|
|
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
#define LLVM_SUPPORT_MATHEXTRAS_H
#include "llvm/Support/SwapByteOrder.h"
#ifdef _MSC_VER
# include <intrin.h>
#endif
namespace llvm {
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline uint32_t Hi_32(uint64_t Value) { return static_cast<uint32_t>(Value >> 32); }
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline uint32_t Lo_32(uint64_t Value) { return static_cast<uint32_t>(Value); }
/// isInt - Checks if an integer fits into the given bit width.
template<unsigned N> inline bool isInt(int64_t x) { return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); } // Template specializations to get better code for common cases.
template<> inline bool isInt<8>(int64_t x) { return static_cast<int8_t>(x) == x; } template<> inline bool isInt<16>(int64_t x) { return static_cast<int16_t>(x) == x; } template<> inline bool isInt<32>(int64_t x) { return static_cast<int32_t>(x) == x; }
/// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
/// left by S.
template<unsigned N, unsigned S> inline bool isShiftedInt(int64_t x) { return isInt<N+S>(x) && (x % (1<<S) == 0); }
/// isUInt - Checks if an unsigned integer fits into the given bit width.
template<unsigned N> inline bool isUInt(uint64_t x) { return N >= 64 || x < (UINT64_C(1)<<(N)); } // Template specializations to get better code for common cases.
template<> inline bool isUInt<8>(uint64_t x) { return static_cast<uint8_t>(x) == x; } template<> inline bool isUInt<16>(uint64_t x) { return static_cast<uint16_t>(x) == x; } template<> inline bool isUInt<32>(uint64_t x) { return static_cast<uint32_t>(x) == x; }
/// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
/// left by S.
template<unsigned N, unsigned S> inline bool isShiftedUInt(uint64_t x) { return isUInt<N+S>(x) && (x % (1<<S) == 0); }
/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
/// bit width.
inline bool isUIntN(unsigned N, uint64_t x) { return x == (x & (~0ULL >> (64 - N))); }
/// isIntN - Checks if an signed integer fits into the given (dynamic)
/// bit width.
inline bool isIntN(unsigned N, int64_t x) { return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); }
/// isMask_32 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (32 bit
/// version). Ex. isMask_32(0x0000FFFFU) == true.
inline bool isMask_32(uint32_t Value) { return Value && ((Value + 1) & Value) == 0; }
/// isMask_64 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (64 bit
/// version).
inline bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; }
/// isShiftedMask_32 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline bool isShiftedMask_32(uint32_t Value) { return isMask_32((Value - 1) | Value); }
/// isShiftedMask_64 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (64 bit version.)
inline bool isShiftedMask_64(uint64_t Value) { return isMask_64((Value - 1) | Value); }
/// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(uint32_t Value) { return Value && !(Value & (Value - 1)); }
/// isPowerOf2_64 - This function returns true if the argument is a power of two
/// > 0 (64 bit edition.)
inline bool isPowerOf2_64(uint64_t Value) { return Value && !(Value & (Value - int64_t(1L))); }
/// ByteSwap_16 - This function returns a byte-swapped representation of the
/// 16-bit argument, Value.
inline uint16_t ByteSwap_16(uint16_t Value) { return sys::SwapByteOrder_16(Value); }
/// ByteSwap_32 - This function returns a byte-swapped representation of the
/// 32-bit argument, Value.
inline uint32_t ByteSwap_32(uint32_t Value) { return sys::SwapByteOrder_32(Value); }
/// ByteSwap_64 - This function returns a byte-swapped representation of the
/// 64-bit argument, Value.
inline uint64_t ByteSwap_64(uint64_t Value) { return sys::SwapByteOrder_64(Value); }
/// CountLeadingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the most significant bit to the first one
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountLeadingZeros_32(uint32_t Value) { unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clz(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 32; #endif
Count = __builtin_clz(Value); #else
if (!Value) return 32; Count = 0; // bisection method for count leading zeros
for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { uint32_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; } else { Count |= Shift; } } #endif
return Count; }
/// CountLeadingOnes_32 - this function performs the operation of
/// counting the number of ones from the most significant bit to the first zero
/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
/// Returns 32 if the word is all ones.
