|
|
//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Value class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_VALUE_H
#define LLVM_IR_VALUE_H
#include "llvm/IR/Use.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
class Constant; class Argument; class Instruction; class BasicBlock; class GlobalValue; class Function; class GlobalVariable; class GlobalAlias; class InlineAsm; class ValueSymbolTable; template<typename ValueTy> class StringMapEntry; typedef StringMapEntry<Value*> ValueName; class raw_ostream; class AssemblyAnnotationWriter; class ValueHandleBase; class LLVMContext; class Twine; class MDNode; class Type; class StringRef;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
/// This is a very important LLVM class. It is the base class of all values
/// computed by a program that may be used as operands to other values. Value is
/// the super class of other important classes such as Instruction and Function.
/// All Values have a Type. Type is not a subclass of Value. Some values can
/// have a name and they belong to some Module. Setting the name on the Value
/// automatically updates the module's symbol table.
///
/// Every value has a "use list" that keeps track of which other Values are
/// using this Value. A Value can also have an arbitrary number of ValueHandle
/// objects that watch it and listen to RAUW and Destroy events. See
/// llvm/Support/ValueHandle.h for details.
///
/// @brief LLVM Value Representation
class Value { const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
protected: /// SubclassOptionalData - This member is similar to SubclassData, however it
/// is for holding information which may be used to aid optimization, but
/// which may be cleared to zero without affecting conservative
/// interpretation.
unsigned char SubclassOptionalData : 7;
private: /// SubclassData - This member is defined by this class, but is not used for
/// anything. Subclasses can use it to hold whatever state they find useful.
/// This field is initialized to zero by the ctor.
unsigned short SubclassData;
Type *VTy; Use *UseList;
friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
friend class ValueHandleBase; ValueName *Name;
void operator=(const Value &) LLVM_DELETED_FUNCTION; Value(const Value &) LLVM_DELETED_FUNCTION;
protected: /// printCustom - Value subclasses can override this to implement custom
/// printing behavior.
virtual void printCustom(raw_ostream &O) const;
Value(Type *Ty, unsigned scid); public: virtual ~Value();
/// dump - Support for debugging, callable in GDB: V->dump()
//
void dump() const;
/// print - Implement operator<< on Value.
///
void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
/// All values are typed, get the type of this value.
///
Type *getType() const { return VTy; }
/// All values hold a context through their type.
LLVMContext &getContext() const;
// All values can potentially be named.
bool hasName() const { return Name != 0 && SubclassID != MDStringVal; } ValueName *getValueName() const { return Name; } void setValueName(ValueName *VN) { Name = VN; } /// getName() - Return a constant reference to the value's name. This is cheap
/// and guaranteed to return the same reference as long as the value is not
/// modified.
StringRef getName() const;
/// setName() - Change the name of the value, choosing a new unique name if
/// the provided name is taken.
///
/// \param Name The new name; or "" if the value's name should be removed.
void setName(const Twine &Name);
/// takeName - transfer the name from V to this value, setting V's name to
/// empty. It is an error to call V->takeName(V).
void takeName(Value *V);
/// replaceAllUsesWith - Go through the uses list for this definition and make
/// each use point to "V" instead of "this". After this completes, 'this's
/// use list is guaranteed to be empty.
///
void replaceAllUsesWith(Value *V);
//----------------------------------------------------------------------
// Methods for handling the chain of uses of this Value.
//
typedef value_use_iterator<User> use_iterator; typedef value_use_iterator<const User> const_use_iterator;
bool use_empty() const { return UseList == 0; } use_iterator use_begin() { return use_iterator(UseList); } const_use_iterator use_begin() const { return const_use_iterator(UseList); } use_iterator use_end() { return use_iterator(0); } const_use_iterator use_end() const { return const_use_iterator(0); } User *use_back() { return *use_begin(); } const User *use_back() const { return *use_begin(); }
/// hasOneUse - Return true if there is exactly one user of this value. This
/// is specialized because it is a common request and does not require
/// traversing the whole use list.
///
bool hasOneUse() const { const_use_iterator I = use_begin(), E = use_end(); if (I == E) return false; return ++I == E; }
/// hasNUses - Return true if this Value has exactly N users.
///
bool hasNUses(unsigned N) const;
/// hasNUsesOrMore - Return true if this value has N users or more. This is
/// logically equivalent to getNumUses() >= N.
///
bool hasNUsesOrMore(unsigned N) const;
bool isUsedInBasicBlock(const BasicBlock *BB) const;
/// getNumUses - This method computes the number of uses of this Value. This
/// is a linear time operation. Use hasOneUse, hasNUses, or hasNUsesOrMore
/// to check for specific values.
unsigned getNumUses() const;
/// addUse - This method should only be used by the Use class.
///
void addUse(Use &U) { U.addToList(&UseList); }
/// An enumeration for keeping track of the concrete subclass of Value that
/// is actually instantiated. Values of this enumeration are kept in the
/// Value classes SubclassID field. They are used for concrete type
/// identification.
enum ValueTy { ArgumentVal, // This is an instance of Argument
BasicBlockVal, // This is an instance of BasicBlock
FunctionVal, // This is an instance of Function
GlobalAliasVal, // This is an instance of GlobalAlias
GlobalVariableVal, // This is an instance of GlobalVariable
UndefValueVal, // This is an instance of UndefValue
BlockAddressVal, // This is an instance of BlockAddress
ConstantExprVal, // This is an instance of ConstantExpr
ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
ConstantDataArrayVal, // This is an instance of ConstantDataArray
ConstantDataVectorVal, // This is an instance of ConstantDataVector
ConstantIntVal, // This is an instance of ConstantInt
ConstantFPVal, // This is an instance of ConstantFP
ConstantArrayVal, // This is an instance of ConstantArray
ConstantStructVal, // This is an instance of ConstantStruct
ConstantVectorVal, // This is an instance of ConstantVector
ConstantPointerNullVal, // This is an instance of ConstantPointerNull
MDNodeVal, // This is an instance of MDNode
MDStringVal, // This is an instance of MDString
InlineAsmVal, // This is an instance of InlineAsm
PseudoSourceValueVal, // This is an instance of PseudoSourceValue
FixedStackPseudoSourceValueVal, // This is an instance of
// FixedStackPseudoSourceValue
InstructionVal, // This is an instance of Instruction
// Enum values starting at InstructionVal are used for Instructions;
// don't add new values here!
