|
|
//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes how to lower LLVM code to machine code. This has two
// main components:
//
// 1. Which ValueTypes are natively supported by the target.
// 2. Which operations are supported for supported ValueTypes.
// 3. Cost thresholds for alternative implementations of certain operations.
//
// In addition it has a few other components, like information about FP
// immediates.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETLOWERING_H
#define LLVM_TARGET_TARGETLOWERING_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/DebugLoc.h"
#include "llvm/Target/TargetCallingConv.h"
#include "llvm/Target/TargetMachine.h"
#include <climits>
#include <map>
#include <vector>
namespace llvm { class CallInst; class CCState; class FastISel; class FunctionLoweringInfo; class ImmutableCallSite; class IntrinsicInst; class MachineBasicBlock; class MachineFunction; class MachineInstr; class MachineJumpTableInfo; class MCContext; class MCExpr; template<typename T> class SmallVectorImpl; class DataLayout; class TargetRegisterClass; class TargetLibraryInfo; class TargetLoweringObjectFile; class Value;
namespace Sched { enum Preference { None, // No preference
Source, // Follow source order.
RegPressure, // Scheduling for lowest register pressure.
Hybrid, // Scheduling for both latency and register pressure.
ILP, // Scheduling for ILP in low register pressure mode.
VLIW // Scheduling for VLIW targets.
}; }
/// TargetLoweringBase - This base class for TargetLowering contains the
/// SelectionDAG-independent parts that can be used from the rest of CodeGen.
class TargetLoweringBase { TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION; void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
public: /// LegalizeAction - This enum indicates whether operations are valid for a
/// target, and if not, what action should be used to make them valid.
enum LegalizeAction { Legal, // The target natively supports this operation.
Promote, // This operation should be executed in a larger type.
Expand, // Try to expand this to other ops, otherwise use a libcall.
Custom // Use the LowerOperation hook to implement custom lowering.
};
/// LegalizeTypeAction - This enum indicates whether a types are legal for a
/// target, and if not, what action should be used to make them valid.
enum LegalizeTypeAction { TypeLegal, // The target natively supports this type.
TypePromoteInteger, // Replace this integer with a larger one.
TypeExpandInteger, // Split this integer into two of half the size.
TypeSoftenFloat, // Convert this float to a same size integer type.
TypeExpandFloat, // Split this float into two of half the size.
TypeScalarizeVector, // Replace this one-element vector with its element.
TypeSplitVector, // Split this vector into two of half the size.
TypeWidenVector // This vector should be widened into a larger vector.
};
/// LegalizeKind holds the legalization kind that needs to happen to EVT
/// in order to type-legalize it.
typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
enum BooleanContent { // How the target represents true/false values.
UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
ZeroOrOneBooleanContent, // All bits zero except for bit 0.
ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
};
enum SelectSupportKind { ScalarValSelect, // The target supports scalar selects (ex: cmov).
ScalarCondVectorVal, // The target supports selects with a scalar condition
// and vector values (ex: cmov).
VectorMaskSelect // The target supports vector selects with a vector
// mask (ex: x86 blends).
};
static ISD::NodeType getExtendForContent(BooleanContent Content) { switch (Content) { case UndefinedBooleanContent: // Extend by adding rubbish bits.
return ISD::ANY_EXTEND; case ZeroOrOneBooleanContent: // Extend by adding zero bits.
return ISD::ZERO_EXTEND; case ZeroOrNegativeOneBooleanContent: // Extend by copying the sign bit.
return ISD::SIGN_EXTEND; } llvm_unreachable("Invalid content kind"); }
/// NOTE: The constructor takes ownership of TLOF.
explicit TargetLoweringBase(const TargetMachine &TM, const TargetLoweringObjectFile *TLOF); virtual ~TargetLoweringBase();
protected: /// \brief Initialize all of the actions to default values.
void initActions();
public: const TargetMachine &getTargetMachine() const { return TM; } const DataLayout *getDataLayout() const { return TD; } const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
bool isBigEndian() const { return !IsLittleEndian; } bool isLittleEndian() const { return IsLittleEndian; } // Return the pointer type for the given address space, defaults to
// the pointer type from the data layout.
// FIXME: The default needs to be removed once all the code is updated.
virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; } virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
EVT getShiftAmountTy(EVT LHSTy) const;
/// isSelectExpensive - Return true if the select operation is expensive for
/// this target.
bool isSelectExpensive() const { return SelectIsExpensive; }
virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
/// shouldSplitVectorElementType - Return true if a vector of the given type
/// should be split (TypeSplitVector) instead of promoted
/// (TypePromoteInteger) during type legalization.
virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
/// isIntDivCheap() - Return true if integer divide is usually cheaper than
/// a sequence of several shifts, adds, and multiplies for this target.
bool isIntDivCheap() const { return IntDivIsCheap; }
/// isSlowDivBypassed - Returns true if target has indicated at least one
/// type should be bypassed.
bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
/// getBypassSlowDivTypes - Returns map of slow types for division or
/// remainder with corresponding fast types
const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const { return BypassSlowDivWidths; }
/// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
/// srl/add/sra.
bool isPow2DivCheap() const { return Pow2DivIsCheap; }
/// isJumpExpensive() - Return true if Flow Control is an expensive operation
/// that should be avoided.
bool isJumpExpensive() const { return JumpIsExpensive; }
/// isPredictableSelectExpensive - Return true if selects are only cheaper
/// than branches if the branch is unlikely to be predicted right.
bool isPredictableSelectExpensive() const { return PredictableSelectIsExpensive; }
/// getSetCCResultType - Return the ValueType of the result of SETCC
/// operations. Also used to obtain the target's preferred type for
/// the condition operand of SELECT and BRCOND nodes. In the case of
/// BRCOND the argument passed is MVT::Other since there are no other
/// operands to get a type hint from.
virtual EVT getSetCCResultType(EVT VT) const;
/// getCmpLibcallReturnType - Return the ValueType for comparison
/// libcalls. Comparions libcalls include floating point comparion calls,
/// and Ordered/Unordered check calls on floating point numbers.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const;
/// getBooleanContents - For targets without i1 registers, this gives the
/// nature of the high-bits of boolean values held in types wider than i1.
/// "Boolean values" are special true/false values produced by nodes like
/// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
/// Not to be confused with general values promoted from i1.
/// Some cpus distinguish between vectors of boolean and scalars; the isVec
/// parameter selects between the two kinds. For example on X86 a scalar
/// boolean should be zero extended from i1, while the elements of a vector
/// of booleans should be sign extended from i1.
BooleanContent getBooleanContents(bool isVec) const { return isVec ? BooleanVectorContents : BooleanContents; }
/// getSchedulingPreference - Return target scheduling preference.
Sched::Preference getSchedulingPreference() const { return SchedPreferenceInfo; }
/// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
/// different scheduling heuristics for different nodes. This function returns
/// the preference (or none) for the given node.
virtual Sched::Preference getSchedulingPreference(SDNode *) const { return Sched::None; }
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
virtual const TargetRegisterClass *getRegClassFor(MVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; assert(RC && "This value type is not natively supported!"); return RC; }
/// getRepRegClassFor - Return the 'representative' register class for the
/// specified value type. The 'representative' register class is the largest
/// legal super-reg register class for the register class of the value type.
/// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
/// while the rep register class is GR64 on x86_64.
virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const { const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy]; return RC; }
/// getRepRegClassCostFor - Return the cost of the 'representative' register
/// class for the specified value type.
virtual uint8_t getRepRegClassCostFor(MVT VT) const { return RepRegClassCostForVT[VT.SimpleTy]; }
/// isTypeLegal - Return true if the target has native support for the
/// specified value type. This means that it has a register that directly
/// holds it without promotions or expansions.
bool isTypeLegal(EVT VT) const { assert(!VT.isSimple() || (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0; }
class ValueTypeActionImpl { /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
/// that indicates how instruction selection should deal with the type.
uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
public: ValueTypeActionImpl() { std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0); }
LegalizeTypeAction getTypeAction(MVT VT) const { return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy]; }
void setTypeAction(MVT VT, LegalizeTypeAction Action) { unsigned I = VT.SimpleTy; ValueTypeActions[I] = Action; } };
const ValueTypeActionImpl &getValueTypeActions() const { return ValueTypeActions; }
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal (return 'Legal') or we need to promote it to a larger
/// type (return 'Promote'), or we need to expand it into multiple registers
/// of smaller integer type (return 'Expand'). 'Custom' is not an option.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).first; } LegalizeTypeAction getTypeAction(MVT VT) const { return ValueTypeActions.getTypeAction(VT); }
/// getTypeToTransformTo - For types supported by the target, this is an
/// identity function. For types that must be promoted to larger types, this
/// returns the larger type to promote to. For integer types that are larger
/// than the largest integer register, this contains one step in the expansion
/// to get to the smaller register. For illegal floating point types, this
/// returns the integer type to transform to.
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).second; }
/// getTypeToExpandTo - For types supported by the target, this is an
/// identity function. For types that must be expanded (i.e. integer types
/// that are larger than the largest integer register or illegal floating
/// point types), this returns the largest legal type it will be expanded to.
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { assert(!VT.isVector()); while (true) { switch (getTypeAction(Context, VT)) { case TypeLegal: return VT; case TypeExpandInteger: VT = getTypeToTransformTo(Context, VT); break; default: llvm_unreachable("Type is not legal nor is it to be expanded!"); } } }
/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types. For example, EVT::v8f32 maps to 2 EVT::v4f32
/// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
/// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
///
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const;
/// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
/// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
/// this is the case, it returns true and store the intrinsic
/// information into the IntrinsicInfo that was passed to the function.
struct IntrinsicInfo { unsigned opc; // target opcode
EVT memVT; // memory VT
const Value* ptrVal; // value representing memory location
int offset; // offset off of ptrVal
unsigned align; // alignment
bool vol; // is volatile?
bool readMem; // reads memory?
bool writeMem; // writes memory?
};
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, unsigned /*Intrinsic*/) const { return false; }
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will materialize
/// the FP immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { return false; }
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/, EVT /*VT*/) const { return true; }
/// canOpTrap - Returns true if the operation can trap for the value type.
/// VT must be a legal type. By default, we optimistically assume most
/// operations don't trap except for divide and remainder.
virtual bool canOpTrap(unsigned Op, EVT VT) const;
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
/// used by Targets can use this to indicate if there is a suitable
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
/// pool entry.
virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/, EVT /*VT*/) const { return false; }
/// getOperationAction - Return how this operation should be treated: either
/// it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const { if (VT.isExtended()) return Expand; // If a target-specific SDNode requires legalization, require the target
// to provide custom legalization for it.
if (Op > array_lengthof(OpActions[0])) return Custom; unsigned I = (unsigned) VT.getSimpleVT().SimpleTy; return (LegalizeAction)OpActions[I][Op]; }
/// isOperationLegalOrCustom - Return true if the specified operation is
/// legal on this target or can be made legal with custom lowering. This
/// is used to help guide high-level lowering decisions.
bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom); }
/// isOperationLegalOrPromote - Return true if the specified operation is
/// legal on this target or can be made legal using promotion. This
/// is used to help guide high-level lowering decisions.
bool isOperationLegalOrPromote(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Promote); }
/// isOperationExpand - Return true if the specified operation is illegal on
/// this target or unlikely to be made legal with custom lowering. This is
/// used to help guide high-level lowering decisions.
bool isOperationExpand(unsigned Op, EVT VT) const { return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand); }
/// isOperationLegal - Return true if the specified operation is legal on this
/// target.
bool isOperationLegal(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && getOperationAction(Op, VT) == Legal; }
/// getLoadExtAction - Return how this load with extension should be treated:
/// either it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const { assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType]; }
/// isLoadExtLegal - Return true if the specified load with extension is legal
/// on this target.
bool isLoadExtLegal(unsigned ExtType, EVT VT) const { return VT.isSimple() && getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal; }
/// getTruncStoreAction - Return how this store with truncation should be
/// treated: either it is legal, needs to be promoted to a larger size, needs
/// to be expanded to some other code sequence, or the target has a custom
/// expander for it.
LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const { assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy] [MemVT.SimpleTy]; }
/// isTruncStoreLegal - Return true if the specified store with truncation is
/// legal on this target.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { return isTypeLegal(ValVT) && MemVT.isSimple() && getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal; }
/// getIndexedLoadAction - Return how the indexed load should be treated:
/// either it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.SimpleTy; return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); }
/// isIndexedLoadLegal - Return true if the specified indexed load is legal
/// on this target.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal || getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom); }
/// getIndexedStoreAction - Return how the indexed store should be treated:
/// either it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.SimpleTy; return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); }
/// isIndexedStoreLegal - Return true if the specified indexed load is legal
/// on this target.
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal || getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom); }
/// getCondCodeAction - Return how the condition code should be treated:
/// either it is legal, needs to be expanded to some other code sequence,
/// or the target has a custom expander for it.
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const { assert((unsigned)CC < array_lengthof(CondCodeActions) && (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 && "Table isn't big enough!"); /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
/// value and the upper 27 bits index into the second dimension of the
/// array to select what 64bit value to use.
LegalizeAction Action = (LegalizeAction) ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3); assert(Action != Promote && "Can't promote condition code!"); return Action; }
/// isCondCodeLegal - Return true if the specified condition code is legal
/// on this target.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { return getCondCodeAction(CC, VT) == Legal || getCondCodeAction(CC, VT) == Custom; }
/// getTypeToPromoteTo - If the action for this operation is to promote, this
/// method returns the ValueType to promote to.
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!");
// See if this has an explicit type specified.
std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>::const_iterator PTTI = PromoteToType.find(std::make_pair(Op, VT.SimpleTy)); if (PTTI != PromoteToType.end()) return PTTI->second;
assert((VT.isInteger() || VT.isFloatingPoint()) && "Cannot autopromote this type, add it with AddPromotedToType.");
MVT NVT = VT; do { NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1); assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!isTypeLegal(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; }
/// getValueType - Return the EVT corresponding to this LLVM type.
/// This is fixed by the LLVM operations except for the pointer size. If
/// AllowUnknown is true, this will return MVT::Other for types with no EVT
/// counterpart (e.g. structs), otherwise it will assert.
EVT getValueType(Type *Ty, bool AllowUnknown = false) const { // Lower scalar pointers to native pointer types.
if (Ty->isPointerTy()) return PointerTy;
if (Ty->isVectorTy()) { VectorType *VTy = cast<VectorType>(Ty); Type *Elm = VTy->getElementType(); // Lower vectors of pointers to native pointer types.
if (Elm->isPointerTy()) Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext()); return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), VTy->getNumElements()); } return EVT::getEVT(Ty, AllowUnknown); }
/// Return the MVT corresponding to this LLVM type. See getValueType.
MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const { return getValueType(Ty, AllowUnknown).getSimpleVT(); }
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
virtual unsigned getByValTypeAlignment(Type *Ty) const;
/// getRegisterType - Return the type of registers that this ValueType will
/// eventually require.
