//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// // nav_path.cpp // Encapsulation of a path through space // Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003 #include "cbase.h" #include "cs_gamerules.h" #include "cs_player.h" #include "nav_mesh.h" #include "cs_nav_path.h" #include "bot_util.h" #include "improv_locomotor.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #ifdef _WIN32 #pragma warning (disable:4701) // disable warning that variable *may* not be initialized #endif #define DrawLine( from, to, duration, red, green, blue ) NDebugOverlay::Line( from, to, red, green, blue, true, 0.1f ) //-------------------------------------------------------------------------------------------------------------- /** * Determine actual path positions */ bool CCSNavPath::ComputePathPositions( void ) { if (m_segmentCount == 0) return false; // start in first area's center m_path[0].pos = m_path[0].area->GetCenter(); m_path[0].ladder = NULL; m_path[0].how = NUM_TRAVERSE_TYPES; for( int i=1; ihow <= GO_WEST) // walk along the floor to the next area { to->ladder = NULL; // compute next point, keeping path as straight as possible from->area->ComputeClosestPointInPortal( to->area, (NavDirType)to->how, from->pos, &to->pos ); // move goal position into the goal area a bit const float stepInDist = 5.0f; // how far to "step into" an area - must be less than min area size AddDirectionVector( &to->pos, (NavDirType)to->how, stepInDist ); // we need to walk out of "from" area, so keep Z where we can reach it to->pos.z = from->area->GetZ( to->pos ); // if this is a "jump down" connection, we must insert an additional point on the path if (to->area->IsConnected( from->area, NUM_DIRECTIONS ) == false) { // this is a "jump down" link // compute direction of path just prior to "jump down" Vector2D dir; DirectionToVector2D( (NavDirType)to->how, &dir ); // shift top of "jump down" out a bit to "get over the ledge" const float pushDist = 25.0f; to->pos.x += pushDist * dir.x; to->pos.y += pushDist * dir.y; // insert a duplicate node to represent the bottom of the fall if (m_segmentCount < MAX_PATH_SEGMENTS-1) { // copy nodes down for( int j=m_segmentCount; j>i; --j ) m_path[j] = m_path[j-1]; // path is one node longer ++m_segmentCount; // move index ahead into the new node we just duplicated ++i; m_path[i].pos.x = to->pos.x + pushDist * dir.x; m_path[i].pos.y = to->pos.y + pushDist * dir.y; // put this one at the bottom of the fall m_path[i].pos.z = to->area->GetZ( m_path[i].pos ); } } } else if (to->how == GO_LADDER_UP) // to get to next area, must go up a ladder { // find our ladder const NavLadderConnectVector *ladders = from->area->GetLadders( CNavLadder::LADDER_UP ); int it; for( it=0; itCount(); ++it ) { CNavLadder *ladder = (*ladders)[ it ].ladder; // can't use "behind" area when ascending... if (ladder->m_topForwardArea == to->area || ladder->m_topLeftArea == to->area || ladder->m_topRightArea == to->area) { to->ladder = ladder; to->pos = ladder->m_bottom + ladder->GetNormal() * 2.0f * HalfHumanWidth; break; } } if (it == ladders->Count()) { //PrintIfWatched( "ERROR: Can't find ladder in path\n" ); return false; } } else if (to->how == GO_LADDER_DOWN) // to get to next area, must go down a ladder { // find our ladder const NavLadderConnectVector *ladders = from->area->GetLadders( CNavLadder::LADDER_DOWN ); int it; for( it=0; itCount(); ++it ) { CNavLadder *ladder = (*ladders)[ it ].ladder; if (ladder->m_bottomArea == to->area) { to->ladder = ladder; to->pos = ladder->m_top; to->pos = ladder->m_top - ladder->GetNormal() * 2.0f * HalfHumanWidth; break; } } if (it == ladders->Count()) { //PrintIfWatched( "ERROR: Can't find ladder in path\n" ); return false; } } } return true; } //-------------------------------------------------------------------------------------------------------------- /** * Return true if position is at the end of the path */ bool CCSNavPath::IsAtEnd( const Vector &pos ) const { if (!IsValid()) return false; const float epsilon = 20.0f; return (pos - GetEndpoint()).IsLengthLessThan( epsilon ); } //-------------------------------------------------------------------------------------------------------------- /** * Return