|
|
//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements SlotIndex and related classes. The purpose of SlotIndex
// is to describe a position at which a register can become live, or cease to
// be live.
//
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
// is held is LiveIntervals and provides the real numbering. This allows
// LiveIntervals to perform largely transparent renumbering.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SLOTINDEXES_H
#define LLVM_CODEGEN_SLOTINDEXES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Support/Allocator.h"
namespace llvm {
/// This class represents an entry in the slot index list held in the
/// SlotIndexes pass. It should not be used directly. See the
/// SlotIndex & SlotIndexes classes for the public interface to this
/// information.
class IndexListEntry : public ilist_node<IndexListEntry> { MachineInstr *mi; unsigned index;
public:
IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
MachineInstr* getInstr() const { return mi; } void setInstr(MachineInstr *mi) { this->mi = mi; }
unsigned getIndex() const { return index; } void setIndex(unsigned index) { this->index = index; }
#ifdef EXPENSIVE_CHECKS
// When EXPENSIVE_CHECKS is defined, "erased" index list entries will
// actually be moved to a "graveyard" list, and have their pointers
// poisoned, so that dangling SlotIndex access can be reliably detected.
void setPoison() { intptr_t tmp = reinterpret_cast<intptr_t>(mi); assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?"); tmp |= 0x1; mi = reinterpret_cast<MachineInstr*>(tmp); }
bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; } #endif // EXPENSIVE_CHECKS
};
template <> struct ilist_traits<IndexListEntry> : public ilist_default_traits<IndexListEntry> { private: mutable ilist_half_node<IndexListEntry> Sentinel; public: IndexListEntry *createSentinel() const { return static_cast<IndexListEntry*>(&Sentinel); } void destroySentinel(IndexListEntry *) const {}
IndexListEntry *provideInitialHead() const { return createSentinel(); } IndexListEntry *ensureHead(IndexListEntry*) const { return createSentinel(); } static void noteHead(IndexListEntry*, IndexListEntry*) {} void deleteNode(IndexListEntry *N) {}
private: void createNode(const IndexListEntry &); };
/// SlotIndex - An opaque wrapper around machine indexes.
class SlotIndex { friend class SlotIndexes;
enum Slot { /// Basic block boundary. Used for live ranges entering and leaving a
/// block without being live in the layout neighbor. Also used as the
/// def slot of PHI-defs.
Slot_Block,
/// Early-clobber register use/def slot. A live range defined at
/// Slot_EarlyCLobber interferes with normal live ranges killed at
/// Slot_Register. Also used as the kill slot for live ranges tied to an
/// early-clobber def.
Slot_EarlyClobber,
/// Normal register use/def slot. Normal instructions kill and define
/// register live ranges at this slot.
Slot_Register,
/// Dead def kill point. Kill slot for a live range that is defined by
/// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
/// used anywhere.
Slot_Dead,
Slot_Count };
PointerIntPair<IndexListEntry*, 2, unsigned> lie;
SlotIndex(IndexListEntry *entry, unsigned slot) : lie(entry, slot) {}
IndexListEntry* listEntry() const { assert(isValid() && "Attempt to compare reserved index."); #ifdef EXPENSIVE_CHECKS
assert(!lie.getPointer()->isPoisoned() && "Attempt to access deleted list-entry."); #endif // EXPENSIVE_CHECKS
return lie.getPointer(); }
unsigned getIndex() const { return listEntry()->getIndex() | getSlot(); }
/// Returns the slot for this SlotIndex.
Slot getSlot() const { return static_cast<Slot>(lie.getInt()); }
public: enum { /// The default distance between instructions as returned by distance().
/// This may vary as instructions are inserted and removed.
InstrDist = 4 * Slot_Count };
/// Construct an invalid index.
SlotIndex() : lie(0, 0) {}
// Construct a new slot index from the given one, and set the slot.
SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) { assert(lie.getPointer() != 0 && "Attempt to construct index with 0 pointer."); }
/// Returns true if this is a valid index. Invalid indicies do
/// not point into an index table, and cannot be compared.
bool isValid() const { return lie.getPointer(); }
/// Return true for a valid index.
operator bool() const { return isValid(); }
/// Print this index to the given raw_ostream.
void print(raw_ostream &os) const;
/// Dump this index to stderr.
void dump() const;
/// Compare two SlotIndex objects for equality.
bool operator==(SlotIndex other) const { return lie == other.lie; } /// Compare two SlotIndex objects for inequality.
bool operator!=(SlotIndex other) const { return lie != other.lie; }
/// Compare two SlotIndex objects. Return true if the first index
/// is strictly lower than the second.
bool operator<(SlotIndex other) const { return getIndex() < other.getIndex(); } /// Compare two SlotIndex objects. Return true if the first index
/// is lower than, or equal to, the second.
bool operator<=(SlotIndex other) const { return getIndex() <= other.getIndex(); }
/// Compare two SlotIndex objects. Return true if the first index
/// is greater than the second.
bool operator>(SlotIndex other) const { return getIndex() > other.getIndex(); }
/// Compare two SlotIndex objects. Return true if the first index
/// is greater than, or equal to, the second.
bool operator>=(SlotIndex other) const { return getIndex() >= other.getIndex(); }
/// isSameInstr - Return true if A and B refer to the same instruction.
static bool isSameInstr(SlotIndex A, SlotIndex B) { return A.lie.getPointer() == B.lie.getPointer(); }
/// isEarlierInstr - Return true if A refers to an instruction earlier than
/// B. This is equivalent to A < B && !isSameInstr(A, B).
static bool isEarlierInstr(SlotIndex A, SlotIndex B) { return A.listEntry()->getIndex() < B.listEntry()->getIndex(); }
/// Return the distance from this index to the given one.
int distance(SlotIndex other) const { return other.getIndex() - getIndex(); }
/// isBlock - Returns true if this is a block boundary slot.
bool isBlock() const { return getSlot() == Slot_Block; }
/// isEarlyClobber - Returns true if this is an early-clobber slot.
bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
/// isRegister - Returns true if this is a normal register use/def slot.
/// Note that early-clobber slots may also be used for uses and defs.
bool isRegister() const { return getSlot() == Slot_Register; }
/// isDead - Returns true if this is a dead def kill slot.
bool isDead() const { return getSlot() == Slot_Dead; }
/// Returns the base index for associated with this index. The base index
/// is the one associated with the Slot_Block slot for the instruction
/// pointed to by this index.
SlotIndex getBaseIndex() const { return SlotIndex(listEntry(), Slot_Block); }
/// Returns the boundary index for associated with this index. The boundary
/// index is the one associated with the Slot_Block slot for the instruction
/// pointed to by this index.
SlotIndex getBoundaryIndex() const { return SlotIndex(listEntry(), Slot_Dead); }
/// Returns the register use/def slot in the current instruction for a
/// normal or early-clobber def.
SlotIndex getRegSlot(bool EC = false) const { return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register); }
/// Returns the dead def kill slot for the current instruction.
SlotIndex getDeadSlot() const { return SlotIndex(listEntry(), Slot_Dead); }
/// Returns the next slot in the index list. This could be either the
/// next slot for the instruction pointed to by this index or, if this
/// index is a STORE, the first slot for the next instruction.
/// WARNING: This method is considerably more expensive than the methods
/// that return specific slots (getUseIndex(), etc). If you can - please
/// use one of those methods.
SlotIndex getNextSlot() const { Slot s = getSlot(); if (s == Slot_Dead) { return SlotIndex(listEntry()->getNextNode(), Slot_Block); } return SlotIndex(listEntry(), s + 1); }
/// Returns the next index. This is the index corresponding to the this
/// index's slot, but for the next instruction.
SlotIndex getNextIndex() const { return SlotIndex(listEntry()->getNextNode(), getSlot()); }
/// Returns the previous slot in the index list. This could be either the
/// previous slot for the instruction pointed to by this index or, if this
/// index is a Slot_Block, the last slot for the previous instruction.
/// WARNING: This method is considerably more expensive than the methods
/// that return specific slots (getUseIndex(), etc). If you can - please
/// use one of those methods.
