Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1469 lines
57 KiB

  1. //===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This header contains common, non-processor-specific data structures and
  11. // constants for the ELF file format.
  12. //
  13. // The details of the ELF32 bits in this file are largely based on the Tool
  14. // Interface Standard (TIS) Executable and Linking Format (ELF) Specification
  15. // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
  16. // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
  17. //
  18. //===----------------------------------------------------------------------===//
  19. #ifndef LLVM_SUPPORT_ELF_H
  20. #define LLVM_SUPPORT_ELF_H
  21. #include "llvm/Support/DataTypes.h"
  22. #include <cstring>
  23. namespace llvm {
  24. namespace ELF {
  25. typedef uint32_t Elf32_Addr; // Program address
  26. typedef uint32_t Elf32_Off; // File offset
  27. typedef uint16_t Elf32_Half;
  28. typedef uint32_t Elf32_Word;
  29. typedef int32_t Elf32_Sword;
  30. typedef uint64_t Elf64_Addr;
  31. typedef uint64_t Elf64_Off;
  32. typedef uint16_t Elf64_Half;
  33. typedef uint32_t Elf64_Word;
  34. typedef int32_t Elf64_Sword;
  35. typedef uint64_t Elf64_Xword;
  36. typedef int64_t Elf64_Sxword;
  37. // Object file magic string.
  38. static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
  39. // e_ident size and indices.
  40. enum {
  41. EI_MAG0 = 0, // File identification index.
  42. EI_MAG1 = 1, // File identification index.
  43. EI_MAG2 = 2, // File identification index.
  44. EI_MAG3 = 3, // File identification index.
  45. EI_CLASS = 4, // File class.
  46. EI_DATA = 5, // Data encoding.
  47. EI_VERSION = 6, // File version.
  48. EI_OSABI = 7, // OS/ABI identification.
  49. EI_ABIVERSION = 8, // ABI version.
  50. EI_PAD = 9, // Start of padding bytes.
  51. EI_NIDENT = 16 // Number of bytes in e_ident.
  52. };
  53. struct Elf32_Ehdr {
  54. unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
  55. Elf32_Half e_type; // Type of file (see ET_* below)
  56. Elf32_Half e_machine; // Required architecture for this file (see EM_*)
  57. Elf32_Word e_version; // Must be equal to 1
  58. Elf32_Addr e_entry; // Address to jump to in order to start program
  59. Elf32_Off e_phoff; // Program header table's file offset, in bytes
  60. Elf32_Off e_shoff; // Section header table's file offset, in bytes
  61. Elf32_Word e_flags; // Processor-specific flags
  62. Elf32_Half e_ehsize; // Size of ELF header, in bytes
  63. Elf32_Half e_phentsize; // Size of an entry in the program header table
  64. Elf32_Half e_phnum; // Number of entries in the program header table
  65. Elf32_Half e_shentsize; // Size of an entry in the section header table
  66. Elf32_Half e_shnum; // Number of entries in the section header table
  67. Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
  68. bool checkMagic() const {
  69. return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
  70. }
  71. unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
  72. unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
  73. };
  74. // 64-bit ELF header. Fields are the same as for ELF32, but with different
  75. // types (see above).
  76. struct Elf64_Ehdr {
  77. unsigned char e_ident[EI_NIDENT];
  78. Elf64_Half e_type;
  79. Elf64_Half e_machine;
  80. Elf64_Word e_version;
  81. Elf64_Addr e_entry;
  82. Elf64_Off e_phoff;
  83. Elf64_Off e_shoff;
  84. Elf64_Word e_flags;
  85. Elf64_Half e_ehsize;
  86. Elf64_Half e_phentsize;
  87. Elf64_Half e_phnum;
  88. Elf64_Half e_shentsize;
  89. Elf64_Half e_shnum;
  90. Elf64_Half e_shstrndx;
  91. bool checkMagic() const {
  92. return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
  93. }
  94. unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
  95. unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
  96. };
  97. // File types
  98. enum {
  99. ET_NONE = 0, // No file type
  100. ET_REL = 1, // Relocatable file
  101. ET_EXEC = 2, // Executable file
  102. ET_DYN = 3, // Shared object file
  103. ET_CORE = 4, // Core file
  104. ET_LOPROC = 0xff00, // Beginning of processor-specific codes
  105. ET_HIPROC = 0xffff // Processor-specific
  106. };
  107. // Versioning
  108. enum {
  109. EV_NONE = 0,
  110. EV_CURRENT = 1
  111. };
  112. // Machine architectures
  113. enum {
  114. EM_NONE = 0, // No machine
  115. EM_M32 = 1, // AT&T WE 32100
  116. EM_SPARC = 2, // SPARC
  117. EM_386 = 3, // Intel 386
  118. EM_68K = 4, // Motorola 68000
  119. EM_88K = 5, // Motorola 88000
  120. EM_486 = 6, // Intel 486 (deprecated)
  121. EM_860 = 7, // Intel 80860
  122. EM_MIPS = 8, // MIPS R3000
  123. EM_S370 = 9, // IBM System/370
  124. EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
  125. EM_PARISC = 15, // Hewlett-Packard PA-RISC
  126. EM_VPP500 = 17, // Fujitsu VPP500
  127. EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
  128. EM_960 = 19, // Intel 80960
  129. EM_PPC = 20, // PowerPC
  130. EM_PPC64 = 21, // PowerPC64
  131. EM_S390 = 22, // IBM System/390
  132. EM_SPU = 23, // IBM SPU/SPC
  133. EM_V800 = 36, // NEC V800
  134. EM_FR20 = 37, // Fujitsu FR20
  135. EM_RH32 = 38, // TRW RH-32
  136. EM_RCE = 39, // Motorola RCE
  137. EM_ARM = 40, // ARM
  138. EM_ALPHA = 41, // DEC Alpha
  139. EM_SH = 42, // Hitachi SH
  140. EM_SPARCV9 = 43, // SPARC V9
  141. EM_TRICORE = 44, // Siemens TriCore
  142. EM_ARC = 45, // Argonaut RISC Core
  143. EM_H8_300 = 46, // Hitachi H8/300
  144. EM_H8_300H = 47, // Hitachi H8/300H
  145. EM_H8S = 48, // Hitachi H8S
  146. EM_H8_500 = 49, // Hitachi H8/500
  147. EM_IA_64 = 50, // Intel IA-64 processor architecture
  148. EM_MIPS_X = 51, // Stanford MIPS-X
  149. EM_COLDFIRE = 52, // Motorola ColdFire
  150. EM_68HC12 = 53, // Motorola M68HC12
  151. EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
  152. EM_PCP = 55, // Siemens PCP
  153. EM_NCPU = 56, // Sony nCPU embedded RISC processor
  154. EM_NDR1 = 57, // Denso NDR1 microprocessor
  155. EM_STARCORE = 58, // Motorola Star*Core processor
  156. EM_ME16 = 59, // Toyota ME16 processor
  157. EM_ST100 = 60, // STMicroelectronics ST100 processor
  158. EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
  159. EM_X86_64 = 62, // AMD x86-64 architecture
  160. EM_PDSP = 63, // Sony DSP Processor
  161. EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
  162. EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
  163. EM_FX66 = 66, // Siemens FX66 microcontroller
  164. EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
  165. EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
  166. EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
  167. EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
  168. EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
  169. EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
  170. EM_SVX = 73, // Silicon Graphics SVx
  171. EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
  172. EM_VAX = 75, // Digital VAX
  173. EM_CRIS = 76, // Axis Communications 32-bit embedded processor
  174. EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
  175. EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
  176. EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
  177. EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
  178. EM_HUANY = 81, // Harvard University machine-independent object files
  179. EM_PRISM = 82, // SiTera Prism
  180. EM_AVR = 83, // Atmel AVR 8-bit microcontroller
  181. EM_FR30 = 84, // Fujitsu FR30
  182. EM_D10V = 85, // Mitsubishi D10V
  183. EM_D30V = 86, // Mitsubishi D30V
  184. EM_V850 = 87, // NEC v850
