|
|
//===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface to describe the layout of a stack frame on the target machine.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETFRAMELOWERING_H
#define LLVM_TARGET_TARGETFRAMELOWERING_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include <utility>
#include <vector>
namespace llvm { class CalleeSavedInfo; class MachineFunction; class RegScavenger;
/// Information about stack frame layout on the target. It holds the direction
/// of stack growth, the known stack alignment on entry to each function, and
/// the offset to the locals area.
///
/// The offset to the local area is the offset from the stack pointer on
/// function entry to the first location where function data (local variables,
/// spill locations) can be stored.
class TargetFrameLowering { public: enum StackDirection { StackGrowsUp, // Adding to the stack increases the stack address
StackGrowsDown // Adding to the stack decreases the stack address
};
// Maps a callee saved register to a stack slot with a fixed offset.
struct SpillSlot { unsigned Reg; int Offset; // Offset relative to stack pointer on function entry.
}; private: StackDirection StackDir; unsigned StackAlignment; unsigned TransientStackAlignment; int LocalAreaOffset; bool StackRealignable; public: TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO, unsigned TransAl = 1, bool StackReal = true) : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl), LocalAreaOffset(LAO), StackRealignable(StackReal) {}
virtual ~TargetFrameLowering();
// These methods return information that describes the abstract stack layout
// of the target machine.
/// getStackGrowthDirection - Return the direction the stack grows
///
StackDirection getStackGrowthDirection() const { return StackDir; }
/// getStackAlignment - This method returns the number of bytes to which the
/// stack pointer must be aligned on entry to a function. Typically, this
/// is the largest alignment for any data object in the target.
///
unsigned getStackAlignment() const { return StackAlignment; }
/// getTransientStackAlignment - This method returns the number of bytes to
/// which the stack pointer must be aligned at all times, even between
/// calls.
///
unsigned getTransientStackAlignment() const { return TransientStackAlignment; }
/// isStackRealignable - This method returns whether the stack can be
/// realigned.
bool isStackRealignable() const { return StackRealignable; }
/// getOffsetOfLocalArea - This method returns the offset of the local area
/// from the stack pointer on entrance to a function.
///
int getOffsetOfLocalArea() const { return LocalAreaOffset; }
/// getCalleeSavedSpillSlots - This method returns a pointer to an array of
/// pairs, that contains an entry for each callee saved register that must be
/// spilled to a particular stack location if it is spilled.
///
/// Each entry in this array contains a <register,offset> pair, indicating the
/// fixed offset from the incoming stack pointer that each register should be
/// spilled at. If a register is not listed here, the code generator is
/// allowed to spill it anywhere it chooses.
///
virtual const SpillSlot * getCalleeSavedSpillSlots(unsigned &NumEntries) const { NumEntries = 0; return 0; }
/// targetHandlesStackFrameRounding - Returns true if the target is
/// responsible for rounding up the stack frame (probably at emitPrologue
/// time).
virtual bool targetHandlesStackFrameRounding() const { return false; }
/// emitProlog/emitEpilog - These methods insert prolog and epilog code into
/// the function.
virtual void emitPrologue(MachineFunction &MF) const = 0; virtual void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const = 0;
/// Adjust the prologue to have the function use segmented stacks. This works
/// by adding a check even before the "normal" function prologue.
virtual void adjustForSegmentedStacks(MachineFunction &MF) const { }
/// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
/// the assembly prologue to explicitly handle the stack.
virtual void adjustForHiPEPrologue(MachineFunction &MF) const { }
/// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
/// saved registers and returns true if it isn't possible / profitable to do
/// so by issuing a series of store instructions via
/// storeRegToStackSlot(). Returns false otherwise.
virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { return false; }
/// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
/// saved registers and returns true if it isn't possible / profitable to do
/// so by issuing a series of load instructions via loadRegToStackSlot().
/// Returns false otherwise.
virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { return false; }
/// hasFP - Return true if the specified function should have a dedicated
/// frame pointer register. For most targets this is true only if the function
/// has variable sized allocas or if frame pointer elimination is disabled.
virtual bool hasFP(const MachineFunction &MF) const = 0;
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
/// not required, we reserve argument space for call sites in the function
/// immediately on entry to the current function. This eliminates the need for
/// add/sub sp brackets around call sites. Returns true if the call frame is
/// included as part of the stack frame.
virtual bool hasReservedCallFrame(const MachineFunction &MF) const { return !hasFP(MF); }
/// canSimplifyCallFramePseudos - When possible, it's best to simplify the
/// call frame pseudo ops before doing frame index elimination. This is
/// possible only when frame index references between the pseudos won't
/// need adjusting for the call frame adjustments. Normally, that's true
/// if the function has a reserved call frame or a frame pointer. Some
/// targets (Thumb2, for example) may have more complicated criteria,
/// however, and can override this behavior.
virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const { return hasReservedCallFrame(MF) || hasFP(MF); }
/// getFrameIndexOffset - Returns the displacement from the frame register to
/// the stack frame of the specified index.
virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
/// getFrameIndexReference - This method should return the base register
/// and offset used to reference a frame index location. The offset is
/// returned directly, and the base register is returned via FrameReg.
virtual int getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const;
/// processFunctionBeforeCalleeSavedScan - This method is called immediately
/// before PrologEpilogInserter scans the physical registers used to determine
/// what callee saved registers should be spilled. This method is optional.
virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS = NULL) const {
}
/// processFunctionBeforeFrameFinalized - This method is called immediately
/// before the specified function's frame layout (MF.getFrameInfo()) is
/// finalized. Once the frame is finalized, MO_FrameIndex operands are
/// replaced with direct constants. This method is optional.
///
virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF, RegScavenger *RS = NULL) const { }
/// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
/// code insertion to eliminate call frame setup and destroy pseudo
/// instructions (but only if the Target is using them). It is responsible
/// for eliminating these instructions, replacing them with concrete
/// instructions. This method need only be implemented if using call frame
/// setup/destroy pseudo instructions.
///
virtual void eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { llvm_unreachable("Call Frame Pseudo Instructions do not exist on this " "target!"); } };
} // End llvm namespace
#endif
|