MVT getRegisterType(MVT VT) const { assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.SimpleTy]; }
/// getRegisterType - Return the type of registers that this ValueType will
/// eventually require.
MVT getRegisterType(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1; MVT RegisterVT; unsigned NumIntermediates; (void)getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, RegisterVT); return RegisterVT; } if (VT.isInteger()) { return getRegisterType(Context, getTypeToTransformTo(Context, VT)); } llvm_unreachable("Unsupported extended type!"); }
/// getNumRegisters - Return the number of registers that this ValueType will
/// eventually require. This is one for any types promoted to live in larger
/// registers, but may be more than one for types (like i64) that are split
/// into pieces. For types like i140, which are first promoted then expanded,
/// it is the number of registers needed to hold all the bits of the original
/// type. For an i140 on a 32 bit machine this means 5 registers.
unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(NumRegistersForVT)); return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1; MVT VT2; unsigned NumIntermediates; return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); } if (VT.isInteger()) { unsigned BitWidth = VT.getSizeInBits(); unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); return (BitWidth + RegWidth - 1) / RegWidth; } llvm_unreachable("Unsupported extended type!"); }
/// ShouldShrinkFPConstant - If true, then instruction selection should
/// seek to shrink the FP constant of the specified type to a smaller type
/// in order to save space and / or reduce runtime.
virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
/// hasTargetDAGCombine - If true, the target has custom DAG combine
/// transformations that it can perform for the specified node.
bool hasTargetDAGCombine(ISD::NodeType NT) const { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); }
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memset. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
/// @brief Get maximum # of store operations permitted for llvm.memset
unsigned getMaxStoresPerMemset(bool OptSize) const { return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset; }
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memcpy. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
/// @brief Get maximum # of store operations permitted for llvm.memcpy
unsigned getMaxStoresPerMemcpy(bool OptSize) const { return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy; }
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memmove. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
/// @brief Get maximum # of store operations permitted for llvm.memmove
unsigned getMaxStoresPerMemmove(bool OptSize) const { return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove; }
/// This function returns true if the target allows unaligned memory accesses.
/// of the specified type. If true, it also returns whether the unaligned
/// memory access is "fast" in the second argument by reference. This is used,
/// for example, in situations where an array copy/move/set is converted to a
/// sequence of store operations. It's use helps to ensure that such
/// replacements don't generate code that causes an alignment error (trap) on
/// the target machine.
/// @brief Determine if the target supports unaligned memory accesses.
virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const { return false; }
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/, unsigned /*SrcAlign*/, bool /*IsMemset*/, bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/, MachineFunction &/*MF*/) const { return MVT::Other; }
/// isSafeMemOpType - Returns true if it's safe to use load / store of the
/// specified type to expand memcpy / memset inline. This is mostly true
/// for all types except for some special cases. For example, on X86
/// targets without SSE2 f64 load / store are done with fldl / fstpl which
/// also does type conversion. Note the specified type doesn't have to be
/// legal as the hook is used before type legalization.
virtual bool isSafeMemOpType(MVT VT) const { return true; }
/// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
/// to implement llvm.setjmp.
bool usesUnderscoreSetJmp() const { return UseUnderscoreSetJmp; }
/// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
/// to implement llvm.longjmp.
bool usesUnderscoreLongJmp() const { return UseUnderscoreLongJmp; }
/// supportJumpTables - return whether the target can generate code for
/// jump tables.
bool supportJumpTables() const { return SupportJumpTables; }
/// getMinimumJumpTableEntries - return integer threshold on number of
/// blocks to use jump tables rather than if sequence.
int getMinimumJumpTableEntries() const { return MinimumJumpTableEntries; }
/// getStackPointerRegisterToSaveRestore - If a physical register, this
/// specifies the register that llvm.savestack/llvm.restorestack should save
/// and restore.
unsigned getStackPointerRegisterToSaveRestore() const { return StackPointerRegisterToSaveRestore; }
/// getExceptionPointerRegister - If a physical register, this returns
/// the register that receives the exception address on entry to a landing
/// pad.
unsigned getExceptionPointerRegister() const { return ExceptionPointerRegister; }
/// getExceptionSelectorRegister - If a physical register, this returns
/// the register that receives the exception typeid on entry to a landing
/// pad.
unsigned getExceptionSelectorRegister() const { return ExceptionSelectorRegister; }
/// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
/// set, the default is 200)
unsigned getJumpBufSize() const { return JumpBufSize; }
/// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
/// (if never set, the default is 0)
unsigned getJumpBufAlignment() const { return JumpBufAlignment; }
/// getMinStackArgumentAlignment - return the minimum stack alignment of an
/// argument.
unsigned getMinStackArgumentAlignment() const { return MinStackArgumentAlignment; }
/// getMinFunctionAlignment - return the minimum function alignment.
///
unsigned getMinFunctionAlignment() const { return MinFunctionAlignment; }
/// getPrefFunctionAlignment - return the preferred function alignment.
///
unsigned getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
/// getPrefLoopAlignment - return the preferred loop alignment.
///
unsigned getPrefLoopAlignment() const { return PrefLoopAlignment; }
/// getInsertFencesFor - return whether the DAG builder should automatically
/// insert fences and reduce ordering for atomics.
///
bool getInsertFencesForAtomic() const { return InsertFencesForAtomic; }
/// getStackCookieLocation - Return true if the target stores stack
/// protector cookies at a fixed offset in some non-standard address
/// space, and populates the address space and offset as
/// appropriate.
virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/, unsigned &/*Offset*/) const { return false; }
/// getMaximalGlobalOffset - Returns the maximal possible offset which can be
/// used for loads / stores from the global.
virtual unsigned getMaximalGlobalOffset() const { return 0; }
//===--------------------------------------------------------------------===//
/// \name Helpers for TargetTransformInfo implementations
/// @{
/// Get the ISD node that corresponds to the Instruction class opcode.
int InstructionOpcodeToISD(unsigned Opcode) const;
/// Estimate the cost of type-legalization and the legalized type.
std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
/// @}
//===--------------------------------------------------------------------===//
// TargetLowering Configuration Methods - These methods should be invoked by
// the derived class constructor to configure this object for the target.
//
/// \brief Reset the operation actions based on target options.
virtual void resetOperationActions() {}
protected: /// setBooleanContents - Specify how the target extends the result of a
/// boolean value from i1 to a wider type. See getBooleanContents.
void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; } /// setBooleanVectorContents - Specify how the target extends the result
/// of a vector boolean value from a vector of i1 to a wider type. See
/// getBooleanContents.
void setBooleanVectorContents(BooleanContent Ty) { BooleanVectorContents = Ty; }
/// setSchedulingPreference - Specify the target scheduling preference.
void setSchedulingPreference(Sched::Preference Pref) { SchedPreferenceInfo = Pref; }
/// setUseUnderscoreSetJmp - Indicate whether this target prefers to
/// use _setjmp to implement llvm.setjmp or the non _ version.
/// Defaults to false.
void setUseUnderscoreSetJmp(bool Val) { UseUnderscoreSetJmp = Val; }
/// setUseUnderscoreLongJmp - Indicate whether this target prefers to
/// use _longjmp to implement llvm.longjmp or the non _ version.