  185. EM_M32R = 88, // Mitsubishi M32R
  186. EM_MN10300 = 89, // Matsushita MN10300
  187. EM_MN10200 = 90, // Matsushita MN10200
  188. EM_PJ = 91, // picoJava
  189. EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
  190. EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
  191. // spelling/synonym: EM_ARC_A5)
  192. EM_XTENSA = 94, // Tensilica Xtensa Architecture
  193. EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
  194. EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
  195. EM_NS32K = 97, // National Semiconductor 32000 series
  196. EM_TPC = 98, // Tenor Network TPC processor
  197. EM_SNP1K = 99, // Trebia SNP 1000 processor
  198. EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
  199. EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
  200. EM_MAX = 102, // MAX Processor
  201. EM_CR = 103, // National Semiconductor CompactRISC microprocessor
  202. EM_F2MC16 = 104, // Fujitsu F2MC16
  203. EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
  204. EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
  205. EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
  206. EM_SEP = 108, // Sharp embedded microprocessor
  207. EM_ARCA = 109, // Arca RISC Microprocessor
  208. EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
  209. // of Peking University
  210. EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
  211. EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
  212. EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
  213. EM_CRX = 114, // National Semiconductor CompactRISC CRX
  214. EM_XGATE = 115, // Motorola XGATE embedded processor
  215. EM_C166 = 116, // Infineon C16x/XC16x processor
  216. EM_M16C = 117, // Renesas M16C series microprocessors
  217. EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
  218. // Controller
  219. EM_CE = 119, // Freescale Communication Engine RISC core
  220. EM_M32C = 120, // Renesas M32C series microprocessors
  221. EM_TSK3000 = 131, // Altium TSK3000 core
  222. EM_RS08 = 132, // Freescale RS08 embedded processor
  223. EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
  224. // processors
  225. EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
  226. EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
  227. EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
  228. EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
  229. EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
  230. EM_SE_C17 = 139, // Seiko Epson C17 family
  231. EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
  232. EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
  233. EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
  234. EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
  235. EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
  236. EM_R32C = 162, // Renesas R32C series microprocessors
  237. EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
  238. EM_HEXAGON = 164, // Qualcomm Hexagon processor
  239. EM_8051 = 165, // Intel 8051 and variants
  240. EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
  241. // and extensible RISC processors
  242. EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
  243. // processor family
  244. EM_ECOG1 = 168, // Cyan Technology eCOG1X family
  245. EM_ECOG1X = 168, // Cyan Technology eCOG1X family
  246. EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
  247. EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
  248. EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
  249. EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
  250. EM_RX = 173, // Renesas RX family
  251. EM_METAG = 174, // Imagination Technologies META processor
  252. // architecture
  253. EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
  254. EM_ECOG16 = 176, // Cyan Technology eCOG16 family
  255. EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
  256. // microprocessor
  257. EM_ETPU = 178, // Freescale Extended Time Processing Unit
  258. EM_SLE9X = 179, // Infineon Technologies SLE9X core
  259. EM_L10M = 180, // Intel L10M
  260. EM_K10M = 181, // Intel K10M
  261. EM_AARCH64 = 183, // ARM AArch64
  262. EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
  263. EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
  264. EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
  265. EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
  266. EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core
  267. EM_CUDA = 190, // NVIDIA CUDA architecture
  268. EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
  269. EM_CLOUDSHIELD = 192, // CloudShield architecture family
  270. EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
  271. EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
  272. EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
  273. EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
  274. EM_RL78 = 197, // Renesas RL78 family
  275. EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
  276. EM_78KOR = 199, // Renesas 78KOR family
  277. EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
  278. EM_MBLAZE = 47787 // Xilinx MicroBlaze
  279. };
  280. // Object file classes.
  281. enum {
  282. ELFCLASSNONE = 0,
  283. ELFCLASS32 = 1, // 32-bit object file
  284. ELFCLASS64 = 2 // 64-bit object file
  285. };
  286. // Object file byte orderings.
  287. enum {
  288. ELFDATANONE = 0, // Invalid data encoding.
  289. ELFDATA2LSB = 1, // Little-endian object file
  290. ELFDATA2MSB = 2 // Big-endian object file
  291. };
  292. // OS ABI identification.
  293. enum {
  294. ELFOSABI_NONE = 0, // UNIX System V ABI
  295. ELFOSABI_HPUX = 1, // HP-UX operating system
  296. ELFOSABI_NETBSD = 2, // NetBSD
  297. ELFOSABI_LINUX = 3, // GNU/Linux
  298. ELFOSABI_HURD = 4, // GNU/Hurd
  299. ELFOSABI_SOLARIS = 6, // Solaris
  300. ELFOSABI_AIX = 7, // AIX
  301. ELFOSABI_IRIX = 8, // IRIX
  302. ELFOSABI_FREEBSD = 9, // FreeBSD
  303. ELFOSABI_TRU64 = 10, // TRU64 UNIX
  304. ELFOSABI_MODESTO = 11, // Novell Modesto
  305. ELFOSABI_OPENBSD = 12, // OpenBSD
  306. ELFOSABI_OPENVMS = 13, // OpenVMS
  307. ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
  308. ELFOSABI_AROS = 15, // AROS
  309. ELFOSABI_FENIXOS = 16, // FenixOS
  310. ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
  311. ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
  312. ELFOSABI_ARM = 97, // ARM
  313. ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
  314. };
  315. // X86_64 relocations.
  316. enum {
  317. R_X86_64_NONE = 0,
  318. R_X86_64_64 = 1,
  319. R_X86_64_PC32 = 2,
  320. R_X86_64_GOT32 = 3,
  321. R_X86_64_PLT32 = 4,
  322. R_X86_64_COPY = 5,
  323. R_X86_64_GLOB_DAT = 6,
  324. R_X86_64_JUMP_SLOT = 7,
  325. R_X86_64_RELATIVE = 8,
  326. R_X86_64_GOTPCREL = 9,
  327. R_X86_64_32 = 10,
  328. R_X86_64_32S = 11,
  329. R_X86_64_16 = 12,
  330. R_X86_64_PC16 = 13,
  331. R_X86_64_8 = 14,
  332. R_X86_64_PC8 = 15,
  333. R_X86_64_DTPMOD64 = 16,
  334. R_X86_64_DTPOFF64 = 17,
  335. R_X86_64_TPOFF64 = 18,
  336. R_X86_64_TLSGD = 19,
  337. R_X86_64_TLSLD = 20,
  338. R_X86_64_DTPOFF32 = 21,
  339. R_X86_64_GOTTPOFF = 22,
  340. R_X86_64_TPOFF32 = 23,
  341. R_X86_64_PC64 = 24,
  342. R_X86_64_GOTOFF64 = 25,
  343. R_X86_64_GOTPC32 = 26,
  344. R_X86_64_GOT64 = 27,
  345. R_X86_64_GOTPCREL64 = 28,
  346. R_X86_64_GOTPC64 = 29,
  347. R_X86_64_GOTPLT64 = 30,
  348. R_X86_64_PLTOFF64 = 31,
  349. R_X86_64_SIZE32 = 32,
  350. R_X86_64_SIZE64 = 33,
  351. R_X86_64_GOTPC32_TLSDESC = 34,
  352. R_X86_64_TLSDESC_CALL = 35,
  353. R_X86_64_TLSDESC = 36,
  354. R_X86_64_IRELATIVE = 37
  355. };
  356. // i386 relocations.
