|
|
//===---- llvm/IRBuilder.h - Builder for LLVM Instructions ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the IRBuilder class, which is used as a convenient way
// to create LLVM instructions with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_IRBUILDER_H
#define LLVM_IR_IRBUILDER_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ConstantFolder.h"
namespace llvm { class MDNode;
/// \brief This provides the default implementation of the IRBuilder
/// 'InsertHelper' method that is called whenever an instruction is created by
/// IRBuilder and needs to be inserted.
///
/// By default, this inserts the instruction at the insertion point.
template <bool preserveNames = true> class IRBuilderDefaultInserter { protected: void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const { if (BB) BB->getInstList().insert(InsertPt, I); if (preserveNames) I->setName(Name); } };
/// \brief Common base class shared among various IRBuilders.
class IRBuilderBase { DebugLoc CurDbgLocation; protected: BasicBlock *BB; BasicBlock::iterator InsertPt; LLVMContext &Context; public:
IRBuilderBase(LLVMContext &context) : Context(context) { ClearInsertionPoint(); }
//===--------------------------------------------------------------------===//
// Builder configuration methods
//===--------------------------------------------------------------------===//
/// \brief Clear the insertion point: created instructions will not be
/// inserted into a block.
void ClearInsertionPoint() { BB = 0; }
BasicBlock *GetInsertBlock() const { return BB; } BasicBlock::iterator GetInsertPoint() const { return InsertPt; } LLVMContext &getContext() const { return Context; }
/// \brief This specifies that created instructions should be appended to the
/// end of the specified block.
void SetInsertPoint(BasicBlock *TheBB) { BB = TheBB; InsertPt = BB->end(); }
/// \brief This specifies that created instructions should be inserted before
/// the specified instruction.
void SetInsertPoint(Instruction *I) { BB = I->getParent(); InsertPt = I; SetCurrentDebugLocation(I->getDebugLoc()); }
/// \brief This specifies that created instructions should be inserted at the
/// specified point.
void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) { BB = TheBB; InsertPt = IP; }
/// \brief Find the nearest point that dominates this use, and specify that
/// created instructions should be inserted at this point.
void SetInsertPoint(Use &U) { Instruction *UseInst = cast<Instruction>(U.getUser()); if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { BasicBlock *PredBB = Phi->getIncomingBlock(U); assert(U != PredBB->getTerminator() && "critical edge not split"); SetInsertPoint(PredBB, PredBB->getTerminator()); return; } SetInsertPoint(UseInst); }
/// \brief Set location information used by debugging information.
void SetCurrentDebugLocation(const DebugLoc &L) { CurDbgLocation = L; }
/// \brief Get location information used by debugging information.
DebugLoc getCurrentDebugLocation() const { return CurDbgLocation; }
/// \brief If this builder has a current debug location, set it on the
/// specified instruction.
void SetInstDebugLocation(Instruction *I) const { if (!CurDbgLocation.isUnknown()) I->setDebugLoc(CurDbgLocation); }
/// \brief Get the return type of the current function that we're emitting
/// into.
Type *getCurrentFunctionReturnType() const;
/// InsertPoint - A saved insertion point.
class InsertPoint { BasicBlock *Block; BasicBlock::iterator Point;
public: /// \brief Creates a new insertion point which doesn't point to anything.
InsertPoint() : Block(0) {}
/// \brief Creates a new insertion point at the given location.
InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint) : Block(InsertBlock), Point(InsertPoint) {}
/// \brief Returns true if this insert point is set.
bool isSet() const { return (Block != 0); }
llvm::BasicBlock *getBlock() const { return Block; } llvm::BasicBlock::iterator getPoint() const { return Point; } };
/// \brief Returns the current insert point.
InsertPoint saveIP() const { return InsertPoint(GetInsertBlock(), GetInsertPoint()); }
/// \brief Returns the current insert point, clearing it in the process.
