//========== Copyright 2005, Valve Corporation, All rights reserved. ======== // // Purpose: A collection of utility classes to simplify thread handling, and // as much as possible contain portability problems. Here avoiding // including windows.h. // //============================================================================= #ifndef THREADTOOLS_H #define THREADTOOLS_H #include #include "tier0/platform.h" #include "tier0/dbg.h" #if defined( POSIX ) && !defined( _PS3 ) && !defined( _X360 ) #include #include #define WAIT_OBJECT_0 0 #define WAIT_TIMEOUT 0x00000102 #define WAIT_FAILED -1 #define THREAD_PRIORITY_HIGHEST 2 #endif #if !defined( _X360 ) && !defined( _PS3 ) && defined(COMPILER_MSVC) // For _ReadWriteBarrier() #include #endif #if defined( _PS3 ) #include #include #include #include #endif #ifdef OSX // Add some missing defines #define PTHREAD_MUTEX_TIMED_NP PTHREAD_MUTEX_NORMAL #define PTHREAD_MUTEX_RECURSIVE_NP PTHREAD_MUTEX_RECURSIVE #define PTHREAD_MUTEX_ERRORCHECK_NP PTHREAD_MUTEX_ERRORCHECK #define PTHREAD_MUTEX_ADAPTIVE_NP 3 #endif #ifdef _PS3 #define PS3_SYS_PPU_THREAD_COMMON_STACK_SIZE ( 256 * 1024 ) #endif #if defined( _WIN32 ) #pragma once #pragma warning(push) #pragma warning(disable:4251) #endif #ifdef COMPILER_MSVC64 #include #endif // #define THREAD_PROFILER 1 #define THREAD_MUTEX_TRACING_SUPPORTED #if defined(_WIN32) && defined(_DEBUG) && !defined(THREAD_MUTEX_TRACING_ENABLED) #define THREAD_MUTEX_TRACING_ENABLED #endif #ifdef _WIN32 typedef void *HANDLE; #endif // maximum number of threads that can wait on one object #define CTHREADEVENT_MAX_WAITING_THREADS 4 // Start thread running - error if already running enum ThreadPriorityEnum_t { #if defined( PLATFORM_PS3 ) TP_PRIORITY_NORMAL = 1001, TP_PRIORITY_HIGH = 100, TP_PRIORITY_LOW = 2001, TP_PRIORITY_DEFAULT = 1001 #error "Need PRIORITY_LOWEST/HIGHEST" #elif defined( PLATFORM_LINUX ) // We can use nice on Linux threads to change scheduling. // pthreads on Linux only allows priority setting on // real-time threads. // NOTE: Lower numbers are higher priority, thus the need // for TP_IS_PRIORITY_HIGHER. TP_PRIORITY_DEFAULT = 0, TP_PRIORITY_NORMAL = 0, TP_PRIORITY_HIGH = -10, TP_PRIORITY_LOW = 10, TP_PRIORITY_HIGHEST = -20, TP_PRIORITY_LOWEST = 19, #else // PLATFORM_PS3 TP_PRIORITY_DEFAULT = 0, // THREAD_PRIORITY_NORMAL TP_PRIORITY_NORMAL = 0, // THREAD_PRIORITY_NORMAL TP_PRIORITY_HIGH = 1, // THREAD_PRIORITY_ABOVE_NORMAL TP_PRIORITY_LOW = -1, // THREAD_PRIORITY_BELOW_NORMAL TP_PRIORITY_HIGHEST = 2, // THREAD_PRIORITY_HIGHEST TP_PRIORITY_LOWEST = -2, // THREAD_PRIORITY_LOWEST #endif // PLATFORM_PS3 }; #if defined( PLATFORM_LINUX ) #define TP_IS_PRIORITY_HIGHER( a, b ) ( ( a ) < ( b ) ) #else #define TP_IS_PRIORITY_HIGHER( a, b ) ( ( a ) > ( b ) ) #endif #if (defined( PLATFORM_WINDOWS_PC ) || defined( PLATFORM_X360 )) && !defined( STEAM ) && !defined( _CERT ) //Thread parent stack trace linkage requires ALL executing binaries to disable frame pointer omission to operate speedily/successfully. (/Oy-) "vpc /nofpo" #define THREAD_PARENT_STACK_TRACE_SUPPORTED 1 //uncomment to support joining the root of a thread's stack trace to its parent's at time of invocation. Must also set ENABLE_THREAD_PARENT_STACK_TRACING in stacktools.h #endif #if defined( THREAD_PARENT_STACK_TRACE_SUPPORTED ) #include "tier0/stacktools.h" # if defined( ENABLE_THREAD_PARENT_STACK_TRACING ) //stacktools.h opted in # define THREAD_PARENT_STACK_TRACE_ENABLED 1 //both threadtools.h and stacktools.h have opted into the feature, enable it # endif #endif extern bool gbCheckNotMultithreaded; #ifdef _PS3 #define USE_INTRINSIC_INTERLOCKED #define CHECK_NOT_MULTITHREADED() \ { \ static int init = 0; \ static sys_ppu_thread_t threadIDPrev; \ \ if (!init) \ { \ sys_ppu_thread_get_id(&threadIDPrev); \ init = 1; \ } \ else if (gbCheckNotMultithreaded) \ { \ sys_ppu_thread_t threadID; \ sys_ppu_thread_get_id(&threadID); \ if (threadID != threadIDPrev) \ { \ printf("CHECK_NOT_MULTITHREADED: prev thread = %x, cur thread = %x\n", \ (uint)threadIDPrev, (uint)threadID); \ *(int*)0 = 0; \ } \ } \ } #else // _PS3 #define CHECK_NOT_MULTITHREADED() #endif // _PS3 #if defined( _X360 ) || defined( _PS3 ) #define MAX_THREADS_SUPPORTED 16 #else #define MAX_THREADS_SUPPORTED 32 #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- const unsigned TT_INFINITE = 0xffffffff; #ifdef PLATFORM_64BITS typedef uint64 ThreadId_t; #else typedef uint32 ThreadId_t; #endif //----------------------------------------------------------------------------- // // Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex // in that it accepts a standard C function rather than compiler specific one. // //----------------------------------------------------------------------------- #ifdef COMPILER_SNC typedef uint64 ThreadHandle_t; #else // COMPILER_SNC FORWARD_DECLARE_HANDLE( ThreadHandle_t ); #endif // !COMPILER_SNC typedef uintp (*ThreadFunc_t)( void *pParam ); #if defined( _PS3 ) PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0x10000 /*64*/ ); PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0x10000 /*64*/ ); #else //_PS3 PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0 ); PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0 ); #endif //_PS3 PLATFORM_INTERFACE bool ReleaseThreadHandle( ThreadHandle_t ); //----------------------------------------------------------------------------- PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0); PLATFORM_INTERFACE void ThreadNanoSleep(unsigned ns); PLATFORM_INTERFACE ThreadId_t ThreadGetCurrentId(); PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle(); PLATFORM_INTERFACE int ThreadGetPriority( ThreadHandle_t hThread = NULL ); PLATFORM_INTERFACE bool ThreadSetPriority( ThreadHandle_t hThread, int priority ); inline bool ThreadSetPriority( int priority ) { return ThreadSetPriority( NULL, priority ); } #ifndef _X360 PLATFORM_INTERFACE bool ThreadInMainThread(); PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread(); #else PLATFORM_INTERFACE byte *g_pBaseMainStack; PLATFORM_INTERFACE byte *g_pLimitMainStack; inline bool ThreadInMainThread() { byte b; byte *p = &b; return ( p < g_pBaseMainStack && p >= g_pLimitMainStack ); } #endif // NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in milliseconds or TT_INFINITE typedef int (*ThreadedLoadLibraryFunc_t)(); PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func ); PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc(); #if defined( PLATFORM_WINDOWS_PC32 ) DLL_IMPORT unsigned long STDCALL GetCurrentThreadId(); #define ThreadGetCurrentId GetCurrentThreadId #endif inline void ThreadPause() { #if defined( COMPILER_PS3 ) __db16cyc(); #elif defined( COMPILER_GCC ) __asm __volatile( "pause" ); #elif defined ( COMPILER_MSVC64 ) _mm_pause(); #elif defined( COMPILER_MSVC32 ) __asm pause; #elif defined( COMPILER_MSVCX360 ) YieldProcessor(); __asm { or r0,r0,r0 } YieldProcessor(); __asm { or r1,r1,r1 } #else #error "implement me" #endif } PLATFORM_INTERFACE bool ThreadJoin( ThreadHandle_t, unsigned timeout = TT_INFINITE ); PLATFORM_INTERFACE void ThreadSetDebugName( ThreadHandle_t hThread, const char *pszName ); inline void ThreadSetDebugName( const char *pszName ) { ThreadSetDebugName( NULL, pszName ); } PLATFORM_INTERFACE void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask ); //----------------------------------------------------------------------------- // // Interlock methods. These perform very fast atomic thread // safe operations. These are especially relevant in a multi-core setting. // //----------------------------------------------------------------------------- #ifdef _WIN32 #define NOINLINE #elif defined( _PS3 ) #define NOINLINE __attribute__ ((noinline)) #elif defined(POSIX) #define NOINLINE __attribute__ ((noinline)) #endif #if defined( _X360 ) || defined( _PS3 ) #define ThreadMemoryBarrier() __lwsync() #elif defined(COMPILER_MSVC) // Prevent compiler reordering across this barrier. This is // sufficient for most purposes on x86/x64. #define ThreadMemoryBarrier() _ReadWriteBarrier() #elif defined(COMPILER_GCC) // Prevent compiler reordering across this barrier. This is // sufficient for most