inline unsigned CountLeadingOnes_32(uint32_t Value) { return CountLeadingZeros_32(~Value); }
/// CountLeadingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the most significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned CountLeadingZeros_64(uint64_t Value) { unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clzll(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 64; #endif
Count = __builtin_clzll(Value); #else
if (sizeof(long) == sizeof(int64_t)) { if (!Value) return 64; Count = 0; // bisection method for count leading zeros
for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) { uint64_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; } else { Count |= Shift; } } } else { // get hi portion
uint32_t Hi = Hi_32(Value);
// if some bits in hi portion
if (Hi) { // leading zeros in hi portion plus all bits in lo portion
Count = CountLeadingZeros_32(Hi); } else { // get lo portion
uint32_t Lo = Lo_32(Value); // same as 32 bit value
Count = CountLeadingZeros_32(Lo)+32; } } #endif
return Count; }
/// CountLeadingOnes_64 - This function performs the operation
/// of counting the number of ones from the most significant bit to the first
/// zero bit (64 bit edition.)
/// Returns 64 if the word is all ones.
inline unsigned CountLeadingOnes_64(uint64_t Value) { return CountLeadingZeros_64(~Value); }
/// CountTrailingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the least significant bit to the first one
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountTrailingZeros_32(uint32_t Value) { #if __GNUC__ >= 4
return Value ? __builtin_ctz(Value) : 32; #else
static const unsigned Mod37BitPosition[] = { 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18 }; // Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return Mod37BitPosition[(-Value & Value) % 37];
return Mod37BitPosition[((1 + ~Value) & Value) % 37]; #endif
}
/// CountTrailingOnes_32 - this function performs the operation of
/// counting the number of ones from the least significant bit to the first zero
/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
/// Returns 32 if the word is all ones.
inline unsigned CountTrailingOnes_32(uint32_t Value) { return CountTrailingZeros_32(~Value); }
/// CountTrailingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the least significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned CountTrailingZeros_64(uint64_t Value) { #if __GNUC__ >= 4
return Value ? __builtin_ctzll(Value) : 64; #else
static const unsigned Mod67Position[] = { 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54, 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55, 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27, 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56, 7, 48, 35, 6, 34, 33, 0 }; // Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return Mod67Position[(-Value & Value) % 67];
return Mod67Position[((1 + ~Value) & Value) % 67]; #endif
}
/// CountTrailingOnes_64 - This function performs the operation
/// of counting the number of ones from the least significant bit to the first
/// zero bit (64 bit edition.)
/// Returns 64 if the word is all ones.
inline unsigned CountTrailingOnes_64(uint64_t Value) { return CountTrailingZeros_64(~Value); }
/// CountPopulation_32 - this function counts the number of set bits in a value.
/// Ex. CountPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
inline unsigned CountPopulation_32(uint32_t Value) { #if __GNUC__ >= 4
return __builtin_popcount(Value); #else
uint32_t v = Value - ((Value >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; #endif
}
/// CountPopulation_64 - this function counts the number of set bits in a value,
/// (64 bit edition.)
inline unsigned CountPopulation_64(uint64_t Value) { #if __GNUC__ >= 4
return __builtin_popcountll(Value); #else
uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL); v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); #endif
}
/// Log2_32 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(uint32_t Value) { return 31 - CountLeadingZeros_32(Value); }
/// Log2_64 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) { return 63 - CountLeadingZeros_64(Value); }
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
/// value, 32 if the value is zero. (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(uint32_t Value) { return 32-CountLeadingZeros_32(Value-1); }
/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
/// value, 64 if the value is zero. (64 bit edition.)
inline unsigned Log2_64_Ceil(uint64_t Value) { return 64-CountLeadingZeros_64(Value-1); }
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
/// values using Euclid's algorithm.
