|
|
//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MC_MCASSEMBLER_H
#define LLVM_MC_MCASSEMBLER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include <vector> // FIXME: Shouldn't be needed.
namespace llvm { class raw_ostream; class MCAsmLayout; class MCAssembler; class MCContext; class MCCodeEmitter; class MCExpr; class MCFragment; class MCObjectWriter; class MCSection; class MCSectionData; class MCSymbol; class MCSymbolData; class MCValue; class MCAsmBackend;
class MCFragment : public ilist_node<MCFragment> { friend class MCAsmLayout;
MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION; void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
public: enum FragmentType { FT_Align, FT_Data, FT_CompactEncodedInst, FT_Fill, FT_Relaxable, FT_Org, FT_Dwarf, FT_DwarfFrame, FT_LEB };
private: FragmentType Kind;
/// Parent - The data for the section this fragment is in.
MCSectionData *Parent;
/// Atom - The atom this fragment is in, as represented by it's defining
/// symbol. Atom's are only used by backends which set
/// \see MCAsmBackend::hasReliableSymbolDifference().
MCSymbolData *Atom;
/// @name Assembler Backend Data
/// @{
//
// FIXME: This could all be kept private to the assembler implementation.
/// Offset - The offset of this fragment in its section. This is ~0 until
/// initialized.
uint64_t Offset;
/// LayoutOrder - The layout order of this fragment.
unsigned LayoutOrder;
/// @}
protected: MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
public: // Only for sentinel.
MCFragment(); virtual ~MCFragment();
FragmentType getKind() const { return Kind; }
MCSectionData *getParent() const { return Parent; } void setParent(MCSectionData *Value) { Parent = Value; }
MCSymbolData *getAtom() const { return Atom; } void setAtom(MCSymbolData *Value) { Atom = Value; }
unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
/// \brief Does this fragment have instructions emitted into it? By default
/// this is false, but specific fragment types may set it to true.
virtual bool hasInstructions() const { return false; }
/// \brief Should this fragment be placed at the end of an aligned bundle?
virtual bool alignToBundleEnd() const { return false; } virtual void setAlignToBundleEnd(bool V) { }
/// \brief Get the padding size that must be inserted before this fragment.
/// Used for bundling. By default, no padding is inserted.
/// Note that padding size is restricted to 8 bits. This is an optimization
/// to reduce the amount of space used for each fragment. In practice, larger
/// padding should never be required.
virtual uint8_t getBundlePadding() const { return 0; }
/// \brief Set the padding size for this fragment. By default it's a no-op,
/// and only some fragments have a meaningful implementation.
virtual void setBundlePadding(uint8_t N) { }
void dump(); };
/// Interface implemented by fragments that contain encoded instructions and/or
/// data.
///
class MCEncodedFragment : public MCFragment { virtual void anchor();
uint8_t BundlePadding; public: MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = 0) : MCFragment(FType, SD), BundlePadding(0) { } virtual ~MCEncodedFragment();
virtual SmallVectorImpl<char> &getContents() = 0; virtual const SmallVectorImpl<char> &getContents() const = 0;
virtual uint8_t getBundlePadding() const { return BundlePadding; }
virtual void setBundlePadding(uint8_t N) { BundlePadding = N; }
static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); switch (Kind) { default: return false; case MCFragment::FT_Relaxable: case MCFragment::FT_CompactEncodedInst: case MCFragment::FT_Data: return true; } } };
/// Interface implemented by fragments that contain encoded instructions and/or
/// data and also have fixups registered.
///
class MCEncodedFragmentWithFixups : public MCEncodedFragment { virtual void anchor();
public: MCEncodedFragmentWithFixups(MCFragment::FragmentType FType, MCSectionData *SD = 0) : MCEncodedFragment(FType, SD) { }
virtual ~MCEncodedFragmentWithFixups();
typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator; typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
virtual SmallVectorImpl<MCFixup> &getFixups() = 0; virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
virtual fixup_iterator fixup_begin() = 0; virtual const_fixup_iterator fixup_begin() const = 0; virtual fixup_iterator fixup_end() = 0; virtual const_fixup_iterator fixup_end() const = 0;
static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data; } };
/// Fragment for data and encoded instructions.