purposes on x86/x64. // http://preshing.com/20120625/memory-ordering-at-compile-time #define ThreadMemoryBarrier() asm volatile("" ::: "memory") #else #error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering #endif #if defined( _LINUX ) || defined( _OSX ) #define USE_INTRINSIC_INTERLOCKED // linux implementation inline int32 ThreadInterlockedIncrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return __sync_fetch_and_add( p, 1 ) + 1; } inline int32 ThreadInterlockedDecrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return __sync_fetch_and_add( p, -1 ) - 1; } inline int32 ThreadInterlockedExchange( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); int32 nRet; // Note: The LOCK instruction prefix is assumed on the XCHG instruction and GCC gets very confused on the Mac when we use it. __asm __volatile( "xchgl %2,(%1)" : "=r" (nRet) : "r" (p), "0" (value) : "memory"); return nRet; } inline int32 ThreadInterlockedExchangeAdd( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return __sync_fetch_and_add( p, value ); } inline int64 ThreadInterlockedExchangeAdd64( int64 volatile *p, int64 value ) { Assert( ( (size_t)p ) % 8 == 0 ); return __sync_fetch_and_add( p, value ); } inline int32 ThreadInterlockedCompareExchange( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return __sync_val_compare_and_swap( p, comperand, value ); } inline bool ThreadInterlockedAssignIf( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return __sync_bool_compare_and_swap( p, comperand, value ); } #elif ( defined( COMPILER_MSVC32 ) && ( _MSC_VER >= 1310 ) ) // windows 32 implemnetation using compiler intrinsics #define USE_INTRINSIC_INTERLOCKED extern "C" { long __cdecl _InterlockedIncrement(volatile long*); long __cdecl _InterlockedDecrement(volatile long*); long __cdecl _InterlockedExchange(volatile long*, long); long __cdecl _InterlockedExchangeAdd(volatile long*, long); long __cdecl _InterlockedCompareExchange(volatile long*, long, long); } #pragma intrinsic( _InterlockedCompareExchange ) #pragma intrinsic( _InterlockedDecrement ) #pragma intrinsic( _InterlockedExchange ) #pragma intrinsic( _InterlockedExchangeAdd ) #pragma intrinsic( _InterlockedIncrement ) inline int32 ThreadInterlockedIncrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedIncrement( (volatile long*)p ); } inline int32 ThreadInterlockedDecrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedDecrement( (volatile long*)p ); } inline int32 ThreadInterlockedExchange( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchange( (volatile long*)p, value ); } inline int32 ThreadInterlockedExchangeAdd( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchangeAdd( (volatile long*)p, value ); } inline int32 ThreadInterlockedCompareExchange( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedCompareExchange( (volatile long*)p, value, comperand ); } inline bool ThreadInterlockedAssignIf( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return ( _InterlockedCompareExchange( (volatile long*)p, value, comperand ) == comperand ); } #elif defined( _PS3 ) PLATFORM_INTERFACE inline int32 ThreadInterlockedIncrement( int32 volatile * ea ) { return cellAtomicIncr32( (uint32_t*)ea ) + 1; } PLATFORM_INTERFACE inline int32 ThreadInterlockedDecrement( int32 volatile * ea ) { return cellAtomicDecr32( (uint32_t*)ea ) - 1; } PLATFORM_INTERFACE inline int32 ThreadInterlockedExchange( int32 volatile * ea, int32 value ) { return cellAtomicStore32( ( uint32_t* )ea, value); } PLATFORM_INTERFACE inline int32 ThreadInterlockedExchangeAdd( int32 volatile * ea, int32 value ) { return cellAtomicAdd32( ( uint32_t* )ea, value ); } PLATFORM_INTERFACE inline int32 ThreadInterlockedCompareExchange( int32 volatile * ea, int32 value, int32 comperand ) { return cellAtomicCompareAndSwap32( (uint32_t*)ea, comperand, value ) ; } PLATFORM_INTERFACE inline bool ThreadInterlockedAssignIf( int32 volatile * ea, int32 value, int32 comperand ) { return ( cellAtomicCompareAndSwap32( (uint32_t*)ea, comperand, value ) == ( uint32_t ) comperand ); } PLATFORM_INTERFACE inline int64 