  357. // TODO: this is just a subset
  358. enum {
  359. R_386_NONE = 0,
  360. R_386_32 = 1,
  361. R_386_PC32 = 2,
  362. R_386_GOT32 = 3,
  363. R_386_PLT32 = 4,
  364. R_386_COPY = 5,
  365. R_386_GLOB_DAT = 6,
  366. R_386_JUMP_SLOT = 7,
  367. R_386_RELATIVE = 8,
  368. R_386_GOTOFF = 9,
  369. R_386_GOTPC = 10,
  370. R_386_32PLT = 11,
  371. R_386_TLS_TPOFF = 14,
  372. R_386_TLS_IE = 15,
  373. R_386_TLS_GOTIE = 16,
  374. R_386_TLS_LE = 17,
  375. R_386_TLS_GD = 18,
  376. R_386_TLS_LDM = 19,
  377. R_386_16 = 20,
  378. R_386_PC16 = 21,
  379. R_386_8 = 22,
  380. R_386_PC8 = 23,
  381. R_386_TLS_GD_32 = 24,
  382. R_386_TLS_GD_PUSH = 25,
  383. R_386_TLS_GD_CALL = 26,
  384. R_386_TLS_GD_POP = 27,
  385. R_386_TLS_LDM_32 = 28,
  386. R_386_TLS_LDM_PUSH = 29,
  387. R_386_TLS_LDM_CALL = 30,
  388. R_386_TLS_LDM_POP = 31,
  389. R_386_TLS_LDO_32 = 32,
  390. R_386_TLS_IE_32 = 33,
  391. R_386_TLS_LE_32 = 34,
  392. R_386_TLS_DTPMOD32 = 35,
  393. R_386_TLS_DTPOFF32 = 36,
  394. R_386_TLS_TPOFF32 = 37,
  395. R_386_TLS_GOTDESC = 39,
  396. R_386_TLS_DESC_CALL = 40,
  397. R_386_TLS_DESC = 41,
  398. R_386_IRELATIVE = 42,
  399. R_386_NUM = 43
  400. };
  401. // MBlaze relocations.
  402. enum {
  403. R_MICROBLAZE_NONE = 0,
  404. R_MICROBLAZE_32 = 1,
  405. R_MICROBLAZE_32_PCREL = 2,
  406. R_MICROBLAZE_64_PCREL = 3,
  407. R_MICROBLAZE_32_PCREL_LO = 4,
  408. R_MICROBLAZE_64 = 5,
  409. R_MICROBLAZE_32_LO = 6,
  410. R_MICROBLAZE_SRO32 = 7,
  411. R_MICROBLAZE_SRW32 = 8,
  412. R_MICROBLAZE_64_NONE = 9,
  413. R_MICROBLAZE_32_SYM_OP_SYM = 10,
  414. R_MICROBLAZE_GNU_VTINHERIT = 11,
  415. R_MICROBLAZE_GNU_VTENTRY = 12,
  416. R_MICROBLAZE_GOTPC_64 = 13,
  417. R_MICROBLAZE_GOT_64 = 14,
  418. R_MICROBLAZE_PLT_64 = 15,
  419. R_MICROBLAZE_REL = 16,
  420. R_MICROBLAZE_JUMP_SLOT = 17,
  421. R_MICROBLAZE_GLOB_DAT = 18,
  422. R_MICROBLAZE_GOTOFF_64 = 19,
  423. R_MICROBLAZE_GOTOFF_32 = 20,
  424. R_MICROBLAZE_COPY = 21
  425. };
  426. // ELF Relocation types for PPC32
  427. enum {
  428. R_PPC_NONE = 0, /* No relocation. */
  429. R_PPC_ADDR32 = 1,
  430. R_PPC_ADDR24 = 2,
  431. R_PPC_ADDR16 = 3,
  432. R_PPC_ADDR16_LO = 4,
  433. R_PPC_ADDR16_HI = 5,
  434. R_PPC_ADDR16_HA = 6,
  435. R_PPC_ADDR14 = 7,
  436. R_PPC_ADDR14_BRTAKEN = 8,
  437. R_PPC_ADDR14_BRNTAKEN = 9,
  438. R_PPC_REL24 = 10,
  439. R_PPC_REL14 = 11,
  440. R_PPC_REL14_BRTAKEN = 12,
  441. R_PPC_REL14_BRNTAKEN = 13,
  442. R_PPC_REL32 = 26,
  443. R_PPC_TPREL16_LO = 70,
  444. R_PPC_TPREL16_HA = 72
  445. };
  446. // ELF Relocation types for PPC64
  447. enum {
  448. R_PPC64_NONE = 0,
  449. R_PPC64_ADDR32 = 1,
  450. R_PPC64_ADDR16_LO = 4,
  451. R_PPC64_ADDR16_HI = 5,
  452. R_PPC64_ADDR14 = 7,
  453. R_PPC64_REL24 = 10,
  454. R_PPC64_REL32 = 26,
  455. R_PPC64_ADDR64 = 38,
  456. R_PPC64_ADDR16_HIGHER = 39,
  457. R_PPC64_ADDR16_HIGHEST = 41,
  458. R_PPC64_REL64 = 44,
  459. R_PPC64_TOC16 = 47,
  460. R_PPC64_TOC16_LO = 48,
  461. R_PPC64_TOC16_HA = 50,
  462. R_PPC64_TOC = 51,
  463. R_PPC64_ADDR16_DS = 56,
  464. R_PPC64_ADDR16_LO_DS = 57,
  465. R_PPC64_TOC16_DS = 63,
  466. R_PPC64_TOC16_LO_DS = 64,
  467. R_PPC64_TLS = 67,
  468. R_PPC64_TPREL16_LO = 70,
  469. R_PPC64_TPREL16_HA = 72,
  470. R_PPC64_DTPREL16_LO = 75,
  471. R_PPC64_DTPREL16_HA = 77,
  472. R_PPC64_GOT_TLSGD16_LO = 80,
  473. R_PPC64_GOT_TLSGD16_HA = 82,
  474. R_PPC64_GOT_TLSLD16_LO = 84,
  475. R_PPC64_GOT_TLSLD16_HA = 86,
  476. R_PPC64_GOT_TPREL16_LO_DS = 88,
  477. R_PPC64_GOT_TPREL16_HA = 90,
  478. R_PPC64_TLSGD = 107,
  479. R_PPC64_TLSLD = 108
  480. };
  481. // ELF Relocation types for AArch64
  482. enum {
  483. R_AARCH64_NONE = 0x100,
  484. R_AARCH64_ABS64 = 0x101,
  485. R_AARCH64_ABS32 = 0x102,
  486. R_AARCH64_ABS16 = 0x103,
  487. R_AARCH64_PREL64 = 0x104,
  488. R_AARCH64_PREL32 = 0x105,
  489. R_AARCH64_PREL16 = 0x106,
  490. R_AARCH64_MOVW_UABS_G0 = 0x107,
  491. R_AARCH64_MOVW_UABS_G0_NC = 0x108,
  492. R_AARCH64_MOVW_UABS_G1 = 0x109,
  493. R_AARCH64_MOVW_UABS_G1_NC = 0x10a,
  494. R_AARCH64_MOVW_UABS_G2 = 0x10b,
  495. R_AARCH64_MOVW_UABS_G2_NC = 0x10c,
  496. R_AARCH64_MOVW_UABS_G3 = 0x10d,
  497. R_AARCH64_MOVW_SABS_G0 = 0x10e,
  498. R_AARCH64_MOVW_SABS_G1 = 0x10f,
  499. R_AARCH64_MOVW_SABS_G2 = 0x110,
  500. R_AARCH64_LD_PREL_LO19 = 0x111,
  501. R_AARCH64_ADR_PREL_LO21 = 0x112,
  502. R_AARCH64_ADR_PREL_PG_HI21 = 0x113,
  503. R_AARCH64_ADD_ABS_LO12_NC = 0x115,
  504. R_AARCH64_LDST8_ABS_LO12_NC = 0x116,
  505. R_AARCH64_TSTBR14 = 0x117,
  506. R_AARCH64_CONDBR19 = 0x118,
  507. R_AARCH64_JUMP26 = 0x11a,
  508. R_AARCH64_CALL26 = 0x11b,
  509. R_AARCH64_LDST16_ABS_LO12_NC = 0x11c,
  510. R_AARCH64_LDST32_ABS_LO12_NC = 0x11d,
  511. R_AARCH64_LDST64_ABS_LO12_NC = 0x11e,
  512. R_AARCH64_LDST128_ABS_LO12_NC = 0x12b,
  513. R_AARCH64_ADR_GOT_PAGE = 0x137,
  514. R_AARCH64_LD64_GOT_LO12_NC = 0x138,