length of path from start to finish */ float CCSNavPath::GetLength( void ) const { float length = 0.0f; for( int i=1; i= distAlong) { // desired point is on this segment of the path float delta = distAlong - lengthSoFar; float t = delta / segmentLength; *pointOnPath = m_path[i].pos + t * dir; return true; } lengthSoFar += segmentLength; } *pointOnPath = m_path[ GetSegmentCount()-1 ].pos; return true; } //-------------------------------------------------------------------------------------------------------------- /** * Return the node index closest to the given distance along the path without going over - returns (-1) if error */ int CCSNavPath::GetSegmentIndexAlongPath( float distAlong ) const { if (!IsValid()) return -1; if (distAlong <= 0.0f) { return 0; } float lengthSoFar = 0.0f; Vector dir; for( int i=1; i distAlong) { return i-1; } } return GetSegmentCount()-1; } //-------------------------------------------------------------------------------------------------------------- /** * Compute closest point on path to given point * NOTE: This does not do line-of-sight tests, so closest point may be thru the floor, etc */ bool CCSNavPath::FindClosestPointOnPath( const Vector *worldPos, int startIndex, int endIndex, Vector *close ) const { if (!IsValid() || close == NULL) return false; Vector along, toWorldPos; Vector pos; const Vector *from, *to; float length; float closeLength; float closeDistSq = 9999999999.9; float distSq; for( int i=startIndex; i<=endIndex; ++i ) { from = &m_path[i-1].pos; to = &m_path[i].pos; // compute ray along this path segment along = *to - *from; // make it a unit vector along the path length = along.NormalizeInPlace(); // compute vector from start of segment to our point toWorldPos = *worldPos - *from; // find distance of closest point on ray closeLength = DotProduct( toWorldPos, along ); // constrain point to be on path segment if (closeLength <= 0.0f) pos = *from; else if (closeLength >= length) pos = *to; else pos = *from + closeLength * along; distSq = (pos - *worldPos).LengthSqr(); // keep the closest point so far if (distSq < closeDistSq) { closeDistSq = distSq; *close = pos; } } return true; } //-------------------------------------------------------------------------------------------------------------- /** * Build trivial path when start and goal are in the same nav area */ bool CCSNavPath::BuildTrivialPath( const Vector &start, const Vector &goal ) { m_segmentCount = 0; CNavArea *startArea = TheNavMesh->GetNearestNavArea( start ); if (startArea == NULL) return false; CNavArea *goalArea = TheNavMesh->GetNearestNavArea( goal ); if (goalArea == NULL) return false; m_segmentCount = 2; m_path[0].area = startArea; m_path[0].pos.x = start.x; m_path[0].pos.y = start.y; m_path[0].pos.z = startArea->GetZ( start ); m_path[0].ladder = NULL; m_path[0].how = NUM_TRAVERSE_TYPES; m_path[1].area = goalArea; m_path[1].pos.x = goal.x; m_path[1].pos.y = goal.y; m_path[1].pos.z = goalArea->GetZ( goal ); m_path[1].ladder = NULL; m_path[1].how = NUM_TRAVERSE_TYPES; return true; } //-------------------------------------------------------------------------------------------------------------- /** * Draw the path for debugging. */ void CCSNavPath::Draw( const Vector &color ) { if (!IsValid()) return; for( int i=1; i anchor) { // remove redundant nodes between anchor and nextAnchor int removeCount = nextAnchor - anchor - 1; if (removeCount > 0) { for( int i=nextAnchor; iIsValid() == false) return; const CCSNavPath::PathSegment *node = (*m_path)[ m_segmentIndex ]; if (node == NULL) { m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_INVALID_PATH ); m_path->Invalidate(); return; } // handle ladders /* if (node->ladder) { const Vector *approachPos = NULL; const Vector *departPos = NULL; if (m_segmentIndex) approachPos = &(*m_path)[ m_segmentIndex-1 ]->pos; if (m_segmentIndex < m_path->GetSegmentCount()-1) departPos = &(*m_path)[ m_segmentIndex+1 ]->pos; if (!m_isLadderStarted) { // set up ladder movement m_improv->StartLadder( node->ladder, node->how, approachPos, departPos ); m_isLadderStarted = true; } // move improv along ladder if (m_improv->TraverseLadder( node->ladder, node->how, approachPos, departPos, deltaT )) { // completed ladder ++m_segmentIndex; } return; } */ // reset ladder init flag m_isLadderStarted = false; // // Check if we reached the end of the path // const float closeRange = 20.0f; if ((m_improv->GetFeet() - node->pos).IsLengthLessThan( closeRange )) { ++m_segmentIndex; if (m_segmentIndex >= m_path->GetSegmentCount()) { m_improv->OnMoveToSuccess( m_path->GetEndpoint() ); m_path->Invalidate(); return; } } m_goal = node->pos; const float aheadRange = 300.0f; m_segmentIndex = FindPathPoint( aheadRange, &m_goal, &m_behindIndex ); if (m_segmentIndex >= m_path->GetSegmentCount()) m_segmentIndex = m_path->GetSegmentCount()-1; bool isApproachingJumpArea = false; // // Crouching // if (!m_improv->IsUsingLadder()) { // because hostage crouching is not really supported by the engine, // if we are standing in a crouch area, we must crouch to avoid collisions if (m_improv->GetLastKnownArea() && m_improv->GetLastKnownArea()->GetAttributes() & NAV_MESH_CROUCH && !(m_improv->GetLastKnownArea()->GetAttributes() & NAV_MESH_JUMP)) { m_improv->Crouch(); } // if we are approaching a crouch area, crouch // if there are no crouch areas coming up, stand const float crouchRange = 50.0f; bool didCrouch = false; for( int i=m_segmentIndex; iGetSegmentCount(); ++i ) { const CNavArea *to = (*m_path)[i]->area; // if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump if (to->GetAttributes() & NAV_MESH_JUMP) { isApproachingJumpArea = true; break; } Vector close; to->GetClosestPointOnArea( m_improv->GetCentroid(), &close ); if ((close - m_improv->GetFeet()).AsVector2D().IsLengthGreaterThan( crouchRange )) break; if (to->GetAttributes() & NAV_MESH_CROUCH) { m_improv->Crouch(); didCrouch = true; break; } } if (!didCrouch && !m_improv->IsJumping()) { // no crouch areas coming up m_improv->StandUp(); } } // end crouching logic if (m_isDebug) { m_path->Draw(); UTIL_DrawBeamPoints( m_improv->GetCentroid(), m_goal + Vector( 0, 0, StepHeight ), 1, 255, 0, 255 ); UTIL_DrawBeamPoints( m_goal + Vector( 0, 0, StepHeight ), m_improv->GetCentroid(), 1, 255, 0, 255 ); } // check if improv becomes stuck m_stuckMonitor.Update( m_improv ); // if improv has been stuck for too long, give up const float giveUpTime = 2.0f; if (m_stuckMonitor.GetDuration() > giveUpTime) { m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_STUCK ); m_path->Invalidate(); return; } // if our goal is high above us, we must have fallen if (m_goal.z - m_improv->GetFeet().z > JumpCrouchHeight) { const float closeRange = 75.0f; Vector2D to( m_improv->GetFeet().x - m_goal.x, m_improv->GetFeet().y - m_goal.y ); if (to.IsLengthLessThan( closeRange )) { // we can't reach the goal position // check if we can reach the next node, in case this was a "jump down" situation const CCSNavPath::PathSegment *nextNode = (*m_path)[ m_behindIndex+1 ]; if (m_behindIndex >=0 && nextNode) { if (nextNode->pos.z - m_improv->GetFeet().z > JumpCrouchHeight) { // the next node is too high, too - we really did fall of the path m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_FELL_OFF ); m_path->Invalidate(); return; } } else { // fell trying to get to the last node in the path m_improv->OnMoveToFailure( m_path->GetEndpoint(), CImprovLocomotor::FAIL_FELL_OFF ); m_path->Invalidate(); return; } } } // avoid small obstacles if (avoidObstacles && !isApproachingJumpArea && !m_improv->IsJumping() && m_segmentIndex < m_path->GetSegmentCount()-1) { FeelerReflexAdjustment( &m_goal ); // currently, this is only used for hostages, and their collision physics stinks // do more feeler checks to avoid short obstacles /* const float inc = 0.25f; for( float t = 0.5f; t < 1.0f; t += inc ) { FeelerReflexAdjustment( &m_goal, t * StepHeight ); } */ } // move improv along path m_improv->TrackPath( m_goal, deltaT ); } //-------------------------------------------------------------------------------------------------------------- /** * Return the closest point to our current position on our current path * If "local" is true, only check the portion of the