SlotIndex getPrevSlot() const { Slot s = getSlot(); if (s == Slot_Block) { return SlotIndex(listEntry()->getPrevNode(), Slot_Dead); } return SlotIndex(listEntry(), s - 1); }
/// Returns the previous index. This is the index corresponding to this
/// index's slot, but for the previous instruction.
SlotIndex getPrevIndex() const { return SlotIndex(listEntry()->getPrevNode(), getSlot()); }
};
template <> struct isPodLike<SlotIndex> { static const bool value = true; };
inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) { li.print(os); return os; }
typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
inline bool operator<(SlotIndex V, const IdxMBBPair &IM) { return V < IM.first; }
inline bool operator<(const IdxMBBPair &IM, SlotIndex V) { return IM.first < V; }
struct Idx2MBBCompare { bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const { return LHS.first < RHS.first; } };
/// SlotIndexes pass.
///
/// This pass assigns indexes to each instruction.
class SlotIndexes : public MachineFunctionPass { private:
typedef ilist<IndexListEntry> IndexList; IndexList indexList;
#ifdef EXPENSIVE_CHECKS
IndexList graveyardList; #endif // EXPENSIVE_CHECKS
MachineFunction *mf;
typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap; Mi2IndexMap mi2iMap;
/// MBBRanges - Map MBB number to (start, stop) indexes.
SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
/// Idx2MBBMap - Sorted list of pairs of index of first instruction
/// and MBB id.
SmallVector<IdxMBBPair, 8> idx2MBBMap;
// IndexListEntry allocator.
BumpPtrAllocator ileAllocator;
IndexListEntry* createEntry(MachineInstr *mi, unsigned index) { IndexListEntry *entry = static_cast<IndexListEntry*>( ileAllocator.Allocate(sizeof(IndexListEntry), alignOf<IndexListEntry>()));
new (entry) IndexListEntry(mi, index);
return entry; }
/// Renumber locally after inserting curItr.
void renumberIndexes(IndexList::iterator curItr);
public: static char ID;
SlotIndexes() : MachineFunctionPass(ID) { initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); }
virtual void getAnalysisUsage(AnalysisUsage &au) const; virtual void releaseMemory();
virtual bool runOnMachineFunction(MachineFunction &fn);
/// Dump the indexes.
void dump() const;
/// Renumber the index list, providing space for new instructions.
void renumberIndexes();
/// Repair indexes after adding and removing instructions.
void repairIndexesInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End);
/// Returns the zero index for this analysis.
SlotIndex getZeroIndex() { assert(indexList.front().getIndex() == 0 && "First index is not 0?"); return SlotIndex(&indexList.front(), 0); }
/// Returns the base index of the last slot in this analysis.
SlotIndex getLastIndex() { return SlotIndex(&indexList.back(), 0); }
/// Returns true if the given machine instr is mapped to an index,
/// otherwise returns false.
bool hasIndex(const MachineInstr *instr) const { return mi2iMap.count(instr); }
/// Returns the base index for the given instruction.
SlotIndex getInstructionIndex(const MachineInstr *MI) const { // Instructions inside a bundle have the same number as the bundle itself.
Mi2IndexMap::const_iterator itr = mi2iMap.find(getBundleStart(MI)); assert(itr != mi2iMap.end() && "Instruction not found in maps."); return itr->second; }
/// Returns the instruction for the given index, or null if the given
/// index has no instruction associated with it.
MachineInstr* getInstructionFromIndex(SlotIndex index) const { return index.isValid() ? index.listEntry()->getInstr() : 0; }
/// Returns the next non-null index, if one exists.
/// Otherwise returns getLastIndex().
SlotIndex getNextNonNullIndex(SlotIndex Index) { IndexList::iterator I = Index.listEntry(); IndexList::iterator E = indexList.end(); while (++I != E) if (I->getInstr()) return SlotIndex(I, Index.getSlot()); // We reached the end of the function.
return getLastIndex(); }
/// getIndexBefore - Returns the index of the last indexed instruction
/// before MI, or the start index of its basic block.