InsertPoint saveAndClearIP() { InsertPoint IP(GetInsertBlock(), GetInsertPoint()); ClearInsertionPoint(); return IP; }
/// \brief Sets the current insert point to a previously-saved location.
void restoreIP(InsertPoint IP) { if (IP.isSet()) SetInsertPoint(IP.getBlock(), IP.getPoint()); else ClearInsertionPoint(); }
//===--------------------------------------------------------------------===//
// Miscellaneous creation methods.
//===--------------------------------------------------------------------===//
/// \brief Make a new global variable with initializer type i8*
///
/// Make a new global variable with an initializer that has array of i8 type
/// filled in with the null terminated string value specified. The new global
/// variable will be marked mergable with any others of the same contents. If
/// Name is specified, it is the name of the global variable created.
Value *CreateGlobalString(StringRef Str, const Twine &Name = "");
/// \brief Get a constant value representing either true or false.
ConstantInt *getInt1(bool V) { return ConstantInt::get(getInt1Ty(), V); }
/// \brief Get the constant value for i1 true.
ConstantInt *getTrue() { return ConstantInt::getTrue(Context); }
/// \brief Get the constant value for i1 false.
ConstantInt *getFalse() { return ConstantInt::getFalse(Context); }
/// \brief Get a constant 8-bit value.
ConstantInt *getInt8(uint8_t C) { return ConstantInt::get(getInt8Ty(), C); }
/// \brief Get a constant 16-bit value.
ConstantInt *getInt16(uint16_t C) { return ConstantInt::get(getInt16Ty(), C); }
/// \brief Get a constant 32-bit value.
ConstantInt *getInt32(uint32_t C) { return ConstantInt::get(getInt32Ty(), C); }
/// \brief Get a constant 64-bit value.
ConstantInt *getInt64(uint64_t C) { return ConstantInt::get(getInt64Ty(), C); }
/// \brief Get a constant integer value.
ConstantInt *getInt(const APInt &AI) { return ConstantInt::get(Context, AI); }
//===--------------------------------------------------------------------===//
// Type creation methods
//===--------------------------------------------------------------------===//
/// \brief Fetch the type representing a single bit
IntegerType *getInt1Ty() { return Type::getInt1Ty(Context); }
/// \brief Fetch the type representing an 8-bit integer.
IntegerType *getInt8Ty() { return Type::getInt8Ty(Context); }
/// \brief Fetch the type representing a 16-bit integer.
IntegerType *getInt16Ty() { return Type::getInt16Ty(Context); }
/// \brief Fetch the type representing a 32-bit integer.
IntegerType *getInt32Ty() { return Type::getInt32Ty(Context); }
/// \brief Fetch the type representing a 64-bit integer.
IntegerType *getInt64Ty() { return Type::getInt64Ty(Context); }
/// \brief Fetch the type representing a 32-bit floating point value.
Type *getFloatTy() { return Type::getFloatTy(Context); }
/// \brief Fetch the type representing a 64-bit floating point value.
Type *getDoubleTy() { return Type::getDoubleTy(Context); }
/// \brief Fetch the type representing void.
Type *getVoidTy() { return Type::getVoidTy(Context); }
/// \brief Fetch the type representing a pointer to an 8-bit integer value.
PointerType *getInt8PtrTy(unsigned AddrSpace = 0) { return Type::getInt8PtrTy(Context, AddrSpace); }
/// \brief Fetch the type representing a pointer to an integer value.
IntegerType* getIntPtrTy(DataLayout *DL, unsigned AddrSpace = 0) { return DL->getIntPtrType(Context, AddrSpace); }
//===--------------------------------------------------------------------===//
// Intrinsic creation methods
//===--------------------------------------------------------------------===//
/// \brief Create and insert a memset to the specified pointer and the
/// specified value.
///
/// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
/// specified, it will be added to the instruction.
CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = 0) { return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile, TBAATag); }
CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = 0);
/// \brief Create and insert a memcpy between the specified pointers.
///
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
/// specified, it will be added to the instruction.