ThreadInterlockedCompareExchange64( int64 volatile *pDest, int64 value, int64 comperand ) { return cellAtomicCompareAndSwap64( ( uint64_t* ) pDest, comperand, value ); } PLATFORM_INTERFACE inline bool ThreadInterlockedAssignIf64( volatile int64 *pDest, int64 value, int64 comperand ) { return ( cellAtomicCompareAndSwap64( ( uint64_t* ) pDest, comperand, value ) == ( uint64_t ) comperand ); } #elif defined( _X360 ) #define TO_INTERLOCK_PARAM(p) ((volatile long *)p) #define TO_INTERLOCK_PTR_PARAM(p) ((void **)p) FORCEINLINE int32 ThreadInterlockedIncrement( int32 volatile *pDest ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedIncrement( TO_INTERLOCK_PARAM(pDest) ); } FORCEINLINE int32 ThreadInterlockedDecrement( int32 volatile *pDest ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedDecrement( TO_INTERLOCK_PARAM(pDest) ); } FORCEINLINE int32 ThreadInterlockedExchange( int32 volatile *pDest, int32 value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchange( TO_INTERLOCK_PARAM(pDest), value ); } FORCEINLINE int32 ThreadInterlockedExchangeAdd( int32 volatile *pDest, int32 value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchangeAdd( TO_INTERLOCK_PARAM(pDest), value ); } FORCEINLINE int32 ThreadInterlockedCompareExchange( int32 volatile *pDest, int32 value, int32 comperand ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedCompareExchange( TO_INTERLOCK_PARAM(pDest), value, comperand ); } FORCEINLINE bool ThreadInterlockedAssignIf( int32 volatile *pDest, int32 value, int32 comperand ) { Assert( (size_t)pDest % 4 == 0 ); return ( InterlockedCompareExchange( TO_INTERLOCK_PARAM(pDest), value, comperand ) == comperand ); } #else // non 32-bit windows and 360 implementation PLATFORM_INTERFACE int32 ThreadInterlockedIncrement( int32 volatile * ) NOINLINE; PLATFORM_INTERFACE int32 ThreadInterlockedDecrement( int32 volatile * ) NOINLINE; PLATFORM_INTERFACE int32 ThreadInterlockedExchange( int32 volatile *, int32 value ) NOINLINE; PLATFORM_INTERFACE int32 ThreadInterlockedExchangeAdd( int32 volatile *, int32 value ) NOINLINE; PLATFORM_INTERFACE int32 ThreadInterlockedCompareExchange( int32 volatile *, int32 value, int32 comperand ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignIf( int32 volatile *, int32 value, int32 comperand ) NOINLINE; #endif #if defined( USE_INTRINSIC_INTERLOCKED ) && !defined( PLATFORM_64BITS ) #define TIPTR() inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { return (void *)( ( intp )ThreadInterlockedExchange( reinterpret_cast(p), reinterpret_cast(value) ) ); } inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { return (void *)( ( intp )ThreadInterlockedCompareExchange( reinterpret_cast(p), reinterpret_cast(value), reinterpret_cast(comperand) ) ); } inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { return ( ThreadInterlockedCompareExchange( reinterpret_cast(p), reinterpret_cast(value), reinterpret_cast(comperand) ) == reinterpret_cast(comperand) ); } #else PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer( void * volatile *, void *value ) NOINLINE; PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void * volatile *, void *value, void *comperand ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void * volatile *, void *value, void *comperand ) NOINLINE; #endif inline unsigned ThreadInterlockedExchangeSubtract( int32 volatile *p, int32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, -value ); } inline void const *ThreadInterlockedExchangePointerToConst( void const * volatile *p, void const *value ) { return ThreadInterlockedExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ) ); } inline void const *ThreadInterlockedCompareExchangePointerToConst( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedCompareExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); } inline bool ThreadInterlockedAssignPointerToConstIf( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedAssignPointerIf( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); } #ifndef _PS3 PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64( volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE; #endif PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE; #ifdef COMPILER_MSVC32 PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE; #elif defined(POSIX) inline int64 ThreadInterlockedIncrement64( int64 volatile *p ) { AssertDbg( (size_t)p % 8 == 0 ); return __sync_fetch_and_add( p, 1 ) + 1; } inline int64 ThreadInterlockedDecrement64( int64 volatile *p ) { AssertDbg( (size_t)p % 8 == 0 ); return __sync_fetch_and_add( p, -1 ) - 1; } #endif #ifdef COMPILER_MSVC64 // 64 bit windows can use intrinsics for these, 32-bit can't #pragma intrinsic( _InterlockedCompareExchange64 ) #pragma intrinsic( _InterlockedExchange64 ) #pragma intrinsic( _InterlockedExchangeAdd64 ) inline int64 ThreadInterlockedCompareExchange64( int64 volatile *p, int64 value, int64 comparand ) { AssertDbg( (size_t)p % 8 == 0 ); return _InterlockedCompareExchange64( (volatile int64*)p, value, comparand ); } inline int64 ThreadInterlockedExchangeAdd64( int64 volatile *p, int64 value ) { AssertDbg( (size_t)p % 8 == 0 ); return _InterlockedExchangeAdd64( (volatile int64*)p, value ); } #endif inline unsigned ThreadInterlockedExchangeSubtract( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); } inline unsigned ThreadInterlockedIncrement( uint32 volatile *p ) { return ThreadInterlockedIncrement( (int32 volatile *)p ); } inline unsigned ThreadInterlockedDecrement( uint32 volatile *p ) { return ThreadInterlockedDecrement( (int32 volatile *)p ); } inline unsigned ThreadInterlockedExchange( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchange( (int32 volatile *)p, value ); } inline unsigned ThreadInterlockedExchangeAdd( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); } inline unsigned ThreadInterlockedCompareExchange( uint32 volatile *p, uint32 value, uint32 comperand ) { return ThreadInterlockedCompareExchange( (int32 volatile *)p, value, comperand ); } inline bool ThreadInterlockedAssignIf( uint32 volatile *p, uint32 value, uint32 comperand ) { return ThreadInterlockedAssignIf( (int32 volatile *)p, value, comperand ); } //inline int ThreadInterlockedExchangeSubtract( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); } //inline int ThreadInterlockedIncrement( int volatile *p ) { return ThreadInterlockedIncrement( (int32 volatile *)p ); } //inline int ThreadInterlockedDecrement( int volatile *p ) { return ThreadInterlockedDecrement( (int32 volatile *)p ); } //inline int ThreadInterlockedExchange( int volatile *p, int value ) { return ThreadInterlockedExchange( (int32 volatile *)p, value ); } //inline int ThreadInterlockedExchangeAdd( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); } //inline int ThreadInterlockedCompareExchange( int volatile *p, int value, int comperand ) { return ThreadInterlockedCompareExchange( (int32 volatile *)p, value, comperand ); } //inline bool ThreadInterlockedAssignIf( int volatile *p, int value, int comperand ) { return ThreadInterlockedAssignIf( (int32 volatile *)p, value, comperand ); } #if defined( _WIN64 ) typedef __m128i int128; inline int128 int128_zero() { return _mm_setzero_si128(); } PLATFORM_INTERFACE bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand ) NOINLINE; #endif //----------------------------------------------------------------------------- // Access to VTune thread profiling //----------------------------------------------------------------------------- #if defined(_WIN32) && defined(THREAD_PROFILER) PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p); PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p); PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p); PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p); #else #define ThreadNotifySyncPrepare(p) ((void)0) #define ThreadNotifySyncCancel(p) ((void)0) #define ThreadNotifySyncAcquired(p) ((void)0) #define ThreadNotifySyncReleasing(p) ((void)0) #endif //----------------------------------------------------------------------------- // Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't // work in a DLL loaded with LoadLibrary() //----------------------------------------------------------------------------- #ifndef