  515. R_AARCH64_TLSLD_MOVW_DTPREL_G2 = 0x20b,
  516. R_AARCH64_TLSLD_MOVW_DTPREL_G1 = 0x20c,
  517. R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC = 0x20d,
  518. R_AARCH64_TLSLD_MOVW_DTPREL_G0 = 0x20e,
  519. R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC = 0x20f,
  520. R_AARCH64_TLSLD_ADD_DTPREL_HI12 = 0x210,
  521. R_AARCH64_TLSLD_ADD_DTPREL_LO12 = 0x211,
  522. R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC = 0x212,
  523. R_AARCH64_TLSLD_LDST8_DTPREL_LO12 = 0x213,
  524. R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC = 0x214,
  525. R_AARCH64_TLSLD_LDST16_DTPREL_LO12 = 0x215,
  526. R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC = 0x216,
  527. R_AARCH64_TLSLD_LDST32_DTPREL_LO12 = 0x217,
  528. R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC = 0x218,
  529. R_AARCH64_TLSLD_LDST64_DTPREL_LO12 = 0x219,
  530. R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC = 0x21a,
  531. R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 = 0x21b,
  532. R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC = 0x21c,
  533. R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 = 0x21d,
  534. R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC = 0x21e,
  535. R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 = 0x21f,
  536. R_AARCH64_TLSLE_MOVW_TPREL_G2 = 0x220,
  537. R_AARCH64_TLSLE_MOVW_TPREL_G1 = 0x221,
  538. R_AARCH64_TLSLE_MOVW_TPREL_G1_NC = 0x222,
  539. R_AARCH64_TLSLE_MOVW_TPREL_G0 = 0x223,
  540. R_AARCH64_TLSLE_MOVW_TPREL_G0_NC = 0x224,
  541. R_AARCH64_TLSLE_ADD_TPREL_HI12 = 0x225,
  542. R_AARCH64_TLSLE_ADD_TPREL_LO12 = 0x226,
  543. R_AARCH64_TLSLE_ADD_TPREL_LO12_NC = 0x227,
  544. R_AARCH64_TLSLE_LDST8_TPREL_LO12 = 0x228,
  545. R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC = 0x229,
  546. R_AARCH64_TLSLE_LDST16_TPREL_LO12 = 0x22a,
  547. R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC = 0x22b,
  548. R_AARCH64_TLSLE_LDST32_TPREL_LO12 = 0x22c,
  549. R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC = 0x22d,
  550. R_AARCH64_TLSLE_LDST64_TPREL_LO12 = 0x22e,
  551. R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC = 0x22f,
  552. R_AARCH64_TLSDESC_ADR_PAGE = 0x232,
  553. R_AARCH64_TLSDESC_LD64_LO12_NC = 0x233,
  554. R_AARCH64_TLSDESC_ADD_LO12_NC = 0x234,
  555. R_AARCH64_TLSDESC_CALL = 0x239
  556. };
  557. // ARM Specific e_flags
  558. enum {
  559. EF_ARM_SOFT_FLOAT = 0x00000200U,
  560. EF_ARM_VFP_FLOAT = 0x00000400U,
  561. EF_ARM_EABI_UNKNOWN = 0x00000000U,
  562. EF_ARM_EABI_VER1 = 0x01000000U,
  563. EF_ARM_EABI_VER2 = 0x02000000U,
  564. EF_ARM_EABI_VER3 = 0x03000000U,
  565. EF_ARM_EABI_VER4 = 0x04000000U,
  566. EF_ARM_EABI_VER5 = 0x05000000U,
  567. EF_ARM_EABIMASK = 0xFF000000U
  568. };
  569. // ELF Relocation types for ARM
  570. // Meets 2.08 ABI Specs.
  571. enum {
  572. R_ARM_NONE = 0x00,
  573. R_ARM_PC24 = 0x01,
  574. R_ARM_ABS32 = 0x02,
  575. R_ARM_REL32 = 0x03,
  576. R_ARM_LDR_PC_G0 = 0x04,
  577. R_ARM_ABS16 = 0x05,
  578. R_ARM_ABS12 = 0x06,
  579. R_ARM_THM_ABS5 = 0x07,
  580. R_ARM_ABS8 = 0x08,
  581. R_ARM_SBREL32 = 0x09,
  582. R_ARM_THM_CALL = 0x0a,
  583. R_ARM_THM_PC8 = 0x0b,
  584. R_ARM_BREL_ADJ = 0x0c,
  585. R_ARM_TLS_DESC = 0x0d,
  586. R_ARM_THM_SWI8 = 0x0e,
  587. R_ARM_XPC25 = 0x0f,
  588. R_ARM_THM_XPC22 = 0x10,
  589. R_ARM_TLS_DTPMOD32 = 0x11,
  590. R_ARM_TLS_DTPOFF32 = 0x12,
  591. R_ARM_TLS_TPOFF32 = 0x13,
  592. R_ARM_COPY = 0x14,
  593. R_ARM_GLOB_DAT = 0x15,
  594. R_ARM_JUMP_SLOT = 0x16,
  595. R_ARM_RELATIVE = 0x17,
  596. R_ARM_GOTOFF32 = 0x18,
  597. R_ARM_BASE_PREL = 0x19,
  598. R_ARM_GOT_BREL = 0x1a,
  599. R_ARM_PLT32 = 0x1b,
  600. R_ARM_CALL = 0x1c,
  601. R_ARM_JUMP24 = 0x1d,
  602. R_ARM_THM_JUMP24 = 0x1e,
  603. R_ARM_BASE_ABS = 0x1f,
  604. R_ARM_ALU_PCREL_7_0 = 0x20,
  605. R_ARM_ALU_PCREL_15_8 = 0x21,
  606. R_ARM_ALU_PCREL_23_15 = 0x22,
  607. R_ARM_LDR_SBREL_11_0_NC = 0x23,
  608. R_ARM_ALU_SBREL_19_12_NC = 0x24,
  609. R_ARM_ALU_SBREL_27_20_CK = 0x25,
  610. R_ARM_TARGET1 = 0x26,
  611. R_ARM_SBREL31 = 0x27,
  612. R_ARM_V4BX = 0x28,
  613. R_ARM_TARGET2 = 0x29,
  614. R_ARM_PREL31 = 0x2a,
  615. R_ARM_MOVW_ABS_NC = 0x2b,
  616. R_ARM_MOVT_ABS = 0x2c,
  617. R_ARM_MOVW_PREL_NC = 0x2d,
  618. R_ARM_MOVT_PREL = 0x2e,
  619. R_ARM_THM_MOVW_ABS_NC = 0x2f,
  620. R_ARM_THM_MOVT_ABS = 0x30,
  621. R_ARM_THM_MOVW_PREL_NC = 0x31,
  622. R_ARM_THM_MOVT_PREL = 0x32,
  623. R_ARM_THM_JUMP19 = 0x33,
  624. R_ARM_THM_JUMP6 = 0x34,
  625. R_ARM_THM_ALU_PREL_11_0 = 0x35,
  626. R_ARM_THM_PC12 = 0x36,
  627. R_ARM_ABS32_NOI = 0x37,
  628. R_ARM_REL32_NOI = 0x38,
  629. R_ARM_ALU_PC_G0_NC = 0x39,
  630. R_ARM_ALU_PC_G0 = 0x3a,
  631. R_ARM_ALU_PC_G1_NC = 0x3b,
  632. R_ARM_ALU_PC_G1 = 0x3c,
  633. R_ARM_ALU_PC_G2 = 0x3d,
  634. R_ARM_LDR_PC_G1 = 0x3e,
  635. R_ARM_LDR_PC_G2 = 0x3f,
  636. R_ARM_LDRS_PC_G0 = 0x40,