path surrounding m_pathIndex. */ int CNavPathFollower::FindOurPositionOnPath( Vector *close, bool local ) const { if (!m_path->IsValid()) return -1; Vector along, toFeet; Vector feet = m_improv->GetFeet(); Vector eyes = m_improv->GetEyes(); Vector pos; const Vector *from, *to; float length; float closeLength; float closeDistSq = 9999999999.9; int closeIndex = -1; float distSq; int start, end; if (local) { start = m_segmentIndex - 3; if (start < 1) start = 1; end = m_segmentIndex + 3; if (end > m_path->GetSegmentCount()) end = m_path->GetSegmentCount(); } else { start = 1; end = m_path->GetSegmentCount(); } for( int i=start; ipos; to = &(*m_path)[i]->pos; // compute ray along this path segment along = *to - *from; // make it a unit vector along the path length = along.NormalizeInPlace(); // compute vector from start of segment to our point toFeet = feet - *from; // find distance of closest point on ray closeLength = DotProduct( toFeet, along ); // constrain point to be on path segment if (closeLength <= 0.0f) pos = *from; else if (closeLength >= length) pos = *to; else pos = *from + closeLength * along; distSq = (pos - feet).LengthSqr(); // keep the closest point so far if (distSq < closeDistSq) { // don't use points we cant see Vector probe = pos + Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( eyes, probe, WALK_THRU_DOORS | WALK_THRU_BREAKABLES )) continue; // don't use points we cant reach //if (!IsStraightLinePathWalkable( &pos )) // continue; closeDistSq = distSq; if (close) *close = pos; closeIndex = i-1; } } return closeIndex; } //-------------------------------------------------------------------------------------------------------------- /** * Compute a point a fixed distance ahead along our path. * Returns path index just after point. */ int CNavPathFollower::FindPathPoint( float aheadRange, Vector *point, int *prevIndex ) { // find path index just past aheadRange int afterIndex; // finds the closest point on local area of path, and returns the path index just prior to it Vector close; int startIndex = FindOurPositionOnPath( &close, true ); if (prevIndex) *prevIndex = startIndex; if (startIndex <= 0) { // went off the end of the path // or next point in path is unwalkable (ie: jump-down) // keep same point return m_segmentIndex; } // if we are crouching, just follow the path exactly if (m_improv->IsCrouching()) { // we want to move to the immediately next point along the path from where we are now int index = startIndex+1; if (index >= m_path->GetSegmentCount()) index = m_path->GetSegmentCount()-1; *point = (*m_path)[ index ]->pos; // if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling // we must do a 2D check here, in case the goal point is floating in space due to jump down, etc const float closeEpsilon = 20.0f; // 10 while ((*point - close).AsVector2D().IsLengthLessThan( closeEpsilon )) { ++index; if (index >= m_path->GetSegmentCount()) { index = m_path->GetSegmentCount()-1; break; } *point = (*m_path)[ index ]->pos; } return index; } // make sure we use a node a minimum distance ahead of us, to avoid wiggling while (startIndex < m_path->GetSegmentCount()-1) { Vector pos = (*m_path)[ startIndex+1 ]->pos; // we must do a 2D check here, in case the goal point is floating in space due to jump down, etc const float closeEpsilon = 20.0f; if ((pos - close).AsVector2D().IsLengthLessThan( closeEpsilon )) { ++startIndex; } else { break; } } // if we hit a ladder or jump area, must stop (dont use ladder behind us) if (startIndex > m_segmentIndex && startIndex < m_path->GetSegmentCount() && ((*m_path)[ startIndex ]->ladder || (*m_path)[ startIndex ]->area->GetAttributes() & NAV_MESH_JUMP)) { *point = (*m_path)[ startIndex ]->pos; return startIndex; } // we need the point just *ahead* of us ++startIndex; if (startIndex >= m_path->GetSegmentCount()) startIndex = m_path->GetSegmentCount()-1; // if we hit a ladder or jump area, must stop if (startIndex < m_path->GetSegmentCount() && ((*m_path)[ startIndex ]->ladder || (*m_path)[ startIndex ]->area->GetAttributes() & NAV_MESH_JUMP)) { *point = (*m_path)[ startIndex ]->pos; return startIndex; } // note direction