#ifndef CRYPTOPP_MODARITH_H #define CRYPTOPP_MODARITH_H // implementations are in integer.cpp #include "cryptlib.h" #include "misc.h" #include "integer.h" #include "algebra.h" NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain; //! ring of congruence classes modulo n /*! \note this implementation represents each congruence class as the smallest non-negative integer in that class */ class CRYPTOPP_DLL ModularArithmetic : public AbstractRing { public: typedef int RandomizationParameter; typedef Integer Element; ModularArithmetic(const Integer &modulus = Integer::One()) : m_modulus(modulus), m_result((word)0, modulus.reg.size()) {} ModularArithmetic(const ModularArithmetic &ma) : AbstractRing(ma), m_modulus(ma.m_modulus), m_result((word)0, m_modulus.reg.size()) {} ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);} void DEREncode(BufferedTransformation &bt) const; void DEREncodeElement(BufferedTransformation &out, const Element &a) const; void BERDecodeElement(BufferedTransformation &in, Element &a) const; const Integer& GetModulus() const {return m_modulus;} void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());} virtual bool IsMontgomeryRepresentation() const {return false;} virtual Integer ConvertIn(const Integer &a) const {return a%m_modulus;} virtual Integer ConvertOut(const Integer &a) const {return a;} const Integer& Half(const Integer &a) const; bool Equal(const Integer &a, const Integer &b) const {return a==b;} const Integer& Identity() const {return Integer::Zero();} const Integer& Add(const Integer &a, const Integer &b) const; Integer& Accumulate(Integer &a, const Integer &b) const; const Integer& Inverse(const Integer &a) const; const Integer& Subtract(const Integer &a, const Integer &b) const; Integer& Reduce(Integer &a, const Integer &b) const; const Integer& Double(const Integer &a) const {return Add(a, a);} const Integer& MultiplicativeIdentity() const {return Integer::One();} const Integer& Multiply(const Integer &a, const Integer &b) const {return m_result1 = a*b%m_modulus;} const Integer& Square(const Integer &a) const {return m_result1 = a.Squared()%m_modulus;} bool IsUnit(const Integer &a) const {return Integer::Gcd(a, m_modulus).IsUnit();} const Integer& MultiplicativeInverse(const Integer &a) const {return m_result1 = a.InverseMod(m_modulus);} const Integer& Divide(const Integer &a, const Integer &b) const {return Multiply(a, MultiplicativeInverse(b));} Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; unsigned int MaxElementBitLength() const {return (m_modulus-1).BitCount();} unsigned int MaxElementByteLength() const {return (m_modulus-1).ByteCount();} Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct { return Element( rng , Integer( (long) 0) , m_modulus - Integer( (long) 1 ) ) ; } bool operator==(const ModularArithmetic &rhs) const {return m_modulus == rhs.m_modulus;} static const RandomizationParameter DefaultRandomizationParameter ; protected: Integer m_modulus; mutable Integer m_result, m_result1; }; // const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ; //! do modular arithmetics in Montgomery representation for increased speed /*! \note the Montgomery representation represents each congruence class [a] as a*r%n, where r is a convenient power of 2 */ class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic { public: MontgomeryRepresentation(const Integer &modulus); // modulus must be odd virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);} bool IsMontgomeryRepresentation() const {return true;} Integer ConvertIn(const Integer &a) const {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;} Integer ConvertOut(const Integer &a) const; const Integer& MultiplicativeIdentity() const {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;} const Integer& Multiply(const Integer &a, const Integer &b) const; const Integer& Square(const Integer &a) const; const Integer& MultiplicativeInverse(const Integer &a) const; Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const {return AbstractRing::CascadeExponentiate(x, e1, y, e2);} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {AbstractRing::SimultaneousExponentiate(results, base, exponents, exponentsCount);} private: Integer m_u; mutable IntegerSecBlock m_workspace; }; NAMESPACE_END #endif