CallInst *CreateMemCpy(Value *Dst, Value *Src, uint64_t Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = 0, MDNode *TBAAStructTag = 0) { return CreateMemCpy(Dst, Src, getInt64(Size), Align, isVolatile, TBAATag, TBAAStructTag); }
CallInst *CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = 0, MDNode *TBAAStructTag = 0);
/// \brief Create and insert a memmove between the specified
/// pointers.
///
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
/// specified, it will be added to the instruction.
CallInst *CreateMemMove(Value *Dst, Value *Src, uint64_t Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = 0) { return CreateMemMove(Dst, Src, getInt64(Size), Align, isVolatile, TBAATag); }
CallInst *CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = 0);
/// \brief Create a lifetime.start intrinsic.
///
/// If the pointer isn't i8* it will be converted.
CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = 0);
/// \brief Create a lifetime.end intrinsic.
///
/// If the pointer isn't i8* it will be converted.
CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = 0);
private: Value *getCastedInt8PtrValue(Value *Ptr); };
/// \brief This provides a uniform API for creating instructions and inserting
/// them into a basic block: either at the end of a BasicBlock, or at a specific
/// iterator location in a block.
///
/// Note that the builder does not expose the full generality of LLVM
/// instructions. For access to extra instruction properties, use the mutators
/// (e.g. setVolatile) on the instructions after they have been
/// created. Convenience state exists to specify fast-math flags and fp-math
/// tags.
///
/// The first template argument handles whether or not to preserve names in the
/// final instruction output. This defaults to on. The second template argument
/// specifies a class to use for creating constants. This defaults to creating
/// minimally folded constants. The fourth template argument allows clients to
/// specify custom insertion hooks that are called on every newly created
/// insertion.
template<bool preserveNames = true, typename T = ConstantFolder, typename Inserter = IRBuilderDefaultInserter<preserveNames> > class IRBuilder : public IRBuilderBase, public Inserter { T Folder; MDNode *DefaultFPMathTag; FastMathFlags FMF; public: IRBuilder(LLVMContext &C, const T &F, const Inserter &I = Inserter(), MDNode *FPMathTag = 0) : IRBuilderBase(C), Inserter(I), Folder(F), DefaultFPMathTag(FPMathTag), FMF() { }
explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = 0) : IRBuilderBase(C), Folder(), DefaultFPMathTag(FPMathTag), FMF() { }
explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = 0) : IRBuilderBase(TheBB->getContext()), Folder(F), DefaultFPMathTag(FPMathTag), FMF() { SetInsertPoint(TheBB); }
explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = 0) : IRBuilderBase(TheBB->getContext()), Folder(), DefaultFPMathTag(FPMathTag), FMF() { SetInsertPoint(TheBB); }
explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = 0) : IRBuilderBase(IP->getContext()), Folder(), DefaultFPMathTag(FPMathTag), FMF() { SetInsertPoint(IP); SetCurrentDebugLocation(IP->getDebugLoc()); }
explicit IRBuilder(Use &U, MDNode *FPMathTag = 0) : IRBuilderBase(U->getContext()), Folder(), DefaultFPMathTag(FPMathTag), FMF() { SetInsertPoint(U); SetCurrentDebugLocation(cast<Instruction>(U.getUser())->getDebugLoc()); }
IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T& F, MDNode *FPMathTag = 0) : IRBuilderBase(TheBB->getContext()), Folder(F), DefaultFPMathTag(FPMathTag), FMF() { SetInsertPoint(TheBB, IP); }
IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, MDNode *FPMathTag = 0) : IRBuilderBase(TheBB->getContext()), Folder(), DefaultFPMathTag(FPMathTag), FMF() { SetInsertPoint(TheBB, IP); }
/// \brief Get the constant folder being used.
const T &getFolder() { return Folder; }
/// \brief Get the floating point math metadata being used.
MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
/// \brief Get the flags to be applied to created floating point ops
FastMathFlags getFastMathFlags() const { return FMF; }
/// \brief Clear the fast-math flags.
void clearFastMathFlags() { FMF.clear(); }
/// \brief SetDefaultFPMathTag - Set the floating point math metadata to be used.
void SetDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
/// \brief Set the fast-math flags to be used with generated fp-math operators
void SetFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
/// \brief Return true if this builder is configured to actually add the
/// requested names to IR created through it.
bool isNamePreserving() const { return preserveNames; }
/// \brief Insert and return the specified instruction.
template<typename InstTy> InstTy *Insert(InstTy *I, const Twine &Name = "") const { this->InsertHelper(I, Name, BB, InsertPt); this->SetInstDebugLocation(I); return I; }
/// \brief No-op overload to handle constants.
Constant *Insert(Constant *C, const Twine& = "") const { return C; }
//===--------------------------------------------------------------------===//
// Instruction creation methods: Terminators
//===--------------------------------------------------------------------===//
private: /// \brief Helper to add branch weight metadata onto an instruction.
/// \returns The annotated instruction.
template <typename InstTy> InstTy *addBranchWeights(InstTy *I, MDNode *Weights) { if (Weights) I->setMetadata(LLVMContext::MD_prof, Weights); return I; }
public: /// \brief Create a 'ret void' instruction.
ReturnInst *CreateRetVoid() { return Insert(ReturnInst::Create(Context)); }
/// \brief Create a 'ret <val>' instruction.
ReturnInst *CreateRet(Value *V) { return Insert(ReturnInst::Create(Context, V)); }
/// \brief Create a sequence of N insertvalue instructions,
/// with one Value from the retVals array each, that build a aggregate
/// return value one value at a time, and a ret instruction to return
/// the resulting aggregate value.
///
/// This is a convenience function for code that uses aggregate return values
/// as a vehicle for having multiple return values.
ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) { Value *V = UndefValue::get(getCurrentFunctionReturnType()); for (unsigned i = 0; i != N; ++i) V = CreateInsertValue(V, retVals[i], i, "mrv"); return Insert(ReturnInst::Create(Context, V)); }
/// \brief Create an unconditional 'br label X' instruction.
BranchInst *CreateBr(BasicBlock *Dest) { return Insert(BranchInst::Create(Dest)); }
/// \brief Create a conditional 'br Cond, TrueDest, FalseDest'
/// instruction.
BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights = 0) { return Insert(addBranchWeights(BranchInst::Create(True, False, Cond), BranchWeights)); }
/// \brief Create a switch instruction with the specified value, default dest,
/// and with a hint for the number of cases that will be added (for efficient
/// allocation).
SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10, MDNode *BranchWeights = 0) { return Insert(addBranchWeights(SwitchInst::Create(V, Dest, NumCases), BranchWeights)); }
/// \brief Create an indirect branch instruction with the specified address
/// operand, with an optional hint for the number of destinations that will be
/// added (for efficient allocation).
IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) { return Insert(IndirectBrInst::Create(Addr, NumDests)); }
InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, const Twine &Name = "") { return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, ArrayRef<Value *>()), Name); } InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, Value *Arg1, const Twine &Name = "") { return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Arg1), Name); } InvokeInst *CreateInvoke3(Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, Value *Arg1, Value *Arg2, Value *Arg3, const Twine &Name = "") { Value *Args[] = { Arg1, Arg2, Arg3 }; return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args), Name); } /// \brief Create an invoke instruction.
InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Value *> Args, const Twine &Name = "") { return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args), Name); }
ResumeInst *CreateResume(Value *Exn) { return Insert(ResumeInst::Create(Exn)); }
UnreachableInst *CreateUnreachable() { return Insert(new UnreachableInst(Context)); }
//===--------------------------------------------------------------------===//
// Instruction creation methods: Binary Operators
//===--------------------------------------------------------------------===//
private: BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name, bool HasNUW, bool HasNSW) { BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name); if (HasNUW) BO->setHasNoUnsignedWrap(); if (HasNSW) BO->setHasNoSignedWrap(); return BO; }
Instruction *AddFPMathAttributes(Instruction *I, MDNode *FPMathTag, FastMathFlags FMF) const { if (!FPMathTag) FPMathTag = DefaultFPMathTag; if (FPMathTag) I->setMetadata(LLVMContext::MD_fpmath, FPMathTag); I->setFastMathFlags(FMF); return I; } public: Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name); return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateAdd(LHS, RHS, Name, false, true); } Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateAdd(LHS, RHS, Name, true, false); } Value *CreateFAdd(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = 0) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFAdd(LC, RC), Name); return Insert(AddFPMathAttributes(BinaryOperator::CreateFAdd(LHS, RHS), FPMathTag, FMF), Name); } Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateSub(LC, RC), Name); return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSub(LHS, RHS, Name, false, true); } Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSub(LHS, RHS, Name, true, false); } Value *CreateFSub(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = 0) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFSub(LC, RC), Name); return Insert(AddFPMathAttributes(BinaryOperator::CreateFSub(LHS, RHS), FPMathTag, FMF), Name); } Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateMul(LC, RC), Name); return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateMul(LHS, RHS, Name, false, true); } Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateMul(LHS, RHS, Name, true, false); } Value *CreateFMul(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = 0) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFMul(LC, RC), Name); return Insert(AddFPMathAttributes(BinaryOperator::CreateFMul(LHS, RHS), FPMathTag, FMF), Name); } Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateUDiv(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name); } Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateUDiv(LHS, RHS, Name, true); } Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateSDiv(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name); } Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSDiv(LHS, RHS, Name, true); } Value *CreateFDiv(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = 0) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFDiv(LC, RC), Name); return Insert(AddFPMathAttributes(BinaryOperator::CreateFDiv(LHS, RHS), FPMathTag, FMF), Name); } Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateURem(LC, RC), Name); return Insert(BinaryOperator::CreateURem(LHS, RHS), Name); } Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateSRem(LC, RC), Name); return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name); } Value *CreateFRem(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = 0) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFRem(LC, RC), Name); return Insert(AddFPMathAttributes(BinaryOperator::CreateFRem(LHS, RHS), FPMathTag, FMF), Name); }
Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name); return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, HasNUW, HasNSW); } Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, HasNUW, HasNSW); }
Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateLShr(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name); } Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "", bool isExact = false) { return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "", bool isExact = false) { return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); }
Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateAShr(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name); } Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "", bool isExact = false) { return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "", bool isExact = false) { return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); }
Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *RC = dyn_cast<Constant>(RHS)) { if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isAllOnesValue()) return LHS; // LHS & -1 -> LHS
if (Constant *LC = dyn_cast<Constant>(LHS)) return Insert(Folder.CreateAnd(LC, RC), Name); } return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name); } Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); }
Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *RC = dyn_cast<Constant>(RHS)) { if (RC->isNullValue()) return LHS; // LHS | 0 -> LHS
if (Constant *LC = dyn_cast<Constant>(LHS)) return Insert(Folder.CreateOr(LC, RC), Name); } return Insert(BinaryOperator::CreateOr(LHS, RHS), Name); } Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); }
Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateXor(LC, RC), Name); return Insert(BinaryOperator::CreateXor(LHS, RHS), Name); } Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); }
Value *CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateBinOp(Opc, LC, RC), Name); return Insert(BinaryOperator::Create(Opc, LHS, RHS), Name); }
Value *CreateNeg(Value *V, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name); BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name); if (HasNUW) BO->setHasNoUnsignedWrap(); if (HasNSW) BO->setHasNoSignedWrap(); return BO; } Value *CreateNSWNeg(Value *V, const Twine &Name = "") { return CreateNeg(V, Name, false, true); } Value *CreateNUWNeg(Value *V, const Twine &Name = "") { return CreateNeg(V, Name, true, false); } Value *CreateFNeg(Value *V, const Twine &Name = "", MDNode *FPMathTag = 0) { if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateFNeg(VC), Name); return Insert(AddFPMathAttributes(BinaryOperator::CreateFNeg(V), FPMathTag, FMF), Name); } Value *CreateNot(Value *V, const Twine &Name = "") { if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateNot(VC), Name); return Insert(BinaryOperator::CreateNot(V), Name); }
//===--------------------------------------------------------------------===//
// Instruction creation methods: Memory Instructions
//===--------------------------------------------------------------------===//
AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = 0, const Twine &Name = "") { return Insert(new AllocaInst(Ty, ArraySize), Name); } // \brief Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
// converting the string to 'bool' for the isVolatile parameter.
