//========= Copyright © 1996-2006, Valve Corporation, All rights reserved. ============// // // Purpose: Fast low quality noise suitable for real time use // //=====================================================================================// #include #include // needed for flt_epsilon #include "basetypes.h" #include "tier0/dbg.h" #include "mathlib/mathlib.h" #include "mathlib/vector.h" #include "mathlib/ssemath.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #include "noisedata.h" #define MAGIC_NUMBER (1<<15) // gives 8 bits of fraction static fltx4 Four_MagicNumbers = { MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER }; static ALIGN16 int32 idx_mask[4]= {0xffff, 0xffff, 0xffff, 0xffff}; #define MASK255 (*((fltx4 *)(& idx_mask ))) // returns 0..1 static inline float GetLatticePointValue( int idx_x, int idx_y, int idx_z ) { int ret_idx = perm_a[idx_x & 0xff]; ret_idx = perm_b[( idx_y + ret_idx ) & 0xff]; ret_idx = perm_c[( idx_z + ret_idx ) & 0xff]; return impulse_xcoords[ret_idx]; } fltx4 NoiseSIMD( const fltx4 & x, const fltx4 & y, const fltx4 & z ) { // use magic to convert to integer index fltx4 x_idx = AndSIMD( MASK255, AddSIMD( x, Four_MagicNumbers ) ); fltx4 y_idx = AndSIMD( MASK255, AddSIMD( y, Four_MagicNumbers ) ); fltx4 z_idx = AndSIMD( MASK255, AddSIMD( z, Four_MagicNumbers ) ); fltx4 lattice000 = Four_Zeros, lattice001 = Four_Zeros, lattice010 = Four_Zeros, lattice011 = Four_Zeros; fltx4 lattice100 = Four_Zeros, lattice101 = Four_Zeros, lattice110 = Four_Zeros, lattice111 = Four_Zeros; // FIXME: Converting the input vectors to int indices will cause load-hit-stores (48 bytes) // Converting the indexed noise values back to vectors will cause more (128 bytes) // The noise table could store vectors if we chunked it into 2x2x2 blocks. fltx4 xfrac = Four_Zeros, yfrac = Four_Zeros, zfrac = Four_Zeros; #define DOPASS(i) \ { unsigned int xi = SubInt( x_idx, i ); \ unsigned int yi = SubInt( y_idx, i ); \ unsigned int zi = SubInt( z_idx, i ); \ SubFloat( xfrac, i ) = (xi & 0xff)*(1.0/256.0); \ SubFloat( yfrac, i ) = (yi & 0xff)*(1.0/256.0); \ SubFloat( zfrac, i ) = (zi & 0xff)*(1.0/256.0); \ xi>>=8; \ yi>>=8; \ zi>>=8; \ \ SubFloat( lattice000, i ) = GetLatticePointValue( xi,yi,zi ); \ SubFloat( lattice001, i ) = GetLatticePointValue( xi,yi,zi+1 ); \ SubFloat( lattice010, i ) = GetLatticePointValue( xi,yi+1,zi ); \ SubFloat( lattice011, i ) = GetLatticePointValue( xi,yi+1,zi+1 ); \ SubFloat( lattice100, i ) = GetLatticePointValue( xi+1,yi,zi ); \ SubFloat( lattice101, i ) = GetLatticePointValue( xi+1,yi,zi+1 ); \ SubFloat( lattice110, i ) = GetLatticePointValue( xi+1,yi+1,zi ); \ SubFloat( lattice111, i ) = GetLatticePointValue( xi+1,yi+1,zi+1 ); \ } DOPASS( 0 ); DOPASS( 1 ); DOPASS( 2 ); DOPASS( 3 ); // now, we have 8 lattice values for each of four points as m128s, and interpolant values for // each axis in m128 form in [xyz]frac. Perfom the trilinear interpolation as SIMD ops // first, do x interpolation fltx4 l2d00 = AddSIMD( lattice000, MulSIMD( xfrac, SubSIMD( lattice100, lattice000 ) ) ); fltx4 l2d01 = AddSIMD( lattice001, MulSIMD( xfrac, SubSIMD( lattice101, lattice001 ) ) ); fltx4 l2d10 = AddSIMD( lattice010, MulSIMD( xfrac, SubSIMD( lattice110, lattice010 ) ) ); fltx4 l2d11 = AddSIMD( lattice011, MulSIMD( xfrac, SubSIMD( lattice111, lattice011 ) ) ); // now, do y interpolation fltx4 l1d0 = AddSIMD( l2d00, MulSIMD( yfrac, SubSIMD( l2d10, l2d00 ) ) ); fltx4 l1d1 = AddSIMD( l2d01, MulSIMD( yfrac, SubSIMD( l2d11, l2d01 ) ) ); // final z interpolation fltx4 rslt = AddSIMD( l1d0, MulSIMD( zfrac, SubSIMD( l1d1, l1d0 ) ) ); // map to 0..1 return MulSIMD( Four_Twos, SubSIMD( rslt, Four_PointFives ) ); } static inline void GetVectorLatticePointValue( int idx, fltx4 &x, fltx4 &y, fltx4 &z, int idx_x, int idx_y, int idx_z ) { int ret_idx = perm_a[idx_x & 0xff]; ret_idx = perm_b[( idx_y + ret_idx ) & 0xff]; ret_idx = perm_c[( idx_z + ret_idx ) & 0xff]; float const *pData = s_randomGradients + ret_idx * 3; SubFloat( x, idx ) = pData[0]; SubFloat( y, idx ) = pData[1]; SubFloat( z, idx ) = pData[2]; } FourVectors DNoiseSIMD( const fltx4 & x, const fltx4 & y, const fltx4 & z ) { // use magic to convert to integer index fltx4 x_idx = AndSIMD( MASK255, AddSIMD( x, Four_MagicNumbers ) ); fltx4 y_idx = AndSIMD( MASK255, AddSIMD( y, Four_MagicNumbers ) ); fltx4 z_idx = AndSIMD( MASK255, AddSIMD( z, Four_MagicNumbers ) ); fltx4 xlattice000 = Four_Zeros, xlattice001 = Four_Zeros, xlattice010 = Four_Zeros, xlattice011 = Four_Zeros; fltx4 xlattice100 = Four_Zeros, xlattice101 = Four_Zeros, xlattice110 = Four_Zeros, xlattice111 = Four_Zeros; fltx4 ylattice000 = Four_Zeros, ylattice001 = Four_Zeros, ylattice010 = Four_Zeros, ylattice011 = Four_Zeros; fltx4 ylattice100 = Four_Zeros, ylattice101 = Four_Zeros, ylattice110 = Four_Zeros, ylattice111 = Four_Zeros; fltx4 zlattice000 = Four_Zeros, zlattice001 = Four_Zeros, zlattice010 = Four_Zeros, zlattice011 = Four_Zeros; fltx4 zlattice100 = Four_Zeros, zlattice101 = Four_Zeros, zlattice110 = Four_Zeros, zlattice111 = Four_Zeros; // FIXME: Converting the input vectors to int indices will cause load-hit-stores (48 bytes) // Converting the indexed noise values back to vectors will cause more (128 bytes) // The noise table could store vectors if we chunked it into 2x2x2 blocks. fltx4 xfrac = Four_Zeros, yfrac = Four_Zeros, zfrac = Four_Zeros; #define DODPASS(i) \ { unsigned int xi = SubInt( x_idx, i ); \ unsigned int yi = SubInt( y_idx, i ); \ unsigned int zi = SubInt( z_idx, i ); \ SubFloat( xfrac, i ) = (xi & 0xff)*(1.0/256.0); \ SubFloat( yfrac, i ) = (yi & 0xff)*(1.0/256.0); \ SubFloat( zfrac, i ) = (zi & 0xff)*(1.0/256.0); \ xi>>=8; \ yi>>=8; \ zi>>=8; \ \ GetVectorLatticePointValue( i, xlattice000, ylattice000, zlattice000, xi,yi,zi ); \ GetVectorLatticePointValue( i, xlattice001, ylattice001, zlattice001, xi,yi,zi+1 ); \ GetVectorLatticePointValue( i, xlattice010, ylattice010, zlattice010, xi,yi+1,zi ); \ GetVectorLatticePointValue( i, xlattice011, ylattice011, zlattice011, xi,yi+1,zi+1 ); \ GetVectorLatticePointValue( i, xlattice100, ylattice100, zlattice100, xi+1,yi,zi ); \ GetVectorLatticePointValue( i, xlattice101, ylattice101, zlattice101, xi+1,yi,zi+1 ); \ GetVectorLatticePointValue( i, xlattice110, ylattice110, zlattice110, xi+1,yi+1,zi ); \ GetVectorLatticePointValue( i, xlattice111, ylattice111, zlattice111, xi+1,yi+1,zi+1 ); \ } DODPASS( 0 ); DODPASS( 1 ); DODPASS( 2 ); DODPASS( 3 ); // now, we have 8 lattice values for each of four points as m128s, and interpolant values for // each axis in m128 form in [xyz]frac. Perfom the trilinear interpolation as SIMD ops // first, do x interpolation fltx4 xl2d00 = AddSIMD( xlattice000, MulSIMD( xfrac, SubSIMD( xlattice100, xlattice000 ) ) ); fltx4 xl2d01 = AddSIMD( xlattice001, MulSIMD( xfrac, SubSIMD( xlattice101, xlattice001 ) ) ); fltx4 xl2d10 = AddSIMD( xlattice010, MulSIMD( xfrac, SubSIMD( xlattice110, xlattice010 ) ) ); fltx4 xl2d11 = AddSIMD( xlattice011, MulSIMD( xfrac, SubSIMD( xlattice111, xlattice011 ) ) ); // now, do y interpolation fltx4 xl1d0 = AddSIMD( xl2d00, MulSIMD( yfrac, SubSIMD( xl2d10, xl2d00 ) ) ); fltx4 xl1d1 = AddSIMD( xl2d01, MulSIMD( yfrac, SubSIMD( xl2d11, xl2d01 ) ) ); // final z interpolation FourVectors rslt; rslt.x = AddSIMD( xl1d0, MulSIMD( zfrac, SubSIMD( xl1d1, xl1d0 ) ) ); fltx4 yl2d00 = AddSIMD( ylattice000, MulSIMD( xfrac, SubSIMD( ylattice100, ylattice000 ) ) ); fltx4 yl2d01 = AddSIMD( ylattice001, MulSIMD( xfrac, SubSIMD( ylattice101, ylattice001 ) ) ); fltx4 yl2d10 = AddSIMD( ylattice010, MulSIMD( xfrac, SubSIMD( ylattice110, ylattice010 ) ) ); fltx4 yl2d11 = AddSIMD( ylattice011, MulSIMD( xfrac, SubSIMD( ylattice111, ylattice011 ) ) ); // now, do y interpolation fltx4 yl1d0 = AddSIMD( yl2d00, MulSIMD( yfrac, SubSIMD( yl2d10, yl2d00 ) ) ); fltx4 yl1d1 = AddSIMD( yl2d01, MulSIMD( yfrac, SubSIMD( yl2d11, yl2d01 ) ) ); // final z interpolation rslt.y = AddSIMD( yl1d0, MulSIMD( zfrac, SubSIMD( yl1d1, yl1d0 ) ) ); fltx4 zl2d00 = AddSIMD( zlattice000, MulSIMD( xfrac, SubSIMD( zlattice100, zlattice000 ) ) ); fltx4 zl2d01 = AddSIMD( zlattice001, MulSIMD( xfrac, SubSIMD( zlattice101, zlattice001 ) ) ); fltx4 zl2d10 = AddSIMD( zlattice010, MulSIMD( xfrac, SubSIMD( zlattice110, zlattice010 ) ) ); fltx4 zl2d11 = AddSIMD( zlattice011, MulSIMD( xfrac, SubSIMD( zlattice111, zlattice011 ) ) ); // now, do y interpolation fltx4 zl1d0 = AddSIMD( zl2d00, MulSIMD( yfrac, SubSIMD( zl2d10, zl2d00 ) ) ); fltx4 zl1d1 = AddSIMD( zl2d01, MulSIMD( yfrac, SubSIMD( zl2d11, zl2d01 ) ) ); // final z interpolation rslt.z = AddSIMD( zl1d0, MulSIMD( zfrac, SubSIMD( zl1d1, zl1d0 ) ) ); return rslt; } fltx4 NoiseSIMD( FourVectors const &pos ) { return NoiseSIMD( pos.x, pos.y, pos.z ); } FourVectors DNoiseSIMD( FourVectors const &pos ) { return DNoiseSIMD( pos.x, pos.y, pos.z ); } FourVectors CurlNoiseSIMD( FourVectors const &pos ) { FourVectors fl4Comp1 = DNoiseSIMD( pos ); FourVectors fl4Pos = pos; fl4Pos.x = AddSIMD( fl4Pos.x, ReplicateX4( 43.256 ) ); fl4Pos.y = AddSIMD( fl4Pos.y, ReplicateX4( -67.89 ) ); fl4Pos.z = AddSIMD( fl4Pos.z, ReplicateX4( 1338.2 ) ); FourVectors fl4Comp2 = DNoiseSIMD( fl4Pos ); fl4Pos.x = AddSIMD( fl4Pos.x, ReplicateX4( -129.856 ) ); fl4Pos.y = AddSIMD( fl4Pos.y, ReplicateX4( -967.23 ) ); fl4Pos.z = AddSIMD( fl4Pos.z, ReplicateX4( 2338.98 ) ); FourVectors fl4Comp3 = DNoiseSIMD( fl4Pos ); // now we have the 3 derivatives of a vector valued field. return the curl of the field. FourVectors fl4Ret; fl4Ret.x = SubSIMD( fl4Comp3.y, fl4Comp2.z ); fl4Ret.y = SubSIMD( fl4Comp1.z, fl4Comp3.x ); fl4Ret.z = SubSIMD( fl4Comp2.x, fl4Comp1.y ); return fl4Ret; }