInterval { public:
typedef SmallVector<LiveRange,4> Ranges; typedef SmallVector<VNInfo*,4> VNInfoList;
const unsigned reg; // the register or stack slot of this interval.
float weight; // weight of this interval
Ranges ranges; // the ranges in which this register is live
VNInfoList valnos; // value#'s
struct InstrSlots { enum { LOAD = 0, USE = 1, DEF = 2, STORE = 3, NUM = 4 };
};
LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {}
typedef Ranges::iterator iterator; iterator begin() { return ranges.begin(); } iterator end() { return ranges.end(); }
typedef Ranges::const_iterator const_iterator; const_iterator begin() const { return ranges.begin(); } const_iterator end() const { return ranges.end(); }
typedef VNInfoList::iterator vni_iterator; vni_iterator vni_begin() { return valnos.begin(); } vni_iterator vni_end() { return valnos.end(); }
typedef VNInfoList::const_iterator const_vni_iterator; const_vni_iterator vni_begin() const { return valnos.begin(); } const_vni_iterator vni_end() const { return valnos.end(); }
/// advanceTo - Advance the specified iterator to point to the LiveRange
/// containing the specified position, or end() if the position is past the
/// end of the interval. If no LiveRange contains this position, but the
/// position is in a hole, this method returns an iterator pointing to the
/// LiveRange immediately after the hole.
iterator advanceTo(iterator I, SlotIndex Pos) { assert(I != end()); if (Pos >= endIndex()) return end(); while (I->end <= Pos) ++I; return I; }
/// find - Return an iterator pointing to the first range that ends after
/// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
/// when searching large intervals.
///
/// If Pos is contained in a LiveRange, that range is returned.
/// If Pos is in a hole, the following LiveRange is returned.
/// If Pos is beyond endIndex, end() is returned.
iterator find(SlotIndex Pos);
const_iterator find(SlotIndex Pos) const { return const_cast<LiveInterval*>(this)->find(Pos); }
void clear() { valnos.clear(); ranges.clear(); }
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#.
///
inline VNInfo *getValNumInfo(unsigned ValNo) { return valnos[ValNo]; } inline const VNInfo *getValNumInfo(unsigned ValNo) const { return valnos[ValNo]; }
/// containsValue - Returns true if VNI belongs to this interval.
bool containsValue(const VNInfo *VNI) const { return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); }
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) { VNInfo *VNI = new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def); valnos.push_back(VNI); return VNI; }
/// createDeadDef - Make sure the interval has a value defined at Def.
/// If one already exists, return it. Otherwise allocate a new value and
/// add liveness for a dead def.
VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
/// Create a copy of the given value. The new value will be identical except
/// for the Value number.
VNInfo *createValueCopy(const VNInfo *orig, VNInfo::Allocator &VNInfoAllocator) { VNInfo *VNI = new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); valnos.push_back(VNI); return VNI; }
/// RenumberValues - Renumber all values in order of appearance and remove
/// unused values.
void RenumberValues(LiveIntervals &lis);
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, it will replace the value numbers of the overlaped
/// live ranges with the specified value number.
void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, but only if the overlapping LiveRanges have the
/// specified value number.
void MergeValueInAsValue(const LiveInterval &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo);
bool empty() const { return ranges.empty(); }
/// beginIndex - Return the lowest numbered slot covered by interval.
SlotIndex beginIndex() const { assert(!empty() && "Call to beginIndex() on empty interval."); return ranges.front().start; }
/// endNumber - return the maximum point of the interval of the whole,
/// exclusive.
SlotIndex endIndex() const { assert(!empty() && "Call to endIndex() on empty interval."); return ranges.back().end; }
bool expiredAt(SlotIndex index) const { return index >= endIndex(); }
bool liveAt(SlotIndex index) const { const_iterator r = find(index); return r != end() && r->start <= index; }
/// killedAt - Return true if a live range ends at index. Note that the kill
/// point is not contained in the half-open live range. It is usually the
/// getDefIndex() slot following its last use.
bool killedAt(SlotIndex index) const { const_iterator r = find(index.getRegSlot(true)); return r != end() && r->end == index; }
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
const LiveRange *getLiveRangeContaining(SlotIndex Idx) const { const_iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : &*I; }
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveRange *getLiveRangeContaining(SlotIndex Idx) { iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : &*I; }
/// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
VNInfo *getVNInfoAt(SlotIndex Idx) const { const_iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : I->valno; }
/// getVNInfoBefore - Return the VNInfo that is live up to but not
/// necessarilly including Idx, or NULL. Use this to find the reaching def
/// used by an instruction at this SlotIndex position.