/// Defaults to false.
void setUseUnderscoreLongJmp(bool Val) { UseUnderscoreLongJmp = Val; }
/// setSupportJumpTables - Indicate whether the target can generate code for
/// jump tables.
void setSupportJumpTables(bool Val) { SupportJumpTables = Val; }
/// setMinimumJumpTableEntries - Indicate the number of blocks to generate
/// jump tables rather than if sequence.
void setMinimumJumpTableEntries(int Val) { MinimumJumpTableEntries = Val; }
/// setStackPointerRegisterToSaveRestore - If set to a physical register, this
/// specifies the register that llvm.savestack/llvm.restorestack should save
/// and restore.
void setStackPointerRegisterToSaveRestore(unsigned R) { StackPointerRegisterToSaveRestore = R; }
/// setExceptionPointerRegister - If set to a physical register, this sets
/// the register that receives the exception address on entry to a landing
/// pad.
void setExceptionPointerRegister(unsigned R) { ExceptionPointerRegister = R; }
/// setExceptionSelectorRegister - If set to a physical register, this sets
/// the register that receives the exception typeid on entry to a landing
/// pad.
void setExceptionSelectorRegister(unsigned R) { ExceptionSelectorRegister = R; }
/// SelectIsExpensive - Tells the code generator not to expand operations
/// into sequences that use the select operations if possible.
void setSelectIsExpensive(bool isExpensive = true) { SelectIsExpensive = isExpensive; }
/// JumpIsExpensive - Tells the code generator not to expand sequence of
/// operations into a separate sequences that increases the amount of
/// flow control.
void setJumpIsExpensive(bool isExpensive = true) { JumpIsExpensive = isExpensive; }
/// setIntDivIsCheap - Tells the code generator that integer divide is
/// expensive, and if possible, should be replaced by an alternate sequence
/// of instructions not containing an integer divide.
void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
/// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) { BypassSlowDivWidths[SlowBitWidth] = FastBitWidth; }
/// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
/// srl/add/sra for a signed divide by power of two, and let the target handle
/// it.
void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
/// addRegisterClass - Add the specified register class as an available
/// regclass for the specified value type. This indicates the selector can
/// handle values of that class natively.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC) { assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT)); AvailableRegClasses.push_back(std::make_pair(VT, RC)); RegClassForVT[VT.SimpleTy] = RC; }
/// clearRegisterClasses - Remove all register classes.
void clearRegisterClasses() { memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
AvailableRegClasses.clear(); }
/// \brief Remove all operation actions.
void clearOperationActions() { }
/// findRepresentativeClass - Return the largest legal super-reg register class
/// of the register class for the specified type and its associated "cost".
virtual std::pair<const TargetRegisterClass*, uint8_t> findRepresentativeClass(MVT VT) const;
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void computeRegisterProperties();
/// setOperationAction - Indicate that the specified operation does not work
/// with the specified type and indicate what to do about it.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) { assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action; }
/// setLoadExtAction - Indicate that the specified load with extension does
/// not work with the specified type and indicate what to do about it.
void setLoadExtAction(unsigned ExtType, MVT VT, LegalizeAction Action) { assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action; }
/// setTruncStoreAction - Indicate that the specified truncating store does
/// not work with the specified type and indicate what to do about it.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) { assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action; }
/// setIndexedLoadAction - Indicate that the specified indexed load does or
/// does not work with the specified type and indicate what to do abort
/// it. NOTE: All indexed mode loads are initialized to Expand in
/// TargetLowering.cpp
void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Load action are kept in the upper half.
IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; }
/// setIndexedStoreAction - Indicate that the specified indexed store does or
/// does not work with the specified type and indicate what to do about
/// it. NOTE: All indexed mode stores are initialized to Expand in
/// TargetLowering.cpp
void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Store action are kept in the lower half.
IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); }
/// setCondCodeAction - Indicate that the specified condition code is or isn't
/// supported on the target and indicate what to do about it.
void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && (unsigned)CC < array_lengthof(CondCodeActions) && "Table isn't big enough!"); /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
/// value and the upper 27 bits index into the second dimension of the
/// array to select what 64bit value to use.
CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5] &= ~(uint64_t(3UL) << (VT.SimpleTy & 0x1F)*2); CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5] |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2; }
/// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
/// promotion code defaults to trying a larger integer/fp until it can find
/// one that works. If that default is insufficient, this method can be used
/// by the target to override the default.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; }
/// setTargetDAGCombine - Targets should invoke this method for each target
/// independent node that they want to provide a custom DAG combiner for by
/// implementing the PerformDAGCombine virtual method.
void setTargetDAGCombine(ISD::NodeType NT) { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); }
/// setJumpBufSize - Set the target's required jmp_buf buffer size (in
/// bytes); default is 200
void setJumpBufSize(unsigned Size) { JumpBufSize = Size; }
/// setJumpBufAlignment - Set the target's required jmp_buf buffer
/// alignment (in bytes); default is 0
void setJumpBufAlignment(unsigned Align) { JumpBufAlignment = Align; }
/// setMinFunctionAlignment - Set the target's minimum function alignment (in
/// log2(bytes))
void setMinFunctionAlignment(unsigned Align) { MinFunctionAlignment = Align; }
/// setPrefFunctionAlignment - Set the target's preferred function alignment.
/// This should be set if there is a performance benefit to
/// higher-than-minimum alignment (in log2(bytes))
void setPrefFunctionAlignment(unsigned Align) { PrefFunctionAlignment = Align; }
/// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
/// alignment is zero, it means the target does not care about loop alignment.
/// The alignment is specified in log2(bytes).
void setPrefLoopAlignment(unsigned Align) { PrefLoopAlignment = Align; }
/// setMinStackArgumentAlignment - Set the minimum stack alignment of an
/// argument (in log2(bytes)).
void setMinStackArgumentAlignment(unsigned Align) { MinStackArgumentAlignment = Align; }
/// setInsertFencesForAtomic - Set if the DAG builder should
/// automatically insert fences and reduce the order of atomic memory
/// operations to Monotonic.
void setInsertFencesForAtomic(bool fence) { InsertFencesForAtomic = fence; }
public: //===--------------------------------------------------------------------===//
// Addressing mode description hooks (used by LSR etc).
//
/// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
/// same BB as Load/Store instructions reading the address. This allows as
/// much computation as possible to be done in the address mode for that
/// operand. This hook lets targets also pass back when this should be done
/// on intrinsics which load/store.
virtual bool GetAddrModeArguments(IntrinsicInst *I, SmallVectorImpl<Value*> &Ops, Type *&AccessTy) const { return false; }
/// AddrMode - This represents an addressing mode of:
/// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
/// If BaseGV is null, there is no BaseGV.
/// If BaseOffs is zero, there is no base offset.
/// If HasBaseReg is false, there is no base register.
/// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
/// no scale.
///
struct AddrMode { GlobalValue *BaseGV; int64_t BaseOffs; bool HasBaseReg; int64_t Scale; AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {} };
/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type.
/// TODO: Handle pre/postinc as well.