  637. R_ARM_LDRS_PC_G1 = 0x41,
  638. R_ARM_LDRS_PC_G2 = 0x42,
  639. R_ARM_LDC_PC_G0 = 0x43,
  640. R_ARM_LDC_PC_G1 = 0x44,
  641. R_ARM_LDC_PC_G2 = 0x45,
  642. R_ARM_ALU_SB_G0_NC = 0x46,
  643. R_ARM_ALU_SB_G0 = 0x47,
  644. R_ARM_ALU_SB_G1_NC = 0x48,
  645. R_ARM_ALU_SB_G1 = 0x49,
  646. R_ARM_ALU_SB_G2 = 0x4a,
  647. R_ARM_LDR_SB_G0 = 0x4b,
  648. R_ARM_LDR_SB_G1 = 0x4c,
  649. R_ARM_LDR_SB_G2 = 0x4d,
  650. R_ARM_LDRS_SB_G0 = 0x4e,
  651. R_ARM_LDRS_SB_G1 = 0x4f,
  652. R_ARM_LDRS_SB_G2 = 0x50,
  653. R_ARM_LDC_SB_G0 = 0x51,
  654. R_ARM_LDC_SB_G1 = 0x52,
  655. R_ARM_LDC_SB_G2 = 0x53,
  656. R_ARM_MOVW_BREL_NC = 0x54,
  657. R_ARM_MOVT_BREL = 0x55,
  658. R_ARM_MOVW_BREL = 0x56,
  659. R_ARM_THM_MOVW_BREL_NC = 0x57,
  660. R_ARM_THM_MOVT_BREL = 0x58,
  661. R_ARM_THM_MOVW_BREL = 0x59,
  662. R_ARM_TLS_GOTDESC = 0x5a,
  663. R_ARM_TLS_CALL = 0x5b,
  664. R_ARM_TLS_DESCSEQ = 0x5c,
  665. R_ARM_THM_TLS_CALL = 0x5d,
  666. R_ARM_PLT32_ABS = 0x5e,
  667. R_ARM_GOT_ABS = 0x5f,
  668. R_ARM_GOT_PREL = 0x60,
  669. R_ARM_GOT_BREL12 = 0x61,
  670. R_ARM_GOTOFF12 = 0x62,
  671. R_ARM_GOTRELAX = 0x63,
  672. R_ARM_GNU_VTENTRY = 0x64,
  673. R_ARM_GNU_VTINHERIT = 0x65,
  674. R_ARM_THM_JUMP11 = 0x66,
  675. R_ARM_THM_JUMP8 = 0x67,
  676. R_ARM_TLS_GD32 = 0x68,
  677. R_ARM_TLS_LDM32 = 0x69,
  678. R_ARM_TLS_LDO32 = 0x6a,
  679. R_ARM_TLS_IE32 = 0x6b,
  680. R_ARM_TLS_LE32 = 0x6c,
  681. R_ARM_TLS_LDO12 = 0x6d,
  682. R_ARM_TLS_LE12 = 0x6e,
  683. R_ARM_TLS_IE12GP = 0x6f,
  684. R_ARM_PRIVATE_0 = 0x70,
  685. R_ARM_PRIVATE_1 = 0x71,
  686. R_ARM_PRIVATE_2 = 0x72,
  687. R_ARM_PRIVATE_3 = 0x73,
  688. R_ARM_PRIVATE_4 = 0x74,
  689. R_ARM_PRIVATE_5 = 0x75,
  690. R_ARM_PRIVATE_6 = 0x76,
  691. R_ARM_PRIVATE_7 = 0x77,
  692. R_ARM_PRIVATE_8 = 0x78,
  693. R_ARM_PRIVATE_9 = 0x79,
  694. R_ARM_PRIVATE_10 = 0x7a,
  695. R_ARM_PRIVATE_11 = 0x7b,
  696. R_ARM_PRIVATE_12 = 0x7c,
  697. R_ARM_PRIVATE_13 = 0x7d,
  698. R_ARM_PRIVATE_14 = 0x7e,
  699. R_ARM_PRIVATE_15 = 0x7f,
  700. R_ARM_ME_TOO = 0x80,
  701. R_ARM_THM_TLS_DESCSEQ16 = 0x81,
  702. R_ARM_THM_TLS_DESCSEQ32 = 0x82
  703. };
  704. // Mips Specific e_flags
  705. enum {
  706. EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
  707. EF_MIPS_PIC = 0x00000002, // Position independent code
  708. EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
  709. EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
  710. //ARCH_ASE
  711. EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
  712. EF_MIPS_ARCH_ASE_M16 =
  713. 0x04000000, // Has Mips-16 ISA extensions
  714. //ARCH
  715. EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
  716. EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
  717. EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
  718. EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
  719. EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
  720. EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
  721. EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
  722. EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
  723. EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2
  724. EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
  725. };
  726. // ELF Relocation types for Mips
  727. // .
  728. enum {
  729. R_MIPS_NONE = 0,
  730. R_MIPS_16 = 1,
  731. R_MIPS_32 = 2,
  732. R_MIPS_REL32 = 3,
  733. R_MIPS_26 = 4,
  734. R_MIPS_HI16 = 5,
  735. R_MIPS_LO16 = 6,
  736. R_MIPS_GPREL16 = 7,
  737. R_MIPS_LITERAL = 8,
  738. R_MIPS_GOT16 = 9,
  739. R_MIPS_GOT = 9,
  740. R_MIPS_PC16 = 10,
  741. R_MIPS_CALL16 = 11,
  742. R_MIPS_GPREL32 = 12,
  743. R_MIPS_SHIFT5 = 16,
  744. R_MIPS_SHIFT6 = 17,
  745. R_MIPS_64 = 18,
  746. R_MIPS_GOT_DISP = 19,
  747. R_MIPS_GOT_PAGE = 20,
  748. R_MIPS_GOT_OFST = 21,
  749. R_MIPS_GOT_HI16 = 22,
  750. R_MIPS_GOT_LO16 = 23,
  751. R_MIPS_SUB = 24,
  752. R_MIPS_INSERT_A = 25,
  753. R_MIPS_INSERT_B = 26,
  754. R_MIPS_DELETE = 27,
  755. R_MIPS_HIGHER = 28,
  756. R_MIPS_HIGHEST = 29,
  757. R_MIPS_CALL_HI16 = 30,
  758. R_MIPS_CALL_LO16 = 31,
  759. R_MIPS_SCN_DISP = 32,
  760. R_MIPS_REL16 = 33,
  761. R_MIPS_ADD_IMMEDIATE = 34,
  762. R_MIPS_PJUMP = 35,
  763. R_MIPS_RELGOT = 36,
  764. R_MIPS_JALR = 37,
  765. R_MIPS_TLS_DTPMOD32 = 38,
  766. R_MIPS_TLS_DTPREL32 = 39,
  767. R_MIPS_TLS_DTPMOD64 = 40,
  768. R_MIPS_TLS_DTPREL64 = 41,
  769. R_MIPS_TLS_GD = 42,
  770. R_MIPS_TLS_LDM = 43,
  771. R_MIPS_TLS_DTPREL_HI16 = 44,
  772. R_MIPS_TLS_DTPREL_LO16 = 45,
  773. R_MIPS_TLS_GOTTPREL = 46,
  774. R_MIPS_TLS_TPREL32 = 47,
  775. R_MIPS_TLS_TPREL64 = 48,
  776. R_MIPS_TLS_TPREL_HI16 = 49,
  777. R_MIPS_TLS_TPREL_LO16 = 50,
  778. R_MIPS_GLOB_DAT = 51,
  779. R_MIPS_COPY = 126,
  780. R_MIPS_JUMP_SLOT = 127,
  781. R_MIPS_NUM = 218
  782. };
  783. // Special values for the st_other field in the symbol table entry for MIPS.