///
class MCDataFragment : public MCEncodedFragmentWithFixups { virtual void anchor();
/// \brief Does this fragment contain encoded instructions anywhere in it?
bool HasInstructions;
/// \brief Should this fragment be aligned to the end of a bundle?
bool AlignToBundleEnd;
SmallVector<char, 32> Contents;
/// Fixups - The list of fixups in this fragment.
SmallVector<MCFixup, 4> Fixups; public: MCDataFragment(MCSectionData *SD = 0) : MCEncodedFragmentWithFixups(FT_Data, SD), HasInstructions(false), AlignToBundleEnd(false) { }
virtual SmallVectorImpl<char> &getContents() { return Contents; } virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
virtual bool hasInstructions() const { return HasInstructions; } virtual void setHasInstructions(bool V) { HasInstructions = V; }
virtual bool alignToBundleEnd() const { return AlignToBundleEnd; } virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
fixup_iterator fixup_begin() { return Fixups.begin(); } const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
fixup_iterator fixup_end() {return Fixups.end();} const_fixup_iterator fixup_end() const {return Fixups.end();}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Data; } };
/// This is a compact (memory-size-wise) fragment for holding an encoded
/// instruction (non-relaxable) that has no fixups registered. When applicable,
/// it can be used instead of MCDataFragment and lead to lower memory
/// consumption.
///
class MCCompactEncodedInstFragment : public MCEncodedFragment { virtual void anchor();
/// \brief Should this fragment be aligned to the end of a bundle?
bool AlignToBundleEnd;
SmallVector<char, 4> Contents; public: MCCompactEncodedInstFragment(MCSectionData *SD = 0) : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false) { }
virtual bool hasInstructions() const { return true; }
virtual SmallVectorImpl<char> &getContents() { return Contents; } virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
virtual bool alignToBundleEnd() const { return AlignToBundleEnd; } virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_CompactEncodedInst; } };
/// A relaxable fragment holds on to its MCInst, since it may need to be
/// relaxed during the assembler layout and relaxation stage.
///
class MCRelaxableFragment : public MCEncodedFragmentWithFixups { virtual void anchor();
/// Inst - The instruction this is a fragment for.
MCInst Inst;
/// Contents - Binary data for the currently encoded instruction.
SmallVector<char, 8> Contents;
/// Fixups - The list of fixups in this fragment.
SmallVector<MCFixup, 1> Fixups;
public: MCRelaxableFragment(const MCInst &_Inst, MCSectionData *SD = 0) : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(_Inst) { }
virtual SmallVectorImpl<char> &getContents() { return Contents; } virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
const MCInst &getInst() const { return Inst; } void setInst(const MCInst& Value) { Inst = Value; }
SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
virtual bool hasInstructions() const { return true; }
fixup_iterator fixup_begin() { return Fixups.begin(); } const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
fixup_iterator fixup_end() {return Fixups.end();} const_fixup_iterator fixup_end() const {return Fixups.end();}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Relaxable; } };
class MCAlignFragment : public MCFragment { virtual void anchor();
/// Alignment - The alignment to ensure, in bytes.
unsigned Alignment;
/// Value - Value to use for filling padding bytes.
int64_t Value;
/// ValueSize - The size of the integer (in bytes) of \p Value.
unsigned ValueSize;
/// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
/// cannot be satisfied in this width then this fragment is ignored.
unsigned MaxBytesToEmit;
/// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
/// of using the provided value. The exact interpretation of this flag is
/// target dependent.