/// MI is not required to have an index.
SlotIndex getIndexBefore(const MachineInstr *MI) const { const MachineBasicBlock *MBB = MI->getParent(); assert(MBB && "MI must be inserted inna basic block"); MachineBasicBlock::const_iterator I = MI, B = MBB->begin(); for (;;) { if (I == B) return getMBBStartIdx(MBB); --I; Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I); if (MapItr != mi2iMap.end()) return MapItr->second; } }
/// getIndexAfter - Returns the index of the first indexed instruction
/// after MI, or the end index of its basic block.
/// MI is not required to have an index.
SlotIndex getIndexAfter(const MachineInstr *MI) const { const MachineBasicBlock *MBB = MI->getParent(); assert(MBB && "MI must be inserted inna basic block"); MachineBasicBlock::const_iterator I = MI, E = MBB->end(); for (;;) { ++I; if (I == E) return getMBBEndIdx(MBB); Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I); if (MapItr != mi2iMap.end()) return MapItr->second; } }
/// Return the (start,end) range of the given basic block number.
const std::pair<SlotIndex, SlotIndex> & getMBBRange(unsigned Num) const { return MBBRanges[Num]; }
/// Return the (start,end) range of the given basic block.
const std::pair<SlotIndex, SlotIndex> & getMBBRange(const MachineBasicBlock *MBB) const { return getMBBRange(MBB->getNumber()); }
/// Returns the first index in the given basic block number.
SlotIndex getMBBStartIdx(unsigned Num) const { return getMBBRange(Num).first; }
/// Returns the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { return getMBBRange(mbb).first; }
/// Returns the last index in the given basic block number.
SlotIndex getMBBEndIdx(unsigned Num) const { return getMBBRange(Num).second; }
/// Returns the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { return getMBBRange(mbb).second; }
/// Returns the basic block which the given index falls in.
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { if (MachineInstr *MI = getInstructionFromIndex(index)) return MI->getParent(); SmallVectorImpl<IdxMBBPair>::const_iterator I = std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index); // Take the pair containing the index
SmallVectorImpl<IdxMBBPair>::const_iterator J = ((I != idx2MBBMap.end() && I->first > index) || (I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;
assert(J != idx2MBBMap.end() && J->first <= index && index < getMBBEndIdx(J->second) && "index does not correspond to an MBB"); return J->second; }
bool findLiveInMBBs(SlotIndex start, SlotIndex end, SmallVectorImpl<MachineBasicBlock*> &mbbs) const { SmallVectorImpl<IdxMBBPair>::const_iterator itr = std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start); bool resVal = false;
while (itr != idx2MBBMap.end()) { if (itr->first >= end) break; mbbs.push_back(itr->second); resVal = true; ++itr; } return resVal; }
/// Returns the MBB covering the given range, or null if the range covers
/// more than one basic block.
MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
assert(start < end && "Backwards ranges not allowed.");
SmallVectorImpl<IdxMBBPair>::const_iterator itr = std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
if (itr == idx2MBBMap.end()) { itr = prior(itr); return itr->second; }
// Check that we don't cross the boundary into this block.
if (itr->first < end) return 0;
itr = prior(itr);
if (itr->first <= start) return itr->second;
return 0; }
/// Insert the given machine instruction into the mapping. Returns the
/// assigned index.
/// If Late is set and there are null indexes between mi's neighboring
/// instructions, create the new index after the null indexes instead of
/// before them.
SlotIndex insertMachineInstrInMaps(MachineInstr *mi, bool Late = false) { assert(!mi->isInsideBundle() && "Instructions inside bundles should use bundle start's slot."); assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed."); // Numbering DBG_VALUE instructions could cause code generation to be
// affected by debug information.
assert(!mi->isDebugValue() && "Cannot number DBG_VALUE instructions.");
assert(mi->getParent() != 0 && "Instr must be added to function.");
// Get the entries where mi should be inserted.