LoadInst *CreateLoad(Value *Ptr, const char *Name) { return Insert(new LoadInst(Ptr), Name); } LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") { return Insert(new LoadInst(Ptr), Name); } LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") { return Insert(new LoadInst(Ptr, 0, isVolatile), Name); } StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) { return Insert(new StoreInst(Val, Ptr, isVolatile)); } // \brief Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
// correctly, instead of converting the string to 'bool' for the isVolatile
// parameter.
LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) { LoadInst *LI = CreateLoad(Ptr, Name); LI->setAlignment(Align); return LI; } LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const Twine &Name = "") { LoadInst *LI = CreateLoad(Ptr, Name); LI->setAlignment(Align); return LI; } LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile, const Twine &Name = "") { LoadInst *LI = CreateLoad(Ptr, isVolatile, Name); LI->setAlignment(Align); return LI; } StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align, bool isVolatile = false) { StoreInst *SI = CreateStore(Val, Ptr, isVolatile); SI->setAlignment(Align); return SI; } FenceInst *CreateFence(AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { return Insert(new FenceInst(Context, Ordering, SynchScope)); } AtomicCmpXchgInst *CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope)); } AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SynchScope)); } Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { if (Constant *PC = dyn_cast<Constant>(Ptr)) { // Every index must be constant.
size_t i, e; for (i = 0, e = IdxList.size(); i != e; ++i) if (!isa<Constant>(IdxList[i])) break; if (i == e) return Insert(Folder.CreateGetElementPtr(PC, IdxList), Name); } return Insert(GetElementPtrInst::Create(Ptr, IdxList), Name); } Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { if (Constant *PC = dyn_cast<Constant>(Ptr)) { // Every index must be constant.
size_t i, e; for (i = 0, e = IdxList.size(); i != e; ++i) if (!isa<Constant>(IdxList[i])) break; if (i == e) return Insert(Folder.CreateInBoundsGetElementPtr(PC, IdxList), Name); } return Insert(GetElementPtrInst::CreateInBounds(Ptr, IdxList), Name); } Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") { if (Constant *PC = dyn_cast<Constant>(Ptr)) if (Constant *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateGetElementPtr(PC, IC), Name); return Insert(GetElementPtrInst::Create(Ptr, Idx), Name); } Value *CreateInBoundsGEP(Value *Ptr, Value *Idx, const Twine &Name = "") { if (Constant *PC = dyn_cast<Constant>(Ptr)) if (Constant *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateInBoundsGetElementPtr(PC, IC), Name); return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name); } Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
return Insert(GetElementPtrInst::Create(Ptr, Idx), Name); } Value *CreateConstInBoundsGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name); } Value *CreateConstGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt32Ty(Context), Idx0), ConstantInt::get(Type::getInt32Ty(Context), Idx1) };
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name); } Value *CreateConstInBoundsGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt32Ty(Context), Idx0), ConstantInt::get(Type::getInt32Ty(Context), Idx1) };
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name); } Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
return Insert(GetElementPtrInst::Create(Ptr, Idx), Name); } Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name); } Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt64Ty(Context), Idx0), ConstantInt::get(Type::getInt64Ty(Context), Idx1) };
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name); } Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt64Ty(Context), Idx0), ConstantInt::get(Type::getInt64Ty(Context), Idx1) };
if (Constant *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name); } Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") { return CreateConstInBoundsGEP2_32(Ptr, 0, Idx, Name); }
/// \brief Same as CreateGlobalString, but return a pointer with "i8*" type
/// instead of a pointer to array of i8.