bool EmitNops : 1;
public: MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize, unsigned _MaxBytesToEmit, MCSectionData *SD = 0) : MCFragment(FT_Align, SD), Alignment(_Alignment), Value(_Value),ValueSize(_ValueSize), MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
/// @name Accessors
/// @{
unsigned getAlignment() const { return Alignment; }
int64_t getValue() const { return Value; }
unsigned getValueSize() const { return ValueSize; }
unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
bool hasEmitNops() const { return EmitNops; } void setEmitNops(bool Value) { EmitNops = Value; }
/// @}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Align; } };
class MCFillFragment : public MCFragment { virtual void anchor();
/// Value - Value to use for filling bytes.
int64_t Value;
/// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
/// this is a virtual fill fragment.
unsigned ValueSize;
/// Size - The number of bytes to insert.
uint64_t Size;
public: MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size, MCSectionData *SD = 0) : MCFragment(FT_Fill, SD), Value(_Value), ValueSize(_ValueSize), Size(_Size) { assert((!ValueSize || (Size % ValueSize) == 0) && "Fill size must be a multiple of the value size!"); }
/// @name Accessors
/// @{
int64_t getValue() const { return Value; }
unsigned getValueSize() const { return ValueSize; }
uint64_t getSize() const { return Size; }
/// @}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Fill; } };
class MCOrgFragment : public MCFragment { virtual void anchor();
/// Offset - The offset this fragment should start at.
const MCExpr *Offset;
/// Value - Value to use for filling bytes.
int8_t Value;
public: MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0) : MCFragment(FT_Org, SD), Offset(&_Offset), Value(_Value) {}
/// @name Accessors
/// @{
const MCExpr &getOffset() const { return *Offset; }
uint8_t getValue() const { return Value; }
/// @}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Org; } };
class MCLEBFragment : public MCFragment { virtual void anchor();
/// Value - The value this fragment should contain.
const MCExpr *Value;
/// IsSigned - True if this is a sleb128, false if uleb128.
bool IsSigned;
SmallString<8> Contents; public: MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD = 0) : MCFragment(FT_LEB, SD), Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
/// @name Accessors
/// @{
const MCExpr &getValue() const { return *Value; }
bool isSigned() const { return IsSigned; }
SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; }
/// @}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_LEB; } };
class MCDwarfLineAddrFragment : public MCFragment { virtual void anchor();
/// LineDelta - the value of the difference between the two line numbers
/// between two .loc dwarf directives.
int64_t LineDelta;
/// AddrDelta - The expression for the difference of the two symbols that
/// make up the address delta between two .loc dwarf directives.
const MCExpr *AddrDelta;
SmallString<8> Contents;
public: MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta, MCSectionData *SD = 0) : MCFragment(FT_Dwarf, SD), LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
/// @name Accessors
/// @{
int64_t getLineDelta() const { return LineDelta; }
const MCExpr &getAddrDelta() const { return *AddrDelta; }
SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; }
/// @}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Dwarf; } };
class MCDwarfCallFrameFragment : public MCFragment { virtual void anchor();
/// AddrDelta - The expression for the difference of the two symbols that
/// make up the address delta between two .cfi_* dwarf directives.
const MCExpr *AddrDelta;
SmallString<8> Contents;
public: MCDwarfCallFrameFragment(const MCExpr &_AddrDelta, MCSectionData *SD = 0) : MCFragment(FT_DwarfFrame, SD), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
/// @name Accessors
/// @{
const MCExpr &getAddrDelta() const { return *AddrDelta; }
SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; }
/// @}
static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_DwarfFrame; } };
// FIXME: Should this be a separate class, or just merged into MCSection? Since
// we anticipate the fast path being through an MCAssembler, the only reason to
// keep it out is for API abstraction.
class MCSectionData : public ilist_node<MCSectionData> { friend class MCAsmLayout;
MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION; void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
public: typedef iplist<MCFragment> FragmentListType;
typedef FragmentListType::const_iterator const_iterator; typedef FragmentListType::iterator iterator;
typedef FragmentListType::const_reverse_iterator const_reverse_iterator; typedef FragmentListType::reverse_iterator reverse_iterator;
/// \brief Express the state of bundle locked groups while emitting code.
enum BundleLockStateType { NotBundleLocked, BundleLocked, BundleLockedAlignToEnd }; private: FragmentListType Fragments; const MCSection *Section;
/// Ordinal - The section index in the assemblers section list.
unsigned Ordinal;
/// LayoutOrder - The index of this section in the layout order.
unsigned LayoutOrder;
/// Alignment - The maximum alignment seen in this section.
unsigned Alignment;
/// \brief Keeping track of bundle-locked state.