of path segment we are standing on Vector initDir = (*m_path)[ startIndex ]->pos - (*m_path)[ startIndex-1 ]->pos; initDir.NormalizeInPlace(); Vector feet = m_improv->GetFeet(); Vector eyes = m_improv->GetEyes(); float rangeSoFar = 0; // this flag is true if our ahead point is visible bool visible = true; Vector prevDir = initDir; // step along the path until we pass aheadRange bool isCorner = false; int i; for( i=startIndex; iGetSegmentCount(); ++i ) { Vector pos = (*m_path)[i]->pos; Vector to = pos - (*m_path)[i-1]->pos; Vector dir = to; dir.NormalizeInPlace(); // don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc) if (DotProduct( dir, initDir ) < 0.0f) // -0.25f { --i; break; } // if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc if (DotProduct( dir, prevDir ) < 0.5f) { isCorner = true; --i; break; } prevDir = dir; // don't use points we cant see Vector probe = pos + Vector( 0, 0, HalfHumanHeight ); if (!IsWalkableTraceLineClear( eyes, probe, WALK_THRU_BREAKABLES )) { // presumably, the previous point is visible, so we will interpolate visible = false; break; } // if we encounter a ladder or jump area, we must stop if (i < m_path->GetSegmentCount() && ((*m_path)[ i ]->ladder || (*m_path)[ i ]->area->GetAttributes() & NAV_MESH_JUMP)) break; // Check straight-line path from our current position to this position // Test for un-jumpable height change, or unrecoverable fall //if (!IsStraightLinePathWalkable( &pos )) //{ // --i; // break; //} Vector along = (i == startIndex) ? (pos - feet) : (pos - (*m_path)[i-1]->pos); rangeSoFar += along.Length2D(); // stop if we have gone farther than aheadRange if (rangeSoFar >= aheadRange) break; } if (i < startIndex) afterIndex = startIndex; else if (i < m_path->GetSegmentCount()) afterIndex = i; else afterIndex = m_path->GetSegmentCount()-1; // compute point on the path at aheadRange if (afterIndex == 0) { *point = (*m_path)[0]->pos; } else { // interpolate point along path segment const Vector *afterPoint = &(*m_path)[ afterIndex ]->pos; const Vector *beforePoint = &(*m_path)[ afterIndex-1 ]->pos; Vector to = *afterPoint - *beforePoint; float length = to.Length2D(); float t = 1.0f - ((rangeSoFar - aheadRange) / length); if (t < 0.0f) t = 0.0f; else if (t > 1.0f) t = 1.0f; *point = *beforePoint + t * to; // if afterPoint wasn't visible, slide point backwards towards beforePoint until it is if (!visible) { const float sightStepSize = 25.0f; float dt = sightStepSize / length; Vector probe = *point + Vector( 0, 0, HalfHumanHeight ); while( t > 0.0f && !IsWalkableTraceLineClear( eyes, probe, WALK_THRU_BREAKABLES ) ) { t -= dt; *point = *beforePoint + t * to; } if (t <= 0.0f) *point = *beforePoint; } } // if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle if (!isCorner) { const float epsilon = 50.0f; Vector2D toPoint; Vector2D centroid( m_improv->GetCentroid().x, m_improv->GetCentroid().y ); toPoint.x = point->x - centroid.x; toPoint.y = point->y - centroid.y; if (DotProduct2D( toPoint, initDir.AsVector2D() ) < 0.0f || toPoint.IsLengthLessThan( epsilon )) { int i; for( i=startIndex; iGetSegmentCount(); ++i ) { toPoint.x = (*m_path)[i]->pos.x - centroid.x; toPoint.y = (*m_path)[i]->pos.y - centroid.y; if ((*m_path)[i]->ladder || (*m_path)[i]->area->GetAttributes() & NAV_MESH_JUMP || toPoint.IsLengthGreaterThan( epsilon )) { *point = (*m_path)[i]->pos; startIndex = i; break; } } if (i == m_path->GetSegmentCount()) { *point = m_path->GetEndpoint(); startIndex = m_path->GetSegmentCount()-1; } } } // m_pathIndex should always be the next point on the path, even if we're not moving directly towards it if (startIndex < m_path->GetSegmentCount()) return startIndex; return m_path->GetSegmentCount()-1; } //-------------------------------------------------------------------------------------------------------------- /** * Do reflex avoidance movements if our "feelers" are touched * @todo Parameterize feeler spacing */ void CNavPathFollower::FeelerReflexAdjustment( Vector *goalPosition, float height ) { // if we are in a "precise" area, do not do feeler adjustments if (m_improv->GetLastKnownArea() && m_improv->GetLastKnownArea()->GetAttributes() & NAV_MESH_PRECISE) return; // use the direction towards the goal Vector dir = *goalPosition - m_improv->GetFeet(); dir.z = 0.0f; dir.NormalizeInPlace(); Vector lat( -dir.y, dir.x, 0.0f ); const float feelerOffset = (m_improv->IsCrouching()) ? 