  784. enum {
  785. STO_MIPS_MICROMIPS = 0x80 // MIPS Specific ISA for MicroMips
  786. };
  787. // Hexagon Specific e_flags
  788. // Release 5 ABI
  789. enum {
  790. // Object processor version flags, bits[3:0]
  791. EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
  792. EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
  793. EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
  794. EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
  795. // Highest ISA version flags
  796. EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[3:0]
  797. // of e_flags
  798. EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
  799. EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
  800. EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
  801. EF_HEXAGON_ISA_V5 = 0x00000040 // Hexagon V5 ISA
  802. };
  803. // Hexagon specific Section indexes for common small data
  804. // Release 5 ABI
  805. enum {
  806. SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
  807. SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
  808. SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
  809. SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
  810. SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
  811. };
  812. // ELF Relocation types for Hexagon
  813. // Release 5 ABI
  814. enum {
  815. R_HEX_NONE = 0,
  816. R_HEX_B22_PCREL = 1,
  817. R_HEX_B15_PCREL = 2,
  818. R_HEX_B7_PCREL = 3,
  819. R_HEX_LO16 = 4,
  820. R_HEX_HI16 = 5,
  821. R_HEX_32 = 6,
  822. R_HEX_16 = 7,
  823. R_HEX_8 = 8,
  824. R_HEX_GPREL16_0 = 9,
  825. R_HEX_GPREL16_1 = 10,
  826. R_HEX_GPREL16_2 = 11,
  827. R_HEX_GPREL16_3 = 12,
  828. R_HEX_HL16 = 13,
  829. R_HEX_B13_PCREL = 14,
  830. R_HEX_B9_PCREL = 15,
  831. R_HEX_B32_PCREL_X = 16,
  832. R_HEX_32_6_X = 17,
  833. R_HEX_B22_PCREL_X = 18,
  834. R_HEX_B15_PCREL_X = 19,
  835. R_HEX_B13_PCREL_X = 20,
  836. R_HEX_B9_PCREL_X = 21,
  837. R_HEX_B7_PCREL_X = 22,
  838. R_HEX_16_X = 23,
  839. R_HEX_12_X = 24,
  840. R_HEX_11_X = 25,
  841. R_HEX_10_X = 26,
  842. R_HEX_9_X = 27,
  843. R_HEX_8_X = 28,
  844. R_HEX_7_X = 29,
  845. R_HEX_6_X = 30,
  846. R_HEX_32_PCREL = 31,
  847. R_HEX_COPY = 32,
  848. R_HEX_GLOB_DAT = 33,
  849. R_HEX_JMP_SLOT = 34,
  850. R_HEX_RELATIVE = 35,
  851. R_HEX_PLT_B22_PCREL = 36,
  852. R_HEX_GOTREL_LO16 = 37,
  853. R_HEX_GOTREL_HI16 = 38,
  854. R_HEX_GOTREL_32 = 39,
  855. R_HEX_GOT_LO16 = 40,
  856. R_HEX_GOT_HI16 = 41,
  857. R_HEX_GOT_32 = 42,
  858. R_HEX_GOT_16 = 43,
  859. R_HEX_DTPMOD_32 = 44,
  860. R_HEX_DTPREL_LO16 = 45,
  861. R_HEX_DTPREL_HI16 = 46,
  862. R_HEX_DTPREL_32 = 47,
  863. R_HEX_DTPREL_16 = 48,
  864. R_HEX_GD_PLT_B22_PCREL = 49,
  865. R_HEX_GD_GOT_LO16 = 50,
  866. R_HEX_GD_GOT_HI16 = 51,
  867. R_HEX_GD_GOT_32 = 52,
  868. R_HEX_GD_GOT_16 = 53,
  869. R_HEX_IE_LO16 = 54,
  870. R_HEX_IE_HI16 = 55,
  871. R_HEX_IE_32 = 56,
  872. R_HEX_IE_GOT_LO16 = 57,
  873. R_HEX_IE_GOT_HI16 = 58,
  874. R_HEX_IE_GOT_32 = 59,
  875. R_HEX_IE_GOT_16 = 60,
  876. R_HEX_TPREL_LO16 = 61,
  877. R_HEX_TPREL_HI16 = 62,
  878. R_HEX_TPREL_32 = 63,
  879. R_HEX_TPREL_16 = 64,
  880. R_HEX_6_PCREL_X = 65,
  881. R_HEX_GOTREL_32_6_X = 66,
  882. R_HEX_GOTREL_16_X = 67,
  883. R_HEX_GOTREL_11_X = 68,
  884. R_HEX_GOT_32_6_X = 69,
  885. R_HEX_GOT_16_X = 70,
  886. R_HEX_GOT_11_X = 71,
  887. R_HEX_DTPREL_32_6_X = 72,
  888. R_HEX_DTPREL_16_X = 73,
  889. R_HEX_DTPREL_11_X = 74,
  890. R_HEX_GD_GOT_32_6_X = 75,
  891. R_HEX_GD_GOT_16_X = 76,
  892. R_HEX_GD_GOT_11_X = 77,
  893. R_HEX_IE_32_6_X = 78,
  894. R_HEX_IE_16_X = 79,
  895. R_HEX_IE_GOT_32_6_X = 80,
  896. R_HEX_IE_GOT_16_X = 81,
  897. R_HEX_IE_GOT_11_X = 82,
  898. R_HEX_TPREL_32_6_X = 83,
  899. R_HEX_TPREL_16_X = 84,
  900. R_HEX_TPREL_11_X = 85
  901. };
  902. // Section header.
  903. struct Elf32_Shdr {
  904. Elf32_Word sh_name; // Section name (index into string table)
  905. Elf32_Word sh_type; // Section type (SHT_*)
  906. Elf32_Word sh_flags; // Section flags (SHF_*)
  907. Elf32_Addr sh_addr; // Address where section is to be loaded
  908. Elf32_Off sh_offset; // File offset of section data, in bytes
  909. Elf32_Word sh_size; // Size of section, in bytes
  910. Elf32_Word sh_link; // Section type-specific header table index link
  911. Elf32_Word sh_info; // Section type-specific extra information
  912. Elf32_Word sh_addralign; // Section address alignment
  913. Elf32_Word sh_entsize; // Size of records contained within the section
  914. };
  915. // Section header for ELF64 - same fields as ELF32, different types.
  916. struct Elf64_Shdr {
  917. Elf64_Word sh_name;
  918. Elf64_Word sh_type;
  919. Elf64_Xword sh_flags;
  920. Elf64_Addr sh_addr;
  921. Elf64_Off sh_offset;
  922. Elf64_Xword sh_size;
  923. Elf64_Word sh_link;
  924. Elf64_Word sh_info;
  925. Elf64_Xword sh_addralign;
  926. Elf64_Xword sh_entsize;
  927. };
  928. // Special section indices.
  929. enum {
  930. SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
  931. SHN_LORESERVE = 0xff00, // Lowest reserved index
  932. SHN_LOPROC = 0xff00, // Lowest processor-specific index
  933. SHN_HIPROC = 0xff1f, // Highest processor-specific index
  934. SHN_LOOS = 0xff20, // Lowest operating system-specific index
  935. SHN_HIOS = 0xff3f, // Highest operating system-specific index
  936. SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
  937. SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
  938. SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
  939. SHN_HIRESERVE = 0xffff // Highest reserved index
  940. };
  941. // Section types.
  942. enum {
  943. SHT_NULL = 0, // No associated section (inactive entry).
  944. SHT_PROGBITS = 1, // Program-defined contents.
  945. SHT_SYMTAB = 2, // Symbol table.
  946. SHT_STRTAB = 3, // String table.
  947. SHT_RELA = 4, // Relocation entries; explicit addends.
  948. SHT_HASH = 5, // Symbol hash table.
  949. SHT_DYNAMIC = 6, // Information for dynamic linking.
  950. SHT_NOTE = 7, // Information about the file.
  951. SHT_NOBITS = 8, // Data occupies no space in the file.
  952. SHT_REL = 9, // Relocation entries; no explicit addends.
  953. SHT_SHLIB = 10, // Reserved.
  954. SHT_DYNSYM = 11, // Symbol table.
  955. SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
  956. SHT_FINI_ARRAY = 15, // Pointers to termination functions.
  957. SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
  958. SHT_GROUP = 17, // Section group.
  959. SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
  960. SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
  961. SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
  962. SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
  963. SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
  964. SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
  965. SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
  966. SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
  967. SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
  968. // Fixme: All this is duplicated in MCSectionELF. Why??
  969. // Exception Index table
  970. SHT_ARM_EXIDX = 0x70000001U,
  971. // BPABI DLL dynamic linking pre-emption map
  972. SHT_ARM_PREEMPTMAP = 0x70000002U,
  973. // Object file compatibility attributes
  974. SHT_ARM_ATTRIBUTES = 0x70000003U,
  975. SHT_ARM_DEBUGOVERLAY = 0x70000004U,
  976. SHT_ARM_OVERLAYSECTION = 0x70000005U,
  977. SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
  978. // this section based on their sizes
  979. SHT_X86_64_UNWIND = 0x70000001, // Unwind information
  980. SHT_MIPS_REGINFO = 0x70000006, // Register usage information
  981. SHT_MIPS_OPTIONS = 0x7000000d, // General options
  982. SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
  983. SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
  984. SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
  985. };
  986. // Section flags.