BundleLockStateType BundleLockState;
/// \brief We've seen a bundle_lock directive but not its first instruction
/// yet.
bool BundleGroupBeforeFirstInst;
/// @name Assembler Backend Data
/// @{
//
// FIXME: This could all be kept private to the assembler implementation.
/// HasInstructions - Whether this section has had instructions emitted into
/// it.
unsigned HasInstructions : 1;
/// Mapping from subsection number to insertion point for subsection numbers
/// below that number.
SmallVector<std::pair<unsigned, MCFragment *>, 1> SubsectionFragmentMap;
/// @}
public: // Only for use as sentinel.
MCSectionData(); MCSectionData(const MCSection &Section, MCAssembler *A = 0);
const MCSection &getSection() const { return *Section; }
unsigned getAlignment() const { return Alignment; } void setAlignment(unsigned Value) { Alignment = Value; }
bool hasInstructions() const { return HasInstructions; } void setHasInstructions(bool Value) { HasInstructions = Value; }
unsigned getOrdinal() const { return Ordinal; } void setOrdinal(unsigned Value) { Ordinal = Value; }
unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
/// @name Fragment Access
/// @{
const FragmentListType &getFragmentList() const { return Fragments; } FragmentListType &getFragmentList() { return Fragments; }
iterator begin() { return Fragments.begin(); } const_iterator begin() const { return Fragments.begin(); }
iterator end() { return Fragments.end(); } const_iterator end() const { return Fragments.end(); }
reverse_iterator rbegin() { return Fragments.rbegin(); } const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
reverse_iterator rend() { return Fragments.rend(); } const_reverse_iterator rend() const { return Fragments.rend(); }
size_t size() const { return Fragments.size(); }
bool empty() const { return Fragments.empty(); }
iterator getSubsectionInsertionPoint(unsigned Subsection);
bool isBundleLocked() const { return BundleLockState != NotBundleLocked; }
BundleLockStateType getBundleLockState() const { return BundleLockState; }
void setBundleLockState(BundleLockStateType NewState) { BundleLockState = NewState; }
bool isBundleGroupBeforeFirstInst() const { return BundleGroupBeforeFirstInst; }
void setBundleGroupBeforeFirstInst(bool IsFirst) { BundleGroupBeforeFirstInst = IsFirst; }
void dump();
/// @}
};
// FIXME: Same concerns as with SectionData.
class MCSymbolData : public ilist_node<MCSymbolData> { public: const MCSymbol *Symbol;
/// Fragment - The fragment this symbol's value is relative to, if any.
MCFragment *Fragment;
/// Offset - The offset to apply to the fragment address to form this symbol's
/// value.
uint64_t Offset;
/// IsExternal - True if this symbol is visible outside this translation
/// unit.
unsigned IsExternal : 1;
/// IsPrivateExtern - True if this symbol is private extern.
unsigned IsPrivateExtern : 1;
/// CommonSize - The size of the symbol, if it is 'common', or 0.
//
// FIXME: Pack this in with other fields? We could put it in offset, since a
// common symbol can never get a definition.
uint64_t CommonSize;
/// SymbolSize - An expression describing how to calculate the size of
/// a symbol. If a symbol has no size this field will be NULL.
const MCExpr *SymbolSize;
/// CommonAlign - The alignment of the symbol, if it is 'common'.
//
// FIXME: Pack this in with other fields?
unsigned CommonAlign;
/// Flags - The Flags field is used by object file implementations to store
/// additional per symbol information which is not easily classified.
uint32_t Flags;
/// Index - Index field, for use by the object file implementation.
uint64_t Index;
public: // Only for use as sentinel.