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
virtual bool isLegalICmpImmediate(int64_t) const { return true; }
/// isLegalAddImmediate - Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can add
/// a register with the immediate without having to materialize the
/// immediate into a register.
virtual bool isLegalAddImmediate(int64_t) const { return true; }
/// isTruncateFree - Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; }
virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const { return false; }
/// isZExtFree - Return true if any actual instruction that defines a
/// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
/// register. This does not necessarily include registers defined in
/// unknown ways, such as incoming arguments, or copies from unknown
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
/// all instructions that define 32-bit values implicit zero-extend the
/// result out to 64 bits.
virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; }
virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const { return false; }
/// isZExtFree - Return true if zero-extending the specific node Val to type
/// VT2 is free (either because it's implicitly zero-extended such as ARM
/// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
virtual bool isZExtFree(SDValue Val, EVT VT2) const { return isZExtFree(Val.getValueType(), VT2); }
/// isFNegFree - Return true if an fneg operation is free to the point where
/// it is never worthwhile to replace it with a bitwise operation.
virtual bool isFNegFree(EVT) const { return false; }
/// isFAbsFree - Return true if an fneg operation is free to the point where
/// it is never worthwhile to replace it with a bitwise operation.
virtual bool isFAbsFree(EVT) const { return false; }
/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
/// is expanded to mul + add.
virtual bool isFMAFasterThanMulAndAdd(EVT) const { return false; }
/// isNarrowingProfitable - Return true if it's profitable to narrow
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
/// from i32 to i8 but not from i32 to i16.
virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { return false; }
//===--------------------------------------------------------------------===//
// Runtime Library hooks
//
/// setLibcallName - Rename the default libcall routine name for the specified
/// libcall.
void setLibcallName(RTLIB::Libcall Call, const char *Name) { LibcallRoutineNames[Call] = Name; }
/// getLibcallName - Get the libcall routine name for the specified libcall.
///
const char *getLibcallName(RTLIB::Libcall Call) const { return LibcallRoutineNames[Call]; }
/// setCmpLibcallCC - Override the default CondCode to be used to test the
/// result of the comparison libcall against zero.
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { CmpLibcallCCs[Call] = CC; }
/// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
/// the comparison libcall against zero.
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { return CmpLibcallCCs[Call]; }
/// setLibcallCallingConv - Set the CallingConv that should be used for the
/// specified libcall.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { LibcallCallingConvs[Call] = CC; }
/// getLibcallCallingConv - Get the CallingConv that should be used for the
/// specified libcall.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { return LibcallCallingConvs[Call]; }
private: const TargetMachine &TM; const DataLayout *TD; const TargetLoweringObjectFile &TLOF;
/// PointerTy - The type to use for pointers for the default address space,
/// usually i32 or i64.
///
MVT PointerTy;
/// IsLittleEndian - True if this is a little endian target.
///
bool IsLittleEndian;
/// SelectIsExpensive - Tells the code generator not to expand operations
/// into sequences that use the select operations if possible.
bool SelectIsExpensive;
/// IntDivIsCheap - Tells the code generator not to expand integer divides by
/// constants into a sequence of muls, adds, and shifts. This is a hack until
/// a real cost model is in place. If we ever optimize for size, this will be
/// set to true unconditionally.
bool IntDivIsCheap;
/// BypassSlowDivMap - Tells the code generator to bypass slow divide or
/// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
/// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
/// integer div/rem when the operands are positive and less than 256.
DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
/// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
/// srl/add/sra for a signed divide by power of two, and let the target handle
/// it.
bool Pow2DivIsCheap;
/// JumpIsExpensive - Tells the code generator that it shouldn't generate
/// extra flow control instructions and should attempt to combine flow
/// control instructions via predication.
bool JumpIsExpensive;
/// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
/// llvm.setjmp. Defaults to false.
bool UseUnderscoreSetJmp;
/// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
/// llvm.longjmp. Defaults to false.
bool UseUnderscoreLongJmp;
/// SupportJumpTables - Whether the target can generate code for jumptables.
/// If it's not true, then each jumptable must be lowered into if-then-else's.
bool SupportJumpTables;
/// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
int MinimumJumpTableEntries;
/// BooleanContents - Information about the contents of the high-bits in
/// boolean values held in a type wider than i1. See getBooleanContents.
BooleanContent BooleanContents; /// BooleanVectorContents - Information about the contents of the high-bits
/// in boolean vector values when the element type is wider than i1. See
/// getBooleanContents.
BooleanContent BooleanVectorContents;
/// SchedPreferenceInfo - The target scheduling preference: shortest possible
/// total cycles or lowest register usage.
Sched::Preference SchedPreferenceInfo;
/// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
unsigned JumpBufSize;
/// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
/// buffers
unsigned JumpBufAlignment;
/// MinStackArgumentAlignment - The minimum alignment that any argument
/// on the stack needs to have.
///
unsigned MinStackArgumentAlignment;
/// MinFunctionAlignment - The minimum function alignment (used when
/// optimizing for size, and to prevent explicitly provided alignment
/// from leading to incorrect code).
///
unsigned MinFunctionAlignment;
/// PrefFunctionAlignment - The preferred function alignment (used when
/// alignment unspecified and optimizing for speed).
///
unsigned PrefFunctionAlignment;
/// PrefLoopAlignment - The preferred loop alignment.
///
unsigned PrefLoopAlignment;
/// InsertFencesForAtomic - Whether the DAG builder should automatically
/// insert fences and reduce ordering for atomics. (This will be set for
/// for most architectures with weak memory ordering.)
bool InsertFencesForAtomic;
/// StackPointerRegisterToSaveRestore - If set to a physical register, this
/// specifies the register that llvm.savestack/llvm.restorestack should save
/// and restore.
unsigned StackPointerRegisterToSaveRestore;
/// ExceptionPointerRegister - If set to a physical register, this specifies
/// the register that receives the exception address on entry to a landing
/// pad.
unsigned ExceptionPointerRegister;
/// ExceptionSelectorRegister - If set to a physical register, this specifies
/// the register that receives the exception typeid on entry to a landing
/// pad.
unsigned ExceptionSelectorRegister;
/// RegClassForVT - This indicates the default register class to use for
/// each ValueType the target supports natively.
const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
/// RepRegClassForVT - This indicates the "representative" register class to
/// use for each ValueType the target supports natively. This information is
/// used by the scheduler to track register pressure. By default, the
/// representative register class is the largest legal super-reg register
/// class of the register class of the specified type. e.g. On x86, i8, i16,
/// and i32's representative class would be GR32.
const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
/// RepRegClassCostForVT - This indicates the "cost" of the "representative"
/// register class for each ValueType. The cost is used by the scheduler to
/// approximate register pressure.
uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
/// TransformToType - For any value types we are promoting or expanding, this
/// contains the value type that we are changing to. For Expanded types, this
/// contains one step of the expand (e.g. i64 -> i32), even if there are
/// multiple steps required (e.g. i64 -> i16). For types natively supported
/// by the system, this holds the same type (e.g. i32 -> i32).
MVT TransformToType[MVT::LAST_VALUETYPE];
/// OpActions - For each operation and each value type, keep a LegalizeAction
/// that indicates how instruction selection should deal with the operation.
/// Most operations are Legal (aka, supported natively by the target), but
/// operations that are not should be described. Note that operations on
/// non-legal value types are not described here.
uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
/// LoadExtActions - For each load extension type and each value type,
/// keep a LegalizeAction that indicates how instruction selection should deal
/// with a load of a specific value type and extension type.
uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
/// TruncStoreActions - For each value type pair keep a LegalizeAction that
/// indicates whether a truncating store of a specific value type and
/// truncating type is legal.
uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
/// IndexedModeActions - For each indexed mode and each value type,
/// keep a pair of LegalizeAction that indicates how instruction
/// selection should deal with the load / store. The first dimension is the
/// value_type for the reference. The second dimension represents the various
/// modes for load store.
uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
/// CondCodeActions - For each condition code (ISD::CondCode) keep a
/// LegalizeAction that indicates how instruction selection should
/// deal with the condition code.