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { while (B) { uint64_t T = B; B = A % B; A = T; } return A; }
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
/// equivalent double.
inline double BitsToDouble(uint64_t Bits) { union { uint64_t L; double D; } T; T.L = Bits; return T.D; }
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
/// equivalent float.
inline float BitsToFloat(uint32_t Bits) { union { uint32_t I; float F; } T; T.I = Bits; return T.F; }
/// DoubleToBits - This function takes a double and returns the bit
/// equivalent 64-bit integer. Note that copying doubles around
/// changes the bits of NaNs on some hosts, notably x86, so this
/// routine cannot be used if these bits are needed.
inline uint64_t DoubleToBits(double Double) { union { uint64_t L; double D; } T; T.D = Double; return T.L; }
/// FloatToBits - This function takes a float and returns the bit
/// equivalent 32-bit integer. Note that copying floats around
/// changes the bits of NaNs on some hosts, notably x86, so this
/// routine cannot be used if these bits are needed.
inline uint32_t FloatToBits(float Float) { union { uint32_t I; float F; } T; T.F = Float; return T.I; }
/// Platform-independent wrappers for the C99 isnan() function.
int IsNAN(float f); int IsNAN(double d);
/// Platform-independent wrappers for the C99 isinf() function.
int IsInf(float f); int IsInf(double d);
/// MinAlign - A and B are either alignments or offsets. Return the minimum
/// alignment that may be assumed after adding the two together.
inline uint64_t MinAlign(uint64_t A, uint64_t B) { // The largest power of 2 that divides both A and B.
//
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return (A | B) & -(A | B);
return (A | B) & (1 + ~(A | B)); }
/// NextPowerOf2 - Returns the next power of two (in 64-bits)
/// that is strictly greater than A. Returns zero on overflow.
inline uint64_t NextPowerOf2(uint64_t A) { A |= (A >> 1); A |= (A >> 2); A |= (A >> 4); A |= (A >> 8); A |= (A >> 16); A |= (A >> 32); return A + 1; }
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// Examples:
/// \code
/// RoundUpToAlignment(5, 8) = 8
/// RoundUpToAlignment(17, 8) = 24
/// RoundUpToAlignment(~0LL, 8) = 0
/// \endcode
inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { return ((Value + Align - 1) / Align) * Align; }
/// Returns the offset to the next integer (mod 2**64) that is greater than
/// or equal to \p Value and is a multiple of \p Align. \p Align must be
/// non-zero.
inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { return RoundUpToAlignment(Value, Align) - Value; }
/// abs64 - absolute value of a 64-bit int. Not all environments support
/// "abs" on whatever their name for the 64-bit int type is. The absolute
/// value of the largest negative number is undefined, as with "abs".
inline int64_t abs64(int64_t x) { return (x < 0) ? -x : x; }
/// SignExtend32 - Sign extend B-bit number x to 32-bit int.
/// Usage int32_t r = SignExtend32<5>(x);
template <unsigned B> inline int32_t SignExtend32(uint32_t x) { return int32_t(x << (32 - B)) >> (32 - B); }
/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
/// Requires 0 < B <= 32.
inline int32_t SignExtend32(uint32_t X, unsigned B) { return int32_t(X << (32 - B)) >> (32 - B); }
/// SignExtend64 - Sign extend B-bit number x to 64-bit int.
/// Usage int64_t r = SignExtend64<5>(x);
template <unsigned B> inline int64_t SignExtend64(uint64_t x) { return int64_t(x << (64 - B)) >> (64 - B); }
/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
/// Requires 0 < B <= 64.
inline int64_t SignExtend64(uint64_t X, unsigned B) { return int64_t(X << (64 - B)) >> (64 - B); }
} // End llvm namespace
#endif
|