MCSymbolData(); MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset, MCAssembler *A = 0);
/// @name Accessors
/// @{
const MCSymbol &getSymbol() const { return *Symbol; }
MCFragment *getFragment() const { return Fragment; } void setFragment(MCFragment *Value) { Fragment = Value; }
uint64_t getOffset() const { return Offset; } void setOffset(uint64_t Value) { Offset = Value; }
/// @}
/// @name Symbol Attributes
/// @{
bool isExternal() const { return IsExternal; } void setExternal(bool Value) { IsExternal = Value; }
bool isPrivateExtern() const { return IsPrivateExtern; } void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
/// isCommon - Is this a 'common' symbol.
bool isCommon() const { return CommonSize != 0; }
/// setCommon - Mark this symbol as being 'common'.
///
/// \param Size - The size of the symbol.
/// \param Align - The alignment of the symbol.
void setCommon(uint64_t Size, unsigned Align) { CommonSize = Size; CommonAlign = Align; }
/// getCommonSize - Return the size of a 'common' symbol.
uint64_t getCommonSize() const { assert(isCommon() && "Not a 'common' symbol!"); return CommonSize; }
void setSize(const MCExpr *SS) { SymbolSize = SS; }
const MCExpr *getSize() const { return SymbolSize; }
/// getCommonAlignment - Return the alignment of a 'common' symbol.
unsigned getCommonAlignment() const { assert(isCommon() && "Not a 'common' symbol!"); return CommonAlign; }
/// getFlags - Get the (implementation defined) symbol flags.
uint32_t getFlags() const { return Flags; }
/// setFlags - Set the (implementation defined) symbol flags.
void setFlags(uint32_t Value) { Flags = Value; }
/// modifyFlags - Modify the flags via a mask
void modifyFlags(uint32_t Value, uint32_t Mask) { Flags = (Flags & ~Mask) | Value; }
/// getIndex - Get the (implementation defined) index.
uint64_t getIndex() const { return Index; }
/// setIndex - Set the (implementation defined) index.
void setIndex(uint64_t Value) { Index = Value; }
/// @}
void dump(); };
// FIXME: This really doesn't belong here. See comments below.
struct IndirectSymbolData { MCSymbol *Symbol; MCSectionData *SectionData; };
// FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
// to one another.
struct DataRegionData { // This enum should be kept in sync w/ the mach-o definition in
// llvm/Object/MachOFormat.h.
enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind; MCSymbol *Start; MCSymbol *End; };
class MCAssembler { friend class MCAsmLayout;
public: typedef iplist<MCSectionData> SectionDataListType; typedef iplist<MCSymbolData> SymbolDataListType;
typedef SectionDataListType::const_iterator const_iterator; typedef SectionDataListType::iterator iterator;
typedef SymbolDataListType::const_iterator const_symbol_iterator; typedef SymbolDataListType::iterator symbol_iterator;
typedef std::vector<IndirectSymbolData>::const_iterator const_indirect_symbol_iterator; typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
typedef std::vector<DataRegionData>::const_iterator const_data_region_iterator; typedef std::vector<DataRegionData>::iterator data_region_iterator;
private: MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION; void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
MCContext &Context;
MCAsmBackend &Backend;
MCCodeEmitter &Emitter;
MCObjectWriter &Writer;
raw_ostream &OS;
iplist<MCSectionData> Sections;
iplist<MCSymbolData> Symbols;
/// The map of sections to their associated assembler backend data.
//
// FIXME: Avoid this indirection?
DenseMap<const MCSection*, MCSectionData*> SectionMap;
/// The map of symbols to their associated assembler backend data.
//
// FIXME: Avoid this indirection?
DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
std::vector<IndirectSymbolData> IndirectSymbols;
std::vector<DataRegionData> DataRegions;
/// The list of linker options to propagate into the object file.
std::vector<std::vector<std::string> > LinkerOptions;
/// The set of function symbols for which a .thumb_func directive has
/// been seen.
