|
|
//===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines specializations of GraphTraits that allow Function and
// BasicBlock graphs to be treated as proper graphs for generic algorithms.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CFG_H
#define LLVM_SUPPORT_CFG_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// BasicBlock pred_iterator definition
//===----------------------------------------------------------------------===//
template <class Ptr, class USE_iterator> // Predecessor Iterator
class PredIterator : public std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*> { typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*> super; typedef PredIterator<Ptr, USE_iterator> Self; USE_iterator It;
inline void advancePastNonTerminators() { // Loop to ignore non terminator uses (for example BlockAddresses).
while (!It.atEnd() && !isa<TerminatorInst>(*It)) ++It; }
public: typedef typename super::pointer pointer; typedef typename super::reference reference;
PredIterator() {} explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) { advancePastNonTerminators(); } inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
inline bool operator==(const Self& x) const { return It == x.It; } inline bool operator!=(const Self& x) const { return !operator==(x); }
inline reference operator*() const { assert(!It.atEnd() && "pred_iterator out of range!"); return cast<TerminatorInst>(*It)->getParent(); } inline pointer *operator->() const { return &operator*(); }
inline Self& operator++() { // Preincrement
assert(!It.atEnd() && "pred_iterator out of range!"); ++It; advancePastNonTerminators(); return *this; }
inline Self operator++(int) { // Postincrement
Self tmp = *this; ++*this; return tmp; }
/// getOperandNo - Return the operand number in the predecessor's
/// terminator of the successor.
unsigned getOperandNo() const { return It.getOperandNo(); }
/// getUse - Return the operand Use in the predecessor's terminator
/// of the successor.
Use &getUse() const { return It.getUse(); } };
typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator; typedef PredIterator<const BasicBlock, Value::const_use_iterator> const_pred_iterator;
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } inline const_pred_iterator pred_begin(const BasicBlock *BB) { return const_pred_iterator(BB); } inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} inline const_pred_iterator pred_end(const BasicBlock *BB) { return const_pred_iterator(BB, true); }
//===----------------------------------------------------------------------===//
// BasicBlock succ_iterator definition
//===----------------------------------------------------------------------===//
template <class Term_, class BB_> // Successor Iterator
class SuccIterator : public std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t, BB_*, BB_*> { const Term_ Term; unsigned idx; typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t, BB_*, BB_*> super; typedef SuccIterator<Term_, BB_> Self;
inline bool index_is_valid(int idx) { return idx >= 0 && (unsigned) idx < Term->getNumSuccessors(); }
public: typedef typename super::pointer pointer; typedef typename super::reference reference; // TODO: This can be random access iterator, only operator[] missing.
explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
} inline SuccIterator(Term_ T, bool) // end iterator
: Term(T) { if (Term) idx = Term->getNumSuccessors(); else // Term == NULL happens, if a basic block is not fully constructed and
// consequently getTerminator() returns NULL. In this case we construct a
// SuccIterator which describes a basic block that has zero successors.
// Defining SuccIterator for incomplete and malformed CFGs is especially
// useful for debugging.
idx = 0; }
inline const Self &operator=(const Self &I) { assert(Term == I.Term &&"Cannot assign iterators to two different blocks!"); idx = I.idx; return *this; }
/// getSuccessorIndex - This is used to interface between code that wants to
/// operate on terminator instructions directly.
unsigned getSuccessorIndex() const { return idx; }
inline bool operator==(const Self& x) const { return idx == x.idx; } inline bool operator!=(const Self& x) const { return !operator==(x); }
inline reference operator*() const { return Term->getSuccessor(idx); } inline pointer operator->() const { return operator*(); }
inline Self& operator++() { ++idx; return *this; } // Preincrement
inline Self operator++(int) { // Postincrement
Self tmp = *this; ++*this; return tmp; }
inline Self& operator--() { --idx; return *this; } // Predecrement
inline Self operator--(int) { // Postdecrement
Self tmp = *this; --*this; return tmp; }
inline bool operator<(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx < x.idx; }
inline bool operator<=(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx <= x.idx; } inline bool operator>=(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx >= x.idx; }
inline bool operator>(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx > x.idx; }
inline Self& operator+=(int Right) { unsigned new_idx = idx + Right; assert(index_is_valid(new_idx) && "Iterator index out of bound"); idx = new_idx; return *this; }
inline Self operator+(int Right) { Self tmp = *this; tmp += Right; return tmp; }
inline Self& operator-=(int Right) { return operator+=(-Right); }
inline Self operator-(int Right) { return operator+(-Right); }
inline int operator-(const Self& x) { assert(Term == x.Term && "Cannot work on iterators of different blocks!"); int distance = idx - x.idx; return distance; }
// This works for read access, however write access is difficult as changes
// to Term are only possible with Term->setSuccessor(idx). Pointers that can
// be modified are not available.
//
// inline pointer operator[](int offset) {
// Self tmp = *this;
// tmp += offset;
// return tmp.operator*();
// }
/// Get the source BB of this iterator.
inline BB_ *getSource() { assert(Term && "Source not available, if basic block was malformed"); return Term->getParent(); } };
typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator; typedef SuccIterator<const TerminatorInst*, const BasicBlock> succ_const_iterator;
inline succ_iterator succ_begin(BasicBlock *BB) { return succ_iterator(BB->getTerminator()); } inline succ_const_iterator succ_begin(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator()); } inline succ_iterator succ_end(BasicBlock *BB) { return succ_iterator(BB->getTerminator(), true); } inline succ_const_iterator succ_end(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator(), true); }
//===--------------------------------------------------------------------===//
// GraphTraits specializations for basic block graphs (CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks...
template <> struct GraphTraits<BasicBlock*> { typedef BasicBlock NodeType; typedef succ_iterator ChildIteratorType;
static NodeType *getEntryNode(BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } };
template <> struct GraphTraits<const BasicBlock*> { typedef const BasicBlock NodeType; typedef succ_const_iterator ChildIteratorType;
static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } };
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<BasicBlock*> > { typedef BasicBlock NodeType; typedef pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } };
template <> struct GraphTraits<Inverse<const BasicBlock*> > { typedef const BasicBlock NodeType; typedef const_pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse<const BasicBlock*> G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } };
//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the function.
//
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> { static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
typedef Function::iterator nodes_iterator; static nodes_iterator nodes_begin(Function *F) { return F->begin(); } static nodes_iterator nodes_end (Function *F) { return F->end(); } static unsigned size (Function *F) { return F->size(); } }; template <> struct GraphTraits<const Function*> : public GraphTraits<const BasicBlock*> { static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
typedef Function::const_iterator nodes_iterator; static nodes_iterator nodes_begin(const Function *F) { return F->begin(); } static nodes_iterator nodes_end (const Function *F) { return F->end(); } static unsigned size (const Function *F) { return F->size(); } };
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Function*> > : public GraphTraits<Inverse<BasicBlock*> > { static NodeType *getEntryNode(Inverse<Function*> G) { return &G.Graph->getEntryBlock(); } }; template <> struct GraphTraits<Inverse<const Function*> > : public GraphTraits<Inverse<const BasicBlock*> > { static NodeType *getEntryNode(Inverse<const Function *> G) { return &G.Graph->getEntryBlock(); } };
} // End llvm namespace
#endif
|