15.0f : 20.0f; // 15, 20 const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747) const float feelerLengthWalk = 30.0f; const float feelerHeight = (height > 0.0f) ? height : StepHeight + 0.1f; // if obstacle is lower than StepHeight, we'll walk right over it float feelerLength = (m_improv->IsRunning()) ? feelerLengthRun : feelerLengthWalk; feelerLength = (m_improv->IsCrouching()) ? 20.0f : feelerLength; // // Feelers must follow floor slope // float ground; Vector normal; if (m_improv->GetSimpleGroundHeightWithFloor( m_improv->GetEyes(), &ground, &normal ) == false) return; // get forward vector along floor dir = CrossProduct( lat, normal ); // correct the sideways vector lat = CrossProduct( dir, normal ); Vector feet = m_improv->GetFeet(); feet.z += feelerHeight; Vector from = feet + feelerOffset * lat; Vector to = from + feelerLength * dir; bool leftClear = IsWalkableTraceLineClear( from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES ); // draw debug beams if (m_isDebug) { if (leftClear) UTIL_DrawBeamPoints( from, to, 1, 0, 255, 0 ); else UTIL_DrawBeamPoints( from, to, 1, 255, 0, 0 ); } from = feet - feelerOffset * lat; to = from + feelerLength * dir; bool rightClear = IsWalkableTraceLineClear( from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES ); // draw debug beams if (m_isDebug) { if (rightClear) UTIL_DrawBeamPoints( from, to, 1, 0, 255, 0 ); else UTIL_DrawBeamPoints( from, to, 1, 255, 0, 0 ); } const float avoidRange = (m_improv->IsCrouching()) ? 150.0f : 300.0f; if (!rightClear) { if (leftClear) { // right hit, left clear - veer left *goalPosition = *goalPosition + avoidRange * lat; //*goalPosition = m_improv->GetFeet() + avoidRange * lat; //m_improv->StrafeLeft(); } } else if (!leftClear) { // right clear, left hit - veer right *goalPosition = *goalPosition - avoidRange * lat; //*goalPosition = m_improv->GetFeet() - avoidRange * lat; //m_improv->StrafeRight(); } } //-------------------------------------------------------------------------------------------------------------- /** * Reset the stuck-checker. */ CStuckMonitor::CStuckMonitor( void ) { m_isStuck = false; m_avgVelIndex = 0; m_avgVelCount = 0; } /** * Reset the stuck-checker. */ void CStuckMonitor::Reset( void ) { m_isStuck = false; m_avgVelIndex = 0; m_avgVelCount = 0; } //-------------------------------------------------------------------------------------------------------------- /** * Test if the improv has become stuck */ void CStuckMonitor::Update( CImprovLocomotor *improv ) { if (m_isStuck) { // improv is stuck - see if it has moved far enough to be considered unstuck const float unstuckRange = 75.0f; if ((improv->GetCentroid() - m_stuckSpot).IsLengthGreaterThan( unstuckRange )) { // no longer stuck Reset(); //PrintIfWatched( "UN-STUCK\n" ); } } else { // check if improv has become stuck // compute average velocity over a short period (for stuck check) Vector vel = improv->GetCentroid() - m_lastCentroid; // if we are jumping, ignore Z //if (improv->IsJumping()) // vel.z = 0.0f; // ignore Z unless we are on a ladder (which is only Z) if (!improv->IsUsingLadder()) vel.z = 0.0f; // cannot be Length2D, or will break ladder movement (they are only Z) float moveDist = vel.Length(); float deltaT = gpGlobals->curtime - m_lastTime; if (deltaT <= 0.0f) return; m_lastTime = gpGlobals->curtime; // compute current velocity m_avgVel[ m_avgVelIndex++ ] = moveDist/deltaT; if (m_avgVelIndex == MAX_VEL_SAMPLES) m_avgVelIndex = 0; if (m_avgVelCount < MAX_VEL_SAMPLES) { ++m_avgVelCount; } else { // we have enough samples to know if we're stuck float avgVel = 0.0f; for( int t=0; tIsUsingLadder()) ? 10.0f : 20.0f; if (avgVel < stuckVel) { // note when and where we initially become stuck m_stuckTimer.Start(); m_stuckSpot = improv->GetCentroid(); m_isStuck = true; } } } // always need to track this m_lastCentroid = improv->GetCentroid(); }