  987. enum {
  988. // Section data should be writable during execution.
  989. SHF_WRITE = 0x1,
  990. // Section occupies memory during program execution.
  991. SHF_ALLOC = 0x2,
  992. // Section contains executable machine instructions.
  993. SHF_EXECINSTR = 0x4,
  994. // The data in this section may be merged.
  995. SHF_MERGE = 0x10,
  996. // The data in this section is null-terminated strings.
  997. SHF_STRINGS = 0x20,
  998. // A field in this section holds a section header table index.
  999. SHF_INFO_LINK = 0x40U,
  1000. // Adds special ordering requirements for link editors.
  1001. SHF_LINK_ORDER = 0x80U,
  1002. // This section requires special OS-specific processing to avoid incorrect
  1003. // behavior.
  1004. SHF_OS_NONCONFORMING = 0x100U,
  1005. // This section is a member of a section group.
  1006. SHF_GROUP = 0x200U,
  1007. // This section holds Thread-Local Storage.
  1008. SHF_TLS = 0x400U,
  1009. // Start of target-specific flags.
  1010. /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
  1011. /// together by the linker to form the constant pool and the cp register is
  1012. /// set to the start of the constant pool by the boot code.
  1013. XCORE_SHF_CP_SECTION = 0x800U,
  1014. /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
  1015. /// together by the linker to form the data section and the dp register is
  1016. /// set to the start of the section by the boot code.
  1017. XCORE_SHF_DP_SECTION = 0x1000U,
  1018. SHF_MASKOS = 0x0ff00000,
  1019. // Bits indicating processor-specific flags.
  1020. SHF_MASKPROC = 0xf0000000,
  1021. // If an object file section does not have this flag set, then it may not hold
  1022. // more than 2GB and can be freely referred to in objects using smaller code
  1023. // models. Otherwise, only objects using larger code models can refer to them.
  1024. // For example, a medium code model object can refer to data in a section that
  1025. // sets this flag besides being able to refer to data in a section that does
  1026. // not set it; likewise, a small code model object can refer only to code in a
  1027. // section that does not set this flag.
  1028. SHF_X86_64_LARGE = 0x10000000,
  1029. // All sections with the GPREL flag are grouped into a global data area
  1030. // for faster accesses
  1031. SHF_HEX_GPREL = 0x10000000,
  1032. // Do not strip this section. FIXME: We need target specific SHF_ enums.
  1033. SHF_MIPS_NOSTRIP = 0x8000000
  1034. };
  1035. // Section Group Flags
  1036. enum {
  1037. GRP_COMDAT = 0x1,
  1038. GRP_MASKOS = 0x0ff00000,
  1039. GRP_MASKPROC = 0xf0000000
  1040. };
  1041. // Symbol table entries for ELF32.
  1042. struct Elf32_Sym {
  1043. Elf32_Word st_name; // Symbol name (index into string table)
  1044. Elf32_Addr st_value; // Value or address associated with the symbol
  1045. Elf32_Word st_size; // Size of the symbol
  1046. unsigned char st_info; // Symbol's type and binding attributes
  1047. unsigned char st_other; // Must be zero; reserved
  1048. Elf32_Half st_shndx; // Which section (header table index) it's defined in
  1049. // These accessors and mutators correspond to the ELF32_ST_BIND,
  1050. // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
  1051. unsigned char getBinding() const { return st_info >> 4; }
  1052. unsigned char getType() const { return st_info & 0x0f; }
  1053. void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  1054. void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  1055. void setBindingAndType(unsigned char b, unsigned char t) {
  1056. st_info = (b << 4) + (t & 0x0f);
  1057. }
  1058. };
  1059. // Symbol table entries for ELF64.
  1060. struct Elf64_Sym {
  1061. Elf64_Word st_name; // Symbol name (index into string table)
  1062. unsigned char st_info; // Symbol's type and binding attributes
  1063. unsigned char st_other; // Must be zero; reserved
  1064. Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
  1065. Elf64_Addr st_value; // Value or address associated with the symbol
  1066. Elf64_Xword st_size; // Size of the symbol
  1067. // These accessors and mutators are identical to those defined for ELF32
  1068. // symbol table entries.
  1069. unsigned char getBinding() const { return st_info >> 4; }
  1070. unsigned char getType() const { return st_info & 0x0f; }
  1071. void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  1072. void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  1073. void setBindingAndType(unsigned char b, unsigned char t) {
  1074. st_info = (b << 4) + (t & 0x0f);
  1075. }
  1076. };
  1077. // The size (in bytes) of symbol table entries.
  1078. enum {
  1079. SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
  1080. SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
  1081. };
  1082. // Symbol bindings.
  1083. enum {
  1084. STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
  1085. STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
  1086. STB_WEAK = 2, // Weak symbol, like global but lower-precedence
  1087. STB_LOOS = 10, // Lowest operating system-specific binding type
  1088. STB_HIOS = 12, // Highest operating system-specific binding type
  1089. STB_LOPROC = 13, // Lowest processor-specific binding type
  1090. STB_HIPROC = 15 // Highest processor-specific binding type
  1091. };
  1092. // Symbol types.
  1093. enum {
  1094. STT_NOTYPE = 0, // Symbol's type is not specified
  1095. STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
  1096. STT_FUNC = 2, // Symbol is executable code (function, etc.)
  1097. STT_SECTION = 3, // Symbol refers to a section
  1098. STT_FILE = 4, // Local, absolute symbol that refers to a file
  1099. STT_COMMON = 5, // An uninitialized common block
  1100. STT_TLS = 6, // Thread local data object
  1101. STT_LOOS = 7, // Lowest operating system-specific symbol type
  1102. STT_HIOS = 8, // Highest operating system-specific symbol type
  1103. STT_GNU_IFUNC = 10, // GNU indirect function
  1104. STT_LOPROC = 13, // Lowest processor-specific symbol type
  1105. STT_HIPROC = 15 // Highest processor-specific symbol type
  1106. };
  1107. enum {
  1108. STV_DEFAULT = 0, // Visibility is specified by binding type
  1109. STV_INTERNAL = 1, // Defined by processor supplements
  1110. STV_HIDDEN = 2, // Not visible to other components
  1111. STV_PROTECTED = 3 // Visible in other components but not preemptable
  1112. };
  1113. // Symbol number.
  1114. enum {
  1115. STN_UNDEF = 0
  1116. };
  1117. // Relocation entry, without explicit addend.
  1118. struct Elf32_Rel {
  1119. Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
  1120. Elf32_Word r_info; // Symbol table index and type of relocation to apply
  1121. // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  1122. // and ELF32_R_INFO macros defined in the ELF specification:
  1123. Elf32_Word getSymbol() const { return (r_info >> 8); }
  1124. unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
  1125. void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
  1126. void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  1127. void setSymbolAndType(Elf32_Word s, unsigned char t) {
  1128. r_info = (s << 8) + t;
  1129. }
  1130. };
  1131. // Relocation entry with explicit addend.
  1132. struct Elf32_Rela {
  1133. Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
  1134. Elf32_Word r_info; // Symbol table index and type of relocation to apply
  1135. Elf32_Sword r_addend; // Compute value for relocatable field by adding this
  1136. // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  1137. // and ELF32_R_INFO macros defined in the ELF specification:
  1138. Elf32_Word getSymbol() const { return (r_info >> 8); }
  1139. unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
  1140. void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
  1141. void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  1142. void setSymbolAndType(Elf32_Word s, unsigned char t) {
  1143. r_info = (s << 8) + t;
  1144. }
  1145. };
  1146. // Relocation entry, without explicit addend.
  1147. struct Elf64_Rel {
  1148. Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
  1149. Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
  1150. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  1151. // and ELF64_R_INFO macros defined in the ELF specification:
  1152. Elf64_Word getSymbol() const { return (r_info >> 32); }
  1153. Elf64_Word getType() const {
  1154. return (Elf64_Word) (r_info & 0xffffffffL);
  1155. }
  1156. void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
  1157. void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
  1158. void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
  1159. r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
  1160. }
  1161. };
  1162. // Relocation entry with explicit addend.