VNInfo *getVNInfoBefore(SlotIndex Idx) const { const_iterator I = FindLiveRangeContaining(Idx.getPrevSlot()); return I == end() ? 0 : I->valno; }
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
iterator FindLiveRangeContaining(SlotIndex Idx) { iterator I = find(Idx); return I != end() && I->start <= Idx ? I : end(); }
const_iterator FindLiveRangeContaining(SlotIndex Idx) const { const_iterator I = find(Idx); return I != end() && I->start <= Idx ? I : end(); }
/// overlaps - Return true if the intersection of the two live intervals is
/// not empty.
bool overlaps(const LiveInterval& other) const { if (other.empty()) return false; return overlapsFrom(other, other.begin()); }
/// overlaps - Return true if the two intervals have overlapping segments
/// that are not coalescable according to CP.
///
/// Overlapping segments where one interval is defined by a coalescable
/// copy are allowed.
bool overlaps(const LiveInterval &Other, const CoalescerPair &CP, const SlotIndexes&) const;
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool overlaps(SlotIndex Start, SlotIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live intervals
/// is not empty. The specified iterator is a hint that we can begin
/// scanning the Other interval starting at I.
bool overlapsFrom(const LiveInterval& other, const_iterator I) const;
/// addRange - Add the specified LiveRange to this interval, merging
/// intervals as appropriate. This returns an iterator to the inserted live
/// range (which may have grown since it was inserted.
iterator addRange(LiveRange LR) { return addRangeFrom(LR, ranges.begin()); }
/// extendInBlock - If this interval is live before Kill in the basic block
/// that starts at StartIdx, extend it to be live up to Kill, and return
/// the value. If there is no live range before Kill, return NULL.
VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void join(LiveInterval &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVector<VNInfo*, 16> &NewVNInfo, MachineRegisterInfo *MRI);
/// isInOneLiveRange - Return true if the range specified is entirely in the
/// a single LiveRange of the live interval.
bool isInOneLiveRange(SlotIndex Start, SlotIndex End) const { const_iterator r = find(Start); return r != end() && r->containsRange(Start, End); }
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be a single LiveRange in its entirety.
void removeRange(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo = false);
void removeRange(LiveRange LR, bool RemoveDeadValNo = false) { removeRange(LR.start, LR.end, RemoveDeadValNo); }
/// removeValNo - Remove all the ranges defined by the specified value#.
/// Also remove the value# from value# list.
void removeValNo(VNInfo *ValNo);
/// getSize - Returns the sum of sizes of all the LiveRange's.
///
unsigned getSize() const;
/// Returns true if the live interval is zero length, i.e. no live ranges
/// span instructions. It doesn't pay to spill such an interval.
bool isZeroLength(SlotIndexes *Indexes) const { for (const_iterator i = begin(), e = end(); i != e; ++i) if (Indexes->getNextNonNullIndex(i->start).getBaseIndex() < i->end.getBaseIndex()) return false; return true; }
/// isSpillable - Can this interval be spilled?
bool isSpillable() const { return weight != HUGE_VALF; }
/// markNotSpillable - Mark interval as not spillable
void markNotSpillable() { weight = HUGE_VALF; }
bool operator<(const LiveInterval& other) const { const SlotIndex &thisIndex = beginIndex(); const SlotIndex &otherIndex = other.beginIndex(); return (thisIndex < otherIndex || (thisIndex == otherIndex && reg < other.reg)); }
void print(raw_ostream &OS) const; void dump() const;
/// \brief Walk the interval and assert if any invariants fail to hold.
///
/// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
void verify() const {} #else
void verify() const; #endif
private:
Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From); void extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd); Ranges::iterator extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStr); void markValNoForDeletion(VNInfo *V);
LiveInterval& operator=(const LiveInterval& rhs) LLVM_DELETED_FUNCTION;
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { LI.print(OS); return OS; }
/// Helper class for performant LiveInterval bulk updates.
///
/// Calling LiveInterval::addRange() repeatedly can be expensive on large
/// live ranges because segments after the insertion point may need to be
/// shifted. The LiveRangeUpdater class can defer the shifting when adding
/// many segments in order.
///
/// The LiveInterval will be in an invalid state until flush() is called.
class LiveRangeUpdater { LiveInterval *LI; SlotIndex LastStart; LiveInterval::iterator WriteI; LiveInterval::iterator ReadI; SmallVector<LiveRange, 16> Spills; void mergeSpills();
public: /// Create a LiveRangeUpdater for adding segments to LI.
/// LI will temporarily be in an invalid state until flush() is called.
LiveRangeUpdater(LiveInterval *li = 0) : LI(li) {}
~LiveRangeUpdater() { flush(); }
/// Add a segment to LI and coalesce when possible, just like LI.addRange().