/// Because each CC action takes up 2 bits, we need to have the array size
/// be large enough to fit all of the value types. This can be done by
/// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
ValueTypeActionImpl ValueTypeActions;
public: LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const { // If this is a simple type, use the ComputeRegisterProp mechanism.
if (VT.isSimple()) { MVT SVT = VT.getSimpleVT(); assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); MVT NVT = TransformToType[SVT.SimpleTy]; LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
assert( (LA == TypeLegal || ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && "Promote may not follow Expand or Promote");
if (LA == TypeSplitVector) return LegalizeKind(LA, EVT::getVectorVT(Context, SVT.getVectorElementType(), SVT.getVectorNumElements()/2)); if (LA == TypeScalarizeVector) return LegalizeKind(LA, SVT.getVectorElementType()); return LegalizeKind(LA, NVT); }
// Handle Extended Scalar Types.
if (!VT.isVector()) { assert(VT.isInteger() && "Float types must be simple"); unsigned BitSize = VT.getSizeInBits(); // First promote to a power-of-two size, then expand if necessary.
if (BitSize < 8 || !isPowerOf2_32(BitSize)) { EVT NVT = VT.getRoundIntegerType(Context); assert(NVT != VT && "Unable to round integer VT"); LegalizeKind NextStep = getTypeConversion(Context, NVT); // Avoid multi-step promotion.
if (NextStep.first == TypePromoteInteger) return NextStep; // Return rounded integer type.
return LegalizeKind(TypePromoteInteger, NVT); }
return LegalizeKind(TypeExpandInteger, EVT::getIntegerVT(Context, VT.getSizeInBits()/2)); }
// Handle vector types.
unsigned NumElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType();
// Vectors with only one element are always scalarized.
if (NumElts == 1) return LegalizeKind(TypeScalarizeVector, EltVT);
// Try to widen vector elements until a legal type is found.
if (EltVT.isInteger()) { // Vectors with a number of elements that is not a power of two are always
// widened, for example <3 x float> -> <4 x float>.
if (!VT.isPow2VectorType()) { NumElts = (unsigned)NextPowerOf2(NumElts); EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); return LegalizeKind(TypeWidenVector, NVT); }
// Examine the element type.
LegalizeKind LK = getTypeConversion(Context, EltVT);
// If type is to be expanded, split the vector.
// <4 x i140> -> <2 x i140>
if (LK.first == TypeExpandInteger) return LegalizeKind(TypeSplitVector, EVT::getVectorVT(Context, EltVT, NumElts / 2));
// Promote the integer element types until a legal vector type is found
// or until the element integer type is too big. If a legal type was not
// found, fallback to the usual mechanism of widening/splitting the
// vector.
EVT OldEltVT = EltVT; while (1) { // Increase the bitwidth of the element to the next pow-of-two
// (which is greater than 8 bits).
EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits() ).getRoundIntegerType(Context);
// Stop trying when getting a non-simple element type.
// Note that vector elements may be greater than legal vector element
// types. Example: X86 XMM registers hold 64bit element on 32bit systems.
if (!EltVT.isSimple()) break;
// Build a new vector type and check if it is legal.
MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); // Found a legal promoted vector type.
if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) return LegalizeKind(TypePromoteInteger, EVT::getVectorVT(Context, EltVT, NumElts)); }
// Reset the type to the unexpanded type if we did not find a legal vector
// type with a promoted vector element type.
EltVT = OldEltVT; }
// Try to widen the vector until a legal type is found.
// If there is no wider legal type, split the vector.
while (1) { // Round up to the next power of 2.
NumElts = (unsigned)NextPowerOf2(NumElts);
// If there is no simple vector type with this many elements then there
// cannot be a larger legal vector type. Note that this assumes that
// there are no skipped intermediate vector types in the simple types.
if (!EltVT.isSimple()) break; MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); if (LargerVector == MVT()) break;
// If this type is legal then widen the vector.
if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) return LegalizeKind(TypeWidenVector, LargerVector); }
// Widen odd vectors to next power of two.
if (!VT.isPow2VectorType()) { EVT NVT = VT.getPow2VectorType(Context); return LegalizeKind(TypeWidenVector, NVT); }
// Vectors with illegal element types are expanded.
EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); return LegalizeKind(TypeSplitVector, NVT); }
private: std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
/// TargetDAGCombineArray - Targets can specify ISD nodes that they would
/// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
/// which sets a bit in this array.
unsigned char TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
/// PromoteToType - For operations that must be promoted to a specific type,
/// this holds the destination type. This map should be sparse, so don't hold
/// it as an array.
///
/// Targets add entries to this map with AddPromotedToType(..), clients access
/// this with getTypeToPromoteTo(..).
std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> PromoteToType;
/// LibcallRoutineNames - Stores the name each libcall.
///
const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
/// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
/// of each of the comparison libcall against zero.
ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
/// LibcallCallingConvs - Stores the CallingConv that should be used for each
/// libcall.
CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
protected: /// When lowering \@llvm.memset this field specifies the maximum number of
/// store operations that may be substituted for the call to memset. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memset will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
/// with 16-bit alignment would result in four 2-byte stores and one 1-byte
/// store. This only applies to setting a constant array of a constant size.
/// @brief Specify maximum number of store instructions per memset call.
unsigned MaxStoresPerMemset;
/// Maximum number of stores operations that may be substituted for the call
/// to memset, used for functions with OptSize attribute.
unsigned MaxStoresPerMemsetOptSize;
/// When lowering \@llvm.memcpy this field specifies the maximum number of
/// store operations that may be substituted for a call to memcpy. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memcpy will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
/// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
/// and one 1-byte store. This only applies to copying a constant array of
/// constant size.
/// @brief Specify maximum bytes of store instructions per memcpy call.
unsigned MaxStoresPerMemcpy;
/// Maximum number of store operations that may be substituted for a call
/// to memcpy, used for functions with OptSize attribute.
unsigned MaxStoresPerMemcpyOptSize;
/// When lowering \@llvm.memmove this field specifies the maximum number of
/// store instructions that may be substituted for a call to memmove. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memmove will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
/// with 8-bit alignment would result in nine 1-byte stores. This only
/// applies to copying a constant array of constant size.
/// @brief Specify maximum bytes of store instructions per memmove call.
unsigned MaxStoresPerMemmove;
/// Maximum number of store instructions that may be substituted for a call
/// to memmove, used for functions with OpSize attribute.
unsigned MaxStoresPerMemmoveOptSize;
/// PredictableSelectIsExpensive - Tells the code generator that select is
/// more expensive than a branch if the branch is usually predicted right.
bool PredictableSelectIsExpensive;
protected: /// isLegalRC - Return true if the value types that can be represented by the
/// specified register class are all legal.
bool isLegalRC(const TargetRegisterClass *RC) const; };
//===----------------------------------------------------------------------===//
/// TargetLowering - This class defines information used to lower LLVM code to
/// legal SelectionDAG operators that the target instruction selector can accept
/// natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
///
class TargetLowering : public TargetLoweringBase { TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION; void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
public: /// NOTE: The constructor takes ownership of TLOF.
explicit TargetLowering(const TargetMachine &TM, const TargetLoweringObjectFile *TLOF);
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; }
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; }
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
virtual unsigned getJumpTableEncoding() const;
virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, MCContext &/*Ctx*/) const { llvm_unreachable("Need to implement this hook if target has custom JTIs"); }
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const;
/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
/// MCExpr.