//
// FIXME: We really would like this in target specific code rather than
// here. Maybe when the relocation stuff moves to target specific,
// this can go with it? The streamer would need some target specific
// refactoring too.
SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
/// \brief The bundle alignment size currently set in the assembler.
///
/// By default it's 0, which means bundling is disabled.
unsigned BundleAlignSize;
unsigned RelaxAll : 1; unsigned NoExecStack : 1; unsigned SubsectionsViaSymbols : 1;
/// ELF specific e_header flags
// It would be good if there were an MCELFAssembler class to hold this.
// ELF header flags are used both by the integrated and standalone assemblers.
// Access to the flags is necessary in cases where assembler directives affect
// which flags to be set.
unsigned ELFHeaderEFlags; private: /// Evaluate a fixup to a relocatable expression and the value which should be
/// placed into the fixup.
///
/// \param Layout The layout to use for evaluation.
/// \param Fixup The fixup to evaluate.
/// \param DF The fragment the fixup is inside.
/// \param Target [out] On return, the relocatable expression the fixup
/// evaluates to.
/// \param Value [out] On return, the value of the fixup as currently laid
/// out.
/// \return Whether the fixup value was fully resolved. This is true if the
/// \p Value result is fixed, otherwise the value may change due to
/// relocation.
bool evaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, MCValue &Target, uint64_t &Value) const;
/// Check whether a fixup can be satisfied, or whether it needs to be relaxed
/// (increased in size, in order to hold its value correctly).
bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const;
/// Check whether the given fragment needs relaxation.
bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF, const MCAsmLayout &Layout) const;
/// \brief Perform one layout iteration and return true if any offsets
/// were adjusted.
bool layoutOnce(MCAsmLayout &Layout);
/// \brief Perform one layout iteration of the given section and return true
/// if any offsets were adjusted.
bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF); bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout, MCDwarfCallFrameFragment &DF);
/// finishLayout - Finalize a layout, including fragment lowering.
void finishLayout(MCAsmLayout &Layout);
uint64_t handleFixup(const MCAsmLayout &Layout, MCFragment &F, const MCFixup &Fixup);
public: /// Compute the effective fragment size assuming it is laid out at the given
/// \p SectionAddress and \p FragmentOffset.
uint64_t computeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const;
/// Find the symbol which defines the atom containing the given symbol, or
/// null if there is no such symbol.
const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
/// Check whether a particular symbol is visible to the linker and is required
/// in the symbol table, or whether it can be discarded by the assembler. This
/// also effects whether the assembler treats the label as potentially
/// defining a separate atom.
bool isSymbolLinkerVisible(const MCSymbol &SD) const;
/// Emit the section contents using the given object writer.
void writeSectionData(const MCSectionData *Section, const MCAsmLayout &Layout) const;
/// Check whether a given symbol has been flagged with .thumb_func.
bool isThumbFunc(const MCSymbol *Func) const { return ThumbFuncs.count(Func); }
/// Flag a function symbol as the target of a .thumb_func directive.
void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
/// ELF e_header flags
unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;} void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
public: /// Construct a new assembler instance.
///
/// \param OS The stream to output to.
//
// FIXME: How are we going to parameterize this? Two obvious options are stay
// concrete and require clients to pass in a target like object. The other
// option is to make this abstract, and have targets provide concrete
// implementations as we do with AsmParser.
MCAssembler(MCContext &Context_, MCAsmBackend &Backend_, MCCodeEmitter &Emitter_, MCObjectWriter &Writer_, raw_ostream &OS); ~MCAssembler();
/// Reuse an assembler instance
///
void reset();
MCContext &getContext() const { return Context; }
MCAsmBackend &getBackend() const { return Backend; }
MCCodeEmitter &getEmitter() const { return Emitter; }
MCObjectWriter &getWriter() const { return Writer; }
/// Finish - Do final processing and write the object to the output stream.