  1163. struct Elf64_Rela {
  1164. Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
  1165. Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
  1166. Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
  1167. // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  1168. // and ELF64_R_INFO macros defined in the ELF specification:
  1169. Elf64_Word getSymbol() const { return (r_info >> 32); }
  1170. Elf64_Word getType() const {
  1171. return (Elf64_Word) (r_info & 0xffffffffL);
  1172. }
  1173. void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
  1174. void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
  1175. void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
  1176. r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
  1177. }
  1178. };
  1179. // Program header for ELF32.
  1180. struct Elf32_Phdr {
  1181. Elf32_Word p_type; // Type of segment
  1182. Elf32_Off p_offset; // File offset where segment is located, in bytes
  1183. Elf32_Addr p_vaddr; // Virtual address of beginning of segment
  1184. Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
  1185. Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
  1186. Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
  1187. Elf32_Word p_flags; // Segment flags
  1188. Elf32_Word p_align; // Segment alignment constraint
  1189. };
  1190. // Program header for ELF64.
  1191. struct Elf64_Phdr {
  1192. Elf64_Word p_type; // Type of segment
  1193. Elf64_Word p_flags; // Segment flags
  1194. Elf64_Off p_offset; // File offset where segment is located, in bytes
  1195. Elf64_Addr p_vaddr; // Virtual address of beginning of segment
  1196. Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
  1197. Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
  1198. Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
  1199. Elf64_Xword p_align; // Segment alignment constraint
  1200. };
  1201. // Segment types.
  1202. enum {
  1203. PT_NULL = 0, // Unused segment.
  1204. PT_LOAD = 1, // Loadable segment.
  1205. PT_DYNAMIC = 2, // Dynamic linking information.
  1206. PT_INTERP = 3, // Interpreter pathname.
  1207. PT_NOTE = 4, // Auxiliary information.
  1208. PT_SHLIB = 5, // Reserved.
  1209. PT_PHDR = 6, // The program header table itself.
  1210. PT_TLS = 7, // The thread-local storage template.
  1211. PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
  1212. PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
  1213. PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
  1214. PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
  1215. // x86-64 program header types.
  1216. // These all contain stack unwind tables.
  1217. PT_GNU_EH_FRAME = 0x6474e550,
  1218. PT_SUNW_EH_FRAME = 0x6474e550,
  1219. PT_SUNW_UNWIND = 0x6464e550,
  1220. PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
  1221. PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
  1222. // ARM program header types.
  1223. PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
  1224. // These all contain stack unwind tables.
  1225. PT_ARM_EXIDX = 0x70000001,
  1226. PT_ARM_UNWIND = 0x70000001
  1227. };
  1228. // Segment flag bits.
  1229. enum {
  1230. PF_X = 1, // Execute
  1231. PF_W = 2, // Write
  1232. PF_R = 4, // Read
  1233. PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics.
  1234. PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
  1235. };
  1236. // Dynamic table entry for ELF32.
  1237. struct Elf32_Dyn
  1238. {
  1239. Elf32_Sword d_tag; // Type of dynamic table entry.
  1240. union
  1241. {
  1242. Elf32_Word d_val; // Integer value of entry.
  1243. Elf32_Addr d_ptr; // Pointer value of entry.
  1244. } d_un;
  1245. };
  1246. // Dynamic table entry for ELF64.
  1247. struct Elf64_Dyn
  1248. {
  1249. Elf64_Sxword d_tag; // Type of dynamic table entry.
  1250. union
  1251. {
  1252. Elf64_Xword d_val; // Integer value of entry.
  1253. Elf64_Addr d_ptr; // Pointer value of entry.
  1254. } d_un;
  1255. };
  1256. // Dynamic table entry tags.
  1257. enum {
  1258. DT_NULL = 0, // Marks end of dynamic array.
  1259. DT_NEEDED = 1, // String table offset of needed library.
  1260. DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
  1261. DT_PLTGOT = 3, // Address associated with linkage table.
  1262. DT_HASH = 4, // Address of symbolic hash table.
  1263. DT_STRTAB = 5, // Address of dynamic string table.
  1264. DT_SYMTAB = 6, // Address of dynamic symbol table.
  1265. DT_RELA = 7, // Address of relocation table (Rela entries).
  1266. DT_RELASZ = 8, // Size of Rela relocation table.
  1267. DT_RELAENT = 9, // Size of a Rela relocation entry.
  1268. DT_STRSZ = 10, // Total size of the string table.
  1269. DT_SYMENT = 11, // Size of a symbol table entry.
  1270. DT_INIT = 12, // Address of initialization function.
  1271. DT_FINI = 13, // Address of termination function.
  1272. DT_SONAME = 14, // String table offset of a shared objects name.
  1273. DT_RPATH = 15, // String table offset of library search path.
  1274. DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
  1275. DT_REL = 17, // Address of relocation table (Rel entries).
  1276. DT_RELSZ = 18, // Size of Rel relocation table.
  1277. DT_RELENT = 19, // Size of a Rel relocation entry.
  1278. DT_PLTREL = 20, // Type of relocation entry used for linking.
  1279. DT_DEBUG = 21, // Reserved for debugger.
  1280. DT_TEXTREL = 22, // Relocations exist for non-writable segments.
  1281. DT_JMPREL = 23, // Address of relocations associated with PLT.
  1282. DT_BIND_NOW = 24, // Process all relocations before execution.
  1283. DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
  1284. DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
  1285. DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
  1286. DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
  1287. DT_RUNPATH = 29, // String table offset of lib search path.
  1288. DT_FLAGS = 30, // Flags.
  1289. DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules
  1290. // for the interpretation of the d_un union.
  1291. DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
  1292. DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
  1293. DT_LOOS = 0x60000000, // Start of environment specific tags.
  1294. DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
  1295. DT_LOPROC = 0x70000000, // Start of processor specific tags.
  1296. DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.
  1297. DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count.
  1298. DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count.
  1299. DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1.
  1300. DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table.
  1301. DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
  1302. DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table.
  1303. DT_VERNEEDNUM = 0X6FFFFFFF // The number of entries in DT_VERNEED.
  1304. };
  1305. // DT_FLAGS values.
  1306. enum {
  1307. DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
  1308. DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
  1309. DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
  1310. DF_BIND_NOW = 0x08, // Process all relocations on load.
  1311. DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
  1312. };
  1313. // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
  1314. enum {
  1315. DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
  1316. DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
  1317. DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
  1318. DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
  1319. DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
  1320. DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
  1321. DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
  1322. DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
  1323. DF_1_DIRECT = 0x00000100, // Direct binding enabled.
  1324. DF_1_TRANS = 0x00000200,
  1325. DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
  1326. DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
  1327. DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
  1328. DF_1_CONFALT = 0x00002000, // Configuration alternative created.
  1329. DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
  1330. DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
  1331. DF_1_DISPRELPND = 0x00010000 // Disp reloc applied at run-time.
  1332. };
  1333. // ElfXX_VerDef structure version (GNU versioning)
  1334. enum {
  1335. VER_DEF_NONE = 0,
  1336. VER_DEF_CURRENT = 1
  1337. };
  1338. // VerDef Flags (ElfXX_VerDef::vd_flags)
  1339. enum {
  1340. VER_FLG_BASE = 0x1,
  1341. VER_FLG_WEAK = 0x2,
  1342. VER_FLG_INFO = 0x4
  1343. };
  1344. // Special constants for the version table. (SHT_GNU_versym/.gnu.version)
  1345. enum {
  1346. VER_NDX_LOCAL = 0, // Unversioned local symbol
  1347. VER_NDX_GLOBAL = 1, // Unversioned global symbol
  1348. VERSYM_VERSION = 0x7fff, // Version Index mask
  1349. VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
  1350. };
  1351. // ElfXX_VerNeed structure version (GNU versioning)
  1352. enum {
  1353. VER_NEED_NONE = 0,
  1354. VER_NEED_CURRENT = 1
  1355. };
  1356. } // end namespace ELF
  1357. } // end namespace llvm
  1358. #endif