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const;
/// isOffsetFoldingLegal - Return true if folding a constant offset
/// with the given GlobalAddress is legal. It is frequently not legal in
/// PIC relocation models.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const;
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, DebugLoc DL) const;
SDValue makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, unsigned NumOps, bool isSigned, DebugLoc dl) const;
//===--------------------------------------------------------------------===//
// TargetLowering Optimization Methods
//
/// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
/// SDValues for returning information from TargetLowering to its clients
/// that want to combine
struct TargetLoweringOpt { SelectionDAG &DAG; bool LegalTys; bool LegalOps; SDValue Old; SDValue New;
explicit TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO) : DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
bool LegalTypes() const { return LegalTys; } bool LegalOperations() const { return LegalOps; }
bool CombineTo(SDValue O, SDValue N) { Old = O; New = N; return true; }
/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if
/// there are any bits set in the constant that are not demanded. If so,
/// shrink the constant and return true.
bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
/// cast, but it could be generalized for targets with other types of
/// implicit widening casts.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, DebugLoc dl); };
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
/// DemandedMask bits of the result of Op are ever used downstream. If we can
/// use this information to simplify Op, create a new simplified DAG node and
/// return true, returning the original and new nodes in Old and New.
/// Otherwise, analyze the expression and return a mask of KnownOne and
/// KnownZero bits for the expression (used to simplify the caller).
/// The KnownZero/One bits may only be accurate for those bits in the
/// DemandedMask.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
/// computeMaskedBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
virtual void computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const;
/// ComputeNumSignBitsForTargetNode - This method can be implemented by
/// targets that want to expose additional information about sign bits to the
/// DAG Combiner.
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth = 0) const;
struct DAGCombinerInfo { void *DC; // The DAG Combiner object.
CombineLevel Level; bool CalledByLegalizer; public: SelectionDAG &DAG;
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc) : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; } bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; } bool isAfterLegalizeVectorOps() const { return Level == AfterLegalizeDAG; } CombineLevel getDAGCombineLevel() { return Level; } bool isCalledByLegalizer() const { return CalledByLegalizer; }
void AddToWorklist(SDNode *N); void RemoveFromWorklist(SDNode *N); SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); };
/// SimplifySetCC - Try to simplify a setcc built with the specified operands
/// and cc. If it is unable to simplify it, return a null SDValue.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, DebugLoc dl) const;
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
/// PerformDAGCombine - This method will be invoked for all target nodes and
/// for any target-independent nodes that the target has registered with
/// invoke it for.
///
/// The semantics are as follows:
/// Return Value:
/// SDValue.Val == 0 - No change was made
/// SDValue.Val == N - N was replaced, is dead, and is already handled.
/// otherwise - N should be replaced by the returned Operand.
///
/// In addition, methods provided by DAGCombinerInfo may be used to perform
/// more complex transformations.
///
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
/// isTypeDesirableForOp - Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
/// instruction encodings are longer and some i16 instructions are slow.
virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { // By default, assume all legal types are desirable.
return isTypeLegal(VT); }
/// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
/// to transform a floating point op of specified opcode to a equivalent op of
/// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, EVT /*VT*/) const { return false; }
/// IsDesirableToPromoteOp - This method query the target whether it is
/// beneficial for dag combiner to promote the specified node. If true, it
/// should return the desired promotion type by reference.
virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { return false; }
//===--------------------------------------------------------------------===//
// Lowering methods - These methods must be implemented by targets so that
// the SelectionDAGBuilder code knows how to lower these.
//
/// LowerFormalArguments - This hook must be implemented to lower the
/// incoming (formal) arguments, described by the Ins array, into the
/// specified DAG. The implementation should fill in the InVals array
/// with legal-type argument values, and return the resulting token
/// chain value.
///
virtual SDValue LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl<ISD::InputArg> &/*Ins*/, DebugLoc /*dl*/, SelectionDAG &/*DAG*/, SmallVectorImpl<SDValue> &/*InVals*/) const { llvm_unreachable("Not Implemented"); }
struct ArgListEntry { SDValue Node; Type* Ty; bool isSExt : 1; bool isZExt : 1; bool isInReg : 1; bool isSRet : 1; bool isNest : 1; bool isByVal : 1; bool isReturned : 1; uint16_t Alignment;
ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), isSRet(false), isNest(false), isByVal(false), isReturned(false), Alignment(0) { } }; typedef std::vector<ArgListEntry> ArgListTy;
/// CallLoweringInfo - This structure contains all information that is
/// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
/// SelectionDAG builder needs to lower a call, and targets will see this
/// struct in their LowerCall implementation.
struct CallLoweringInfo { SDValue Chain; Type *RetTy; bool RetSExt : 1; bool RetZExt : 1; bool IsVarArg : 1; bool IsInReg : 1; bool DoesNotReturn : 1; bool IsReturnValueUsed : 1;
// IsTailCall should be modified by implementations of
// TargetLowering::LowerCall that perform tail call conversions.
bool IsTailCall;
unsigned NumFixedArgs; CallingConv::ID CallConv; SDValue Callee; ArgListTy &Args; SelectionDAG &DAG; DebugLoc DL; ImmutableCallSite *CS; SmallVector<ISD::OutputArg, 32> Outs; SmallVector<SDValue, 32> OutVals; SmallVector<ISD::InputArg, 32> Ins;
/// CallLoweringInfo - Constructs a call lowering context based on the
/// ImmutableCallSite \p cs.
CallLoweringInfo(SDValue chain, Type *retTy, FunctionType *FTy, bool isTailCall, SDValue callee, ArgListTy &args, SelectionDAG &dag, DebugLoc dl, ImmutableCallSite &cs) : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)), RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()), IsInReg(cs.paramHasAttr(0, Attribute::InReg)), DoesNotReturn(cs.doesNotReturn()), IsReturnValueUsed(!cs.getInstruction()->use_empty()), IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()), CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag), DL(dl), CS(&cs) {}
/// CallLoweringInfo - Constructs a call lowering context based on the
/// provided call information.
CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt, bool isVarArg, bool isInReg, unsigned numFixedArgs, CallingConv::ID callConv, bool isTailCall, bool doesNotReturn, bool isReturnValueUsed, SDValue callee, ArgListTy &args, SelectionDAG &dag, DebugLoc dl) : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt), IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn), IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall), NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee), Args(args), DAG(dag), DL(dl), CS(NULL) {} };
/// LowerCallTo - This function lowers an abstract call to a function into an
/// actual call. This returns a pair of operands. The first element is the
/// return value for the function (if RetTy is not VoidTy). The second
/// element is the outgoing token chain. It calls LowerCall to do the actual
/// lowering.
std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
/// LowerCall - This hook must be implemented to lower calls into the
/// the specified DAG. The outgoing arguments to the call are described
/// by the Outs array, and the values to be returned by the call are
/// described by the Ins array. The implementation should fill in the
/// InVals array with legal-type return values from the call, and return
/// the resulting token chain value.
virtual SDValue LowerCall(CallLoweringInfo &/*CLI*/, SmallVectorImpl<SDValue> &/*InVals*/) const { llvm_unreachable("Not Implemented"); }
/// HandleByVal - Target-specific cleanup for formal ByVal parameters.
virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
/// CanLowerReturn - This hook should be implemented to check whether the
/// return values described by the Outs array can fit into the return
/// registers. If false is returned, an sret-demotion is performed.
///
virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, MachineFunction &/*MF*/, bool /*isVarArg*/, const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, LLVMContext &/*Context*/) const { // Return true by default to get preexisting behavior.
return true; }
/// LowerReturn - This hook must be implemented to lower outgoing
/// return values, described by the Outs array, into the specified
/// DAG. The implementation should return the resulting token chain
/// value.
///
virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, const SmallVectorImpl<SDValue> &/*OutVals*/, DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("Not Implemented"); }
/// isUsedByReturnOnly - Return true if result of the specified node is used
/// by a return node only. It also compute and return the input chain for the
/// tail call.