/// \p Writer is used for custom object writer (as the MCJIT does),
/// if not specified it is automatically created from backend.
void Finish();
// FIXME: This does not belong here.
bool getSubsectionsViaSymbols() const { return SubsectionsViaSymbols; } void setSubsectionsViaSymbols(bool Value) { SubsectionsViaSymbols = Value; }
bool getRelaxAll() const { return RelaxAll; } void setRelaxAll(bool Value) { RelaxAll = Value; }
bool getNoExecStack() const { return NoExecStack; } void setNoExecStack(bool Value) { NoExecStack = Value; }
bool isBundlingEnabled() const { return BundleAlignSize != 0; }
unsigned getBundleAlignSize() const { return BundleAlignSize; }
void setBundleAlignSize(unsigned Size) { assert((Size == 0 || !(Size & (Size - 1))) && "Expect a power-of-two bundle align size"); BundleAlignSize = Size; }
/// @name Section List Access
/// @{
const SectionDataListType &getSectionList() const { return Sections; } SectionDataListType &getSectionList() { return Sections; }
iterator begin() { return Sections.begin(); } const_iterator begin() const { return Sections.begin(); }
iterator end() { return Sections.end(); } const_iterator end() const { return Sections.end(); }
size_t size() const { return Sections.size(); }
/// @}
/// @name Symbol List Access
/// @{
const SymbolDataListType &getSymbolList() const { return Symbols; } SymbolDataListType &getSymbolList() { return Symbols; }
symbol_iterator symbol_begin() { return Symbols.begin(); } const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
symbol_iterator symbol_end() { return Symbols.end(); } const_symbol_iterator symbol_end() const { return Symbols.end(); }
size_t symbol_size() const { return Symbols.size(); }
/// @}
/// @name Indirect Symbol List Access
/// @{
// FIXME: This is a total hack, this should not be here. Once things are
// factored so that the streamer has direct access to the .o writer, it can
// disappear.
std::vector<IndirectSymbolData> &getIndirectSymbols() { return IndirectSymbols; }
indirect_symbol_iterator indirect_symbol_begin() { return IndirectSymbols.begin(); } const_indirect_symbol_iterator indirect_symbol_begin() const { return IndirectSymbols.begin(); }
indirect_symbol_iterator indirect_symbol_end() { return IndirectSymbols.end(); } const_indirect_symbol_iterator indirect_symbol_end() const { return IndirectSymbols.end(); }
size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
/// @}
/// @name Linker Option List Access
/// @{
std::vector<std::vector<std::string> > &getLinkerOptions() { return LinkerOptions; }
/// @}
/// @name Data Region List Access
/// @{
// FIXME: This is a total hack, this should not be here. Once things are
// factored so that the streamer has direct access to the .o writer, it can
// disappear.
std::vector<DataRegionData> &getDataRegions() { return DataRegions; }
data_region_iterator data_region_begin() { return DataRegions.begin(); } const_data_region_iterator data_region_begin() const { return DataRegions.begin(); }
data_region_iterator data_region_end() { return DataRegions.end(); } const_data_region_iterator data_region_end() const { return DataRegions.end(); }
size_t data_region_size() const { return DataRegions.size(); }
/// @}
/// @name Backend Data Access
/// @{
MCSectionData &getSectionData(const MCSection &Section) const { MCSectionData *Entry = SectionMap.lookup(&Section); assert(Entry && "Missing section data!"); return *Entry; }
MCSectionData &getOrCreateSectionData(const MCSection &Section, bool *Created = 0) { MCSectionData *&Entry = SectionMap[&Section];
if (Created) *Created = !Entry; if (!Entry) Entry = new MCSectionData(Section, this);
return *Entry; }
MCSymbolData &getSymbolData(const MCSymbol &Symbol) const { MCSymbolData *Entry = SymbolMap.lookup(&Symbol); assert(Entry && "Missing symbol data!"); return *Entry; }
MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol, bool *Created = 0) { MCSymbolData *&Entry = SymbolMap[&Symbol];
if (Created) *Created = !Entry; if (!Entry) Entry = new MCSymbolData(Symbol, 0, 0, this);
return *Entry; }
/// @}
void dump(); };
} // end namespace llvm
#endif
|