Value *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "") { Value *gv = CreateGlobalString(Str, Name); Value *zero = ConstantInt::get(Type::getInt32Ty(Context), 0); Value *Args[] = { zero, zero }; return CreateInBoundsGEP(gv, Args, Name); }
//===--------------------------------------------------------------------===//
// Instruction creation methods: Cast/Conversion Operators
//===--------------------------------------------------------------------===//
Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::Trunc, V, DestTy, Name); } Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::ZExt, V, DestTy, Name); } Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::SExt, V, DestTy, Name); } /// \brief Create a ZExt or Trunc from the integer value V to DestTy. Return
/// the value untouched if the type of V is already DestTy.
Value *CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name = "") { assert(V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"); Type *VTy = V->getType(); if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) return CreateZExt(V, DestTy, Name); if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return CreateTrunc(V, DestTy, Name); return V; } /// \brief Create a SExt or Trunc from the integer value V to DestTy. Return
/// the value untouched if the type of V is already DestTy.
Value *CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name = "") { assert(V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"); Type *VTy = V->getType(); if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) return CreateSExt(V, DestTy, Name); if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return CreateTrunc(V, DestTy, Name); return V; } Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::FPToUI, V, DestTy, Name); } Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::FPToSI, V, DestTy, Name); } Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::UIToFP, V, DestTy, Name); } Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::SIToFP, V, DestTy, Name); } Value *CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::FPTrunc, V, DestTy, Name); } Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::FPExt, V, DestTy, Name); } Value *CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::PtrToInt, V, DestTy, Name); } Value *CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::IntToPtr, V, DestTy, Name); } Value *CreateBitCast(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::BitCast, V, DestTy, Name); } Value *CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name); } Value *CreateSExtOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name); } Value *CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name); } Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateCast(Op, VC, DestTy), Name); return Insert(CastInst::Create(Op, V, DestTy), Name); } Value *CreatePointerCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreatePointerCast(VC, DestTy), Name); return Insert(CastInst::CreatePointerCast(V, DestTy), Name); } Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name); return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name); } private: // \brief Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
// compile time error, instead of converting the string to bool for the
// isSigned parameter.
Value *CreateIntCast(Value *, Type *, const char *) LLVM_DELETED_FUNCTION; public: Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (Constant *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateFPCast(VC, DestTy), Name); return Insert(CastInst::CreateFPCast(V, DestTy), Name); }
//===--------------------------------------------------------------------===//
// Instruction creation methods: Compare Instructions
//===--------------------------------------------------------------------===//
Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name); } Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name); } Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name); } Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name); } Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name); } Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name); } Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name); } Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name); } Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name); } Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name); }
Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name); } Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name); } Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name); } Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name); } Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name); } Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name); } Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name); } Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name); } Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name); } Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name); } Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name); } Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name); } Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name); } Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name); }
Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateICmp(P, LC, RC), Name); return Insert(new ICmpInst(P, LHS, RHS), Name); } Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "") { if (Constant *LC = dyn_cast<Constant>(LHS)) if (Constant *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFCmp(P, LC, RC), Name); return Insert(new FCmpInst(P, LHS, RHS), Name); }