IndexList::iterator prevItr, nextItr; if (Late) { // Insert mi's index immediately before the following instruction.
nextItr = getIndexAfter(mi).listEntry(); prevItr = prior(nextItr); } else { // Insert mi's index immediately after the preceding instruction.
prevItr = getIndexBefore(mi).listEntry(); nextItr = llvm::next(prevItr); }
// Get a number for the new instr, or 0 if there's no room currently.
// In the latter case we'll force a renumber later.
unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u; unsigned newNumber = prevItr->getIndex() + dist;
// Insert a new list entry for mi.
IndexList::iterator newItr = indexList.insert(nextItr, createEntry(mi, newNumber));
// Renumber locally if we need to.
if (dist == 0) renumberIndexes(newItr);
SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block); mi2iMap.insert(std::make_pair(mi, newIndex)); return newIndex; }
/// Remove the given machine instruction from the mapping.
void removeMachineInstrFromMaps(MachineInstr *mi) { // remove index -> MachineInstr and
// MachineInstr -> index mappings
Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi); if (mi2iItr != mi2iMap.end()) { IndexListEntry *miEntry(mi2iItr->second.listEntry()); assert(miEntry->getInstr() == mi && "Instruction indexes broken."); // FIXME: Eventually we want to actually delete these indexes.
miEntry->setInstr(0); mi2iMap.erase(mi2iItr); } }
/// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
/// maps used by register allocator.
void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) { Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi); if (mi2iItr == mi2iMap.end()) return; SlotIndex replaceBaseIndex = mi2iItr->second; IndexListEntry *miEntry(replaceBaseIndex.listEntry()); assert(miEntry->getInstr() == mi && "Mismatched instruction in index tables."); miEntry->setInstr(newMI); mi2iMap.erase(mi2iItr); mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex)); }
/// Add the given MachineBasicBlock into the maps.
void insertMBBInMaps(MachineBasicBlock *mbb) { MachineFunction::iterator nextMBB = llvm::next(MachineFunction::iterator(mbb));
IndexListEntry *startEntry = 0; IndexListEntry *endEntry = 0; IndexList::iterator newItr; if (nextMBB == mbb->getParent()->end()) { startEntry = &indexList.back(); endEntry = createEntry(0, 0); newItr = indexList.insertAfter(startEntry, endEntry); } else { startEntry = createEntry(0, 0); endEntry = getMBBStartIdx(nextMBB).listEntry(); newItr = indexList.insert(endEntry, startEntry); }
SlotIndex startIdx(startEntry, SlotIndex::Slot_Block); SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
MachineFunction::iterator prevMBB(mbb); assert(prevMBB != mbb->getParent()->end() && "Can't insert a new block at the beginning of a function."); --prevMBB; MBBRanges[prevMBB->getNumber()].second = startIdx;
assert(unsigned(mbb->getNumber()) == MBBRanges.size() && "Blocks must be added in order"); MBBRanges.push_back(std::make_pair(startIdx, endIdx)); idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
renumberIndexes(newItr); std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare()); }
/// \brief Free the resources that were required to maintain a SlotIndex.
///
/// Once an index is no longer needed (for instance because the instruction
/// at that index has been moved), the resources required to maintain the
/// index can be relinquished to reduce memory use and improve renumbering
/// performance. Any remaining SlotIndex objects that point to the same
/// index are left 'dangling' (much the same as a dangling pointer to a
/// freed object) and should not be accessed, except to destruct them.
///
/// Like dangling pointers, access to dangling SlotIndexes can cause
/// painful-to-track-down bugs, especially if the memory for the index
/// previously pointed to has been re-used. To detect dangling SlotIndex
/// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
/// be retained in a graveyard instead of being freed. Operations on indexes
/// in the graveyard will trigger an assertion.
void eraseIndex(SlotIndex index) { IndexListEntry *entry = index.listEntry(); #ifdef EXPENSIVE_CHECKS
indexList.remove(entry); graveyardList.push_back(entry); entry->setPoison(); #else
indexList.erase(entry); #endif
}
};
// Specialize IntervalMapInfo for half-open slot index intervals.
template <> struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> { };
}
#endif // LLVM_CODEGEN_SLOTINDEXES_H
|