/// Segments should be added in increasing start order for best performance.
void add(LiveRange);
void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { add(LiveRange(Start, End, VNI)); }
/// Return true if the LI is currently in an invalid state, and flush()
/// needs to be called.
bool isDirty() const { return LastStart.isValid(); }
/// Flush the updater state to LI so it is valid and contains all added
/// segments.
void flush();
/// Select a different destination live range.
void setDest(LiveInterval *li) { if (LI != li && isDirty()) flush(); LI = li; }
/// Get the current destination live range.
LiveInterval *getDest() const { return LI; }
void dump() const; void print(raw_ostream&) const; };
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { X.print(OS); return OS; }
/// LiveRangeQuery - Query information about a live range around a given
/// instruction. This class hides the implementation details of live ranges,
/// and it should be used as the primary interface for examining live ranges
/// around instructions.
///
class LiveRangeQuery { VNInfo *EarlyVal; VNInfo *LateVal; SlotIndex EndPoint; bool Kill;
public: /// Create a LiveRangeQuery for the given live range and instruction index.
/// The sub-instruction slot of Idx doesn't matter, only the instruction it
/// refers to is considered.
LiveRangeQuery(const LiveInterval &LI, SlotIndex Idx) : EarlyVal(0), LateVal(0), Kill(false) { // Find the segment that enters the instruction.
LiveInterval::const_iterator I = LI.find(Idx.getBaseIndex()); LiveInterval::const_iterator E = LI.end(); if (I == E) return; // Is this an instruction live-in segment?
// If Idx is the start index of a basic block, include live-in segments
// that start at Idx.getBaseIndex().
if (I->start <= Idx.getBaseIndex()) { EarlyVal = I->valno; EndPoint = I->end; // Move to the potentially live-out segment.
if (SlotIndex::isSameInstr(Idx, I->end)) { Kill = true; if (++I == E) return; } // Special case: A PHIDef value can have its def in the middle of a
// segment if the value happens to be live out of the layout
// predecessor.
// Such a value is not live-in.
if (EarlyVal->def == Idx.getBaseIndex()) EarlyVal = 0; } // I now points to the segment that may be live-through, or defined by
// this instr. Ignore segments starting after the current instr.
if (SlotIndex::isEarlierInstr(Idx, I->start)) return; LateVal = I->valno; EndPoint = I->end; }
/// Return the value that is live-in to the instruction. This is the value
/// that will be read by the instruction's use operands. Return NULL if no
/// value is live-in.
VNInfo *valueIn() const { return EarlyVal; }
/// Return true if the live-in value is killed by this instruction. This
/// means that either the live range ends at the instruction, or it changes
/// value.
bool isKill() const { return Kill; }
/// Return true if this instruction has a dead def.
bool isDeadDef() const { return EndPoint.isDead(); }
/// Return the value leaving the instruction, if any. This can be a
/// live-through value, or a live def. A dead def returns NULL.
VNInfo *valueOut() const { return isDeadDef() ? 0 : LateVal; }
/// Return the value defined by this instruction, if any. This includes
/// dead defs, it is the value created by the instruction's def operands.
VNInfo *valueDefined() const { return EarlyVal == LateVal ? 0 : LateVal; }
/// Return the end point of the last live range segment to interact with
/// the instruction, if any.
///
/// The end point is an invalid SlotIndex only if the live range doesn't
/// intersect the instruction at all.
///
/// The end point may be at or past the end of the instruction's basic
/// block. That means the value was live out of the block.
SlotIndex endPoint() const { return EndPoint; } };
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
/// LiveInterval into equivalence clases of connected components. A
/// LiveInterval that has multiple connected components can be broken into
/// multiple LiveIntervals.
///
/// Given a LiveInterval that may have multiple connected components, run:
///
/// unsigned numComps = ConEQ.Classify(LI);
/// if (numComps > 1) {
/// // allocate numComps-1 new LiveIntervals into LIS[1..]
/// ConEQ.Distribute(LIS);
/// }
class ConnectedVNInfoEqClasses { LiveIntervals &LIS; IntEqClasses EqClass;
// Note that values a and b are connected.
void Connect(unsigned a, unsigned b);
unsigned Renumber();
public: explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
/// Classify - Classify the values in LI into connected components.
/// Return the number of connected components.
unsigned Classify(const LiveInterval *LI);
/// getEqClass - Classify creates equivalence classes numbered 0..N. Return
/// the equivalence class assigned the VNI.
unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
/// Distribute - Distribute values in LIV[0] into a separate LiveInterval
/// for each connected component. LIV must have a LiveInterval for each
/// connected component. The LiveIntervals in Liv[1..] must be empty.
/// Instructions using LIV[0] are rewritten.
void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
};
} #endif
|