//===--------------------------------------------------------------------===//
// Instruction creation methods: Other Instructions
//===--------------------------------------------------------------------===//
PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name = "") { return Insert(PHINode::Create(Ty, NumReservedValues), Name); }
CallInst *CreateCall(Value *Callee, const Twine &Name = "") { return Insert(CallInst::Create(Callee), Name); } CallInst *CreateCall(Value *Callee, Value *Arg, const Twine &Name = "") { return Insert(CallInst::Create(Callee, Arg), Name); } CallInst *CreateCall2(Value *Callee, Value *Arg1, Value *Arg2, const Twine &Name = "") { Value *Args[] = { Arg1, Arg2 }; return Insert(CallInst::Create(Callee, Args), Name); } CallInst *CreateCall3(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3, const Twine &Name = "") { Value *Args[] = { Arg1, Arg2, Arg3 }; return Insert(CallInst::Create(Callee, Args), Name); } CallInst *CreateCall4(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3, Value *Arg4, const Twine &Name = "") { Value *Args[] = { Arg1, Arg2, Arg3, Arg4 }; return Insert(CallInst::Create(Callee, Args), Name); } CallInst *CreateCall5(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3, Value *Arg4, Value *Arg5, const Twine &Name = "") { Value *Args[] = { Arg1, Arg2, Arg3, Arg4, Arg5 }; return Insert(CallInst::Create(Callee, Args), Name); }
CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args, const Twine &Name = "") { return Insert(CallInst::Create(Callee, Args), Name); }
Value *CreateSelect(Value *C, Value *True, Value *False, const Twine &Name = "") { if (Constant *CC = dyn_cast<Constant>(C)) if (Constant *TC = dyn_cast<Constant>(True)) if (Constant *FC = dyn_cast<Constant>(False)) return Insert(Folder.CreateSelect(CC, TC, FC), Name); return Insert(SelectInst::Create(C, True, False), Name); }
VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") { return Insert(new VAArgInst(List, Ty), Name); }
Value *CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name = "") { if (Constant *VC = dyn_cast<Constant>(Vec)) if (Constant *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateExtractElement(VC, IC), Name); return Insert(ExtractElementInst::Create(Vec, Idx), Name); }
Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx, const Twine &Name = "") { if (Constant *VC = dyn_cast<Constant>(Vec)) if (Constant *NC = dyn_cast<Constant>(NewElt)) if (Constant *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateInsertElement(VC, NC, IC), Name); return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name); }
Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name = "") { if (Constant *V1C = dyn_cast<Constant>(V1)) if (Constant *V2C = dyn_cast<Constant>(V2)) if (Constant *MC = dyn_cast<Constant>(Mask)) return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name); return Insert(new ShuffleVectorInst(V1, V2, Mask), Name); }
Value *CreateExtractValue(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &Name = "") { if (Constant *AggC = dyn_cast<Constant>(Agg)) return Insert(Folder.CreateExtractValue(AggC, Idxs), Name); return Insert(ExtractValueInst::Create(Agg, Idxs), Name); }
Value *CreateInsertValue(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &Name = "") { if (Constant *AggC = dyn_cast<Constant>(Agg)) if (Constant *ValC = dyn_cast<Constant>(Val)) return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name); return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name); }
LandingPadInst *CreateLandingPad(Type *Ty, Value *PersFn, unsigned NumClauses, const Twine &Name = "") { return Insert(LandingPadInst::Create(Ty, PersFn, NumClauses), Name); }
//===--------------------------------------------------------------------===//
// Utility creation methods
//===--------------------------------------------------------------------===//
/// \brief Return an i1 value testing if \p Arg is null.
Value *CreateIsNull(Value *Arg, const Twine &Name = "") { return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()), Name); }
/// \brief Return an i1 value testing if \p Arg is not null.
Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") { return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()), Name); }
/// \brief Return the i64 difference between two pointer values, dividing out
/// the size of the pointed-to objects.
///
/// This is intended to implement C-style pointer subtraction. As such, the
/// pointers must be appropriately aligned for their element types and
/// pointing into the same object.
Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") { assert(LHS->getType() == RHS->getType() && "Pointer subtraction operand types must match!"); PointerType *ArgType = cast<PointerType>(LHS->getType()); Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context)); Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context)); Value *Difference = CreateSub(LHS_int, RHS_int); return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ArgType->getElementType()), Name); }
/// \brief Return a vector value that contains \arg V broadcasted to \p
/// NumElts elements.
Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") { assert(NumElts > 0 && "Cannot splat to an empty vector!");
// First insert it into an undef vector so we can shuffle it.
Type *I32Ty = getInt32Ty(); Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts)); V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0), Name + ".splatinsert");
// Shuffle the value across the desired number of elements.
Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts)); return CreateShuffleVector(V, Undef, Zeros, Name + ".splat"); } };
}
#endif
|