/// This is used to determine whether it is possible
/// to codegen a libcall as tail call at legalization time.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const { return false; }
/// mayBeEmittedAsTailCall - Return true if the target may be able emit the
/// call instruction as a tail call. This is used by optimization passes to
/// determine if it's profitable to duplicate return instructions to enable
/// tailcall optimization.
virtual bool mayBeEmittedAsTailCall(CallInst *) const { return false; }
/// getTypeForExtArgOrReturn - Return the type that should be used to zero or
/// sign extend a zeroext/signext integer argument or return value.
/// FIXME: Most C calling convention requires the return type to be promoted,
/// but this is not true all the time, e.g. i1 on x86-64. It is also not
/// necessary for non-C calling conventions. The frontend should handle this
/// and include all of the necessary information.
virtual MVT getTypeForExtArgOrReturn(MVT VT, ISD::NodeType /*ExtendKind*/) const { MVT MinVT = getRegisterType(MVT::i32); return VT.bitsLT(MinVT) ? MinVT : VT; }
/// LowerOperationWrapper - This callback is invoked by the type legalizer
/// to legalize nodes with an illegal operand type but legal result types.
/// It replaces the LowerOperation callback in the type Legalizer.
/// The reason we can not do away with LowerOperation entirely is that
/// LegalizeDAG isn't yet ready to use this callback.
/// TODO: Consider merging with ReplaceNodeResults.
/// The target places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
/// The default implementation calls LowerOperation.
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const;
/// LowerOperation - This callback is invoked for operations that are
/// unsupported by the target, which are registered to use 'custom' lowering,
/// and whose defined values are all legal.
/// If the target has no operations that require custom lowering, it need not
/// implement this. The default implementation of this aborts.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// ReplaceNodeResults - This callback is invoked when a node result type is
/// illegal for the target, and the operation was registered to use 'custom'
/// lowering for that result type. The target places new result values for
/// the node in Results (their number and types must exactly match those of
/// the original return values of the node), or leaves Results empty, which
/// indicates that the node is not to be custom lowered after all.
///
/// If the target has no operations that require custom lowering, it need not
/// implement this. The default implementation aborts.
virtual void ReplaceNodeResults(SDNode * /*N*/, SmallVectorImpl<SDValue> &/*Results*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("ReplaceNodeResults not implemented for this target!"); }
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
virtual FastISel *createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const { return 0; }
//===--------------------------------------------------------------------===//
// Inline Asm Support hooks
//
/// ExpandInlineAsm - This hook allows the target to expand an inline asm
/// call to be explicit llvm code if it wants to. This is useful for
/// turning simple inline asms into LLVM intrinsics, which gives the
/// compiler more information about the behavior of the code.
virtual bool ExpandInlineAsm(CallInst *) const { return false; }
enum ConstraintType { C_Register, // Constraint represents specific register(s).
C_RegisterClass, // Constraint represents any of register(s) in class.
C_Memory, // Memory constraint.
C_Other, // Something else.
C_Unknown // Unsupported constraint.
};
enum ConstraintWeight { // Generic weights.
CW_Invalid = -1, // No match.
CW_Okay = 0, // Acceptable.
CW_Good = 1, // Good weight.
CW_Better = 2, // Better weight.
CW_Best = 3, // Best weight.
// Well-known weights.
CW_SpecificReg = CW_Okay, // Specific register operands.
CW_Register = CW_Good, // Register operands.
CW_Memory = CW_Better, // Memory operands.
CW_Constant = CW_Best, // Constant operand.
CW_Default = CW_Okay // Default or don't know type.
};
/// AsmOperandInfo - This contains information for each constraint that we are
/// lowering.
struct AsmOperandInfo : public InlineAsm::ConstraintInfo { /// ConstraintCode - This contains the actual string for the code, like "m".
/// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
/// most closely matches the operand.
std::string ConstraintCode;
/// ConstraintType - Information about the constraint code, e.g. Register,
/// RegisterClass, Memory, Other, Unknown.
TargetLowering::ConstraintType ConstraintType;
/// CallOperandval - If this is the result output operand or a
/// clobber, this is null, otherwise it is the incoming operand to the
/// CallInst. This gets modified as the asm is processed.
Value *CallOperandVal;
/// ConstraintVT - The ValueType for the operand value.
MVT ConstraintVT;
/// isMatchingInputConstraint - Return true of this is an input operand that
/// is a matching constraint like "4".
bool isMatchingInputConstraint() const;
/// getMatchedOperand - If this is an input matching constraint, this method
/// returns the output operand it matches.
unsigned getMatchedOperand() const;
/// Copy constructor for copying from an AsmOperandInfo.
AsmOperandInfo(const AsmOperandInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintCode(info.ConstraintCode), ConstraintType(info.ConstraintType), CallOperandVal(info.CallOperandVal), ConstraintVT(info.ConstraintVT) { }
/// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfo(const InlineAsm::ConstraintInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintType(TargetLowering::C_Unknown), CallOperandVal(0), ConstraintVT(MVT::Other) { } };
typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
/// ParseConstraints - Split up the constraint string from the inline
/// assembly value into the specific constraints and their prefixes,
/// and also tie in the associated operand values.
/// If this returns an empty vector, and if the constraint string itself
/// isn't empty, there was an error parsing.
virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
/// Examine constraint type and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getMultipleConstraintMatchWeight( AsmOperandInfo &info, int maIndex) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const;
/// ComputeConstraintToUse - Determines the constraint code and constraint
/// type to use for the specific AsmOperandInfo, setting
/// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand
/// being passed in is available, it can be passed in as Op, otherwise an
/// empty SDValue can be passed.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG = 0) const;
/// getConstraintType - Given a constraint, return the type of constraint it
/// is for this target.
virtual ConstraintType getConstraintType(const std::string &Constraint) const;
/// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
/// {edx}), return the register number and the register class for the
/// register.
///
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
///
/// This should only be used for C_Register constraints. On error,
/// this returns a register number of 0 and a null register class pointer..
virtual std::pair<unsigned, const TargetRegisterClass*> getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand. This returns null if there is no replacement to
/// make.
virtual const char *LowerXConstraint(EVT ConstraintVT) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, SelectionDAG &DAG) const;
//===--------------------------------------------------------------------===//
// Div utility functions
//
SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, SelectionDAG &DAG) const; SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, std::vector<SDNode*> *Created) const; SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, std::vector<SDNode*> *Created) const;
//===--------------------------------------------------------------------===//
// Instruction Emitting Hooks
//
// EmitInstrWithCustomInserter - This method should be implemented by targets
// that mark instructions with the 'usesCustomInserter' flag. These
// instructions are special in various ways, which require special support to
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and this method is called to expand it into a sequence of
// instructions, potentially also creating new basic blocks and control flow.
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
/// AdjustInstrPostInstrSelection - This method should be implemented by
/// targets that mark instructions with the 'hasPostISelHook' flag. These
/// instructions must be adjusted after instruction selection by target hooks.
/// e.g. To fill in optional defs for ARM 's' setting instructions.
virtual void AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const; };
/// GetReturnInfo - Given an LLVM IR type and return type attributes,
/// compute the return value EVTs and flags, and optionally also
/// the offsets, if the return value is being lowered to memory.
void GetReturnInfo(Type* ReturnType, AttributeSet attr, SmallVectorImpl<ISD::OutputArg> &Outs, const TargetLowering &TLI);
} // end llvm namespace
#endif
|