// Markers:
ConstantFirstVal = FunctionVal, ConstantLastVal = ConstantPointerNullVal };
/// getValueID - Return an ID for the concrete type of this object. This is
/// used to implement the classof checks. This should not be used for any
/// other purpose, as the values may change as LLVM evolves. Also, note that
/// for instructions, the Instruction's opcode is added to InstructionVal. So
/// this means three things:
/// # there is no value with code InstructionVal (no opcode==0).
/// # there are more possible values for the value type than in ValueTy enum.
/// # the InstructionVal enumerator must be the highest valued enumerator in
/// the ValueTy enum.
unsigned getValueID() const { return SubclassID; }
/// getRawSubclassOptionalData - Return the raw optional flags value
/// contained in this value. This should only be used when testing two
/// Values for equivalence.
unsigned getRawSubclassOptionalData() const { return SubclassOptionalData; }
/// clearSubclassOptionalData - Clear the optional flags contained in
/// this value.
void clearSubclassOptionalData() { SubclassOptionalData = 0; }
/// hasSameSubclassOptionalData - Test whether the optional flags contained
/// in this value are equal to the optional flags in the given value.
bool hasSameSubclassOptionalData(const Value *V) const { return SubclassOptionalData == V->SubclassOptionalData; }
/// intersectOptionalDataWith - Clear any optional flags in this value
/// that are not also set in the given value.
void intersectOptionalDataWith(const Value *V) { SubclassOptionalData &= V->SubclassOptionalData; }
/// hasValueHandle - Return true if there is a value handle associated with
/// this value.
bool hasValueHandle() const { return HasValueHandle; }
/// stripPointerCasts - This method strips off any unneeded pointer casts and
/// all-zero GEPs from the specified value, returning the original uncasted
/// value. If this is called on a non-pointer value, it returns 'this'.
Value *stripPointerCasts(); const Value *stripPointerCasts() const { return const_cast<Value*>(this)->stripPointerCasts(); }
/// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
/// all-constant GEPs from the specified value, returning the original
/// pointer value. If this is called on a non-pointer value, it returns
/// 'this'.
Value *stripInBoundsConstantOffsets(); const Value *stripInBoundsConstantOffsets() const { return const_cast<Value*>(this)->stripInBoundsConstantOffsets(); }
/// stripInBoundsOffsets - This method strips off unneeded pointer casts and
/// any in-bounds Offsets from the specified value, returning the original
/// pointer value. If this is called on a non-pointer value, it returns
/// 'this'.
Value *stripInBoundsOffsets(); const Value *stripInBoundsOffsets() const { return const_cast<Value*>(this)->stripInBoundsOffsets(); }
/// isDereferenceablePointer - Test if this value is always a pointer to
/// allocated and suitably aligned memory for a simple load or store.
bool isDereferenceablePointer() const; /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
/// return the value in the PHI node corresponding to PredBB. If not, return
/// ourself. This is useful if you want to know the value something has in a
/// predecessor block.
Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
const Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const{ return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB); } /// MaximumAlignment - This is the greatest alignment value supported by
/// load, store, and alloca instructions, and global values.
static const unsigned MaximumAlignment = 1u << 29; /// mutateType - Mutate the type of this Value to be of the specified type.
/// Note that this is an extremely dangerous operation which can create
/// completely invalid IR very easily. It is strongly recommended that you
/// recreate IR objects with the right types instead of mutating them in
/// place.
void mutateType(Type *Ty) { VTy = Ty; } protected: unsigned short getSubclassDataFromValue() const { return SubclassData; } void setValueSubclassData(unsigned short D) { SubclassData = D; } };
inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { V.print(OS); return OS; } void Use::set(Value *V) { if (Val) removeFromList(); Val = V; if (V) V->addUse(*this); }
// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> struct isa_impl<Constant, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::ConstantFirstVal && Val.getValueID() <= Value::ConstantLastVal; } };
template <> struct isa_impl<Argument, Value> { static inline bool doit (const Value &Val) { return Val.getValueID() == Value::ArgumentVal; } };
template <> struct isa_impl<InlineAsm, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::InlineAsmVal; } };
template <> struct isa_impl<Instruction, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::InstructionVal; } };
template <> struct isa_impl<BasicBlock, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::BasicBlockVal; } };
template <> struct isa_impl<Function, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::FunctionVal; } };
template <> struct isa_impl<GlobalVariable, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalVariableVal; } };
template <> struct isa_impl<GlobalAlias, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalAliasVal; } };
template <> struct isa_impl<GlobalValue, Value> { static inline bool doit(const Value &Val) { return isa<GlobalVariable>(Val) || isa<Function>(Val) || isa<GlobalAlias>(Val); } };
template <> struct isa_impl<MDNode, Value> { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::MDNodeVal; } }; // Value* is only 4-byte aligned.
template<> class PointerLikeTypeTraits<Value*> { typedef Value* PT; public: static inline void *getAsVoidPointer(PT P) { return P; } static inline PT getFromVoidPointer(void *P) { return static_cast<PT>(P); } enum { NumLowBitsAvailable = 2 }; };
} // End llvm namespace
#endif
|