NO_THREAD_LOCAL #if ( defined(_LINUX) && defined(DEDICATED) ) && !defined(OSX) // linux totally supports compiler thread locals, even across dll's. #define PLAT_COMPILER_SUPPORTED_THREADLOCALS 1 #define CTHREADLOCALINTEGER( typ ) __thread int #define CTHREADLOCALINT __thread int #define CTHREADLOCALPTR( typ ) __thread typ * #define CTHREADLOCAL( typ ) __thread typ #define GETLOCAL( x ) ( x ) #ifndef TIER0_DLL_EXPORT DLL_IMPORT __thread int g_nThreadID; #endif #endif #if defined(WIN32) || defined(OSX) || defined( _PS3 ) || ( defined (_LINUX) && !defined(DEDICATED) ) #ifndef __AFXTLS_H__ // not compatible with some Windows headers #if defined(_PS3) #define CTHREADLOCALINT CThreadLocalInt #define CTHREADLOCALINTEGER( typ ) CThreadLocalInt #define CTHREADLOCALPTR( typ ) CThreadLocalPtr #define CTHREADLOCAL( typ ) CThreadLocal #define GETLOCAL( x ) ( x.Get() ) #else #define CTHREADLOCALINT GenericThreadLocals::CThreadLocalInt #define CTHREADLOCALINTEGER( typ ) GenericThreadLocals::CThreadLocalInt #define CTHREADLOCALPTR( typ ) GenericThreadLocals::CThreadLocalPtr #define CTHREADLOCAL( typ ) GenericThreadLocals::CThreadLocal #define GETLOCAL( x ) ( x.Get() ) #endif #if !defined(_PS3) namespace GenericThreadLocals { #endif // a (not so efficient) implementation of thread locals for compilers without full support (i.e. visual c). // don't use this explicity - instead, use the CTHREADxxx macros above. class PLATFORM_CLASS CThreadLocalBase { public: CThreadLocalBase(); ~CThreadLocalBase(); void * Get() const; void Set(void *); private: #if defined(POSIX) && !defined( _GAMECONSOLE ) pthread_key_t m_index; #else uint32 m_index; #endif }; //--------------------------------------------------------- template class CThreadLocal : public CThreadLocalBase { public: CThreadLocal() { #ifdef PLATFORM_64BITS COMPILE_TIME_ASSERT( sizeof(T) <= sizeof(void *) ); #else COMPILE_TIME_ASSERT( sizeof(T) == sizeof(void *) ); #endif } void operator=( T i ) { Set( i ); } T Get() const { #ifdef PLATFORM_64BITS void *pData = CThreadLocalBase::Get(); return *reinterpret_cast( &pData ); #else #ifdef COMPILER_MSVC #pragma warning ( disable : 4311 ) #endif return reinterpret_cast( CThreadLocalBase::Get() ); #ifdef COMPILER_MSVC #pragma warning ( default : 4311 ) #endif #endif } void Set(T val) { #ifdef PLATFORM_64BITS void* pData = 0; *reinterpret_cast( &pData ) = val; CThreadLocalBase::Set( pData ); #else #ifdef COMPILER_MSVC #pragma warning ( disable : 4312 ) #endif CThreadLocalBase::Set( reinterpret_cast(val) ); #ifdef COMPILER_MSVC #pragma warning ( default : 4312 ) #endif #endif } }; //--------------------------------------------------------- template class CThreadLocalInt : public CThreadLocal { public: operator const T() const { return this->Get(); } int operator=( T i ) { this->Set( i ); return i; } T operator++() { T i = this->Get(); this->Set( ++i ); return i; } T operator++(int) { T i = this->Get(); this->Set( i + 1 ); return i; } T operator--() { T i = this->Get(); this->Set( --i ); return i; } T operator--(int) { T i = this->Get(); this->Set( i - 1 ); return i; } inline CThreadLocalInt( ) { } inline CThreadLocalInt( const T &initialvalue ) { this->Set( initialvalue ); } }; //--------------------------------------------------------- template class CThreadLocalPtr : private CThreadLocalBase { public: CThreadLocalPtr() {} operator const void *() const { return (const T *)Get(); } operator void *() { return (T *)Get(); } operator const T *() const { return (const T *)Get(); } operator const T *() { return (const T *)Get(); } operator T *() { return (T *)Get(); } T * operator=( T *p ) { Set( p ); return p; } bool operator !() const { return (!Get()); } bool operator!=( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() != NULL); } bool operator==( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() == NULL); } bool operator==( const void *p ) const { return (Get() == p); } bool operator!=( const void *p ) const { return (Get() != p); } bool operator==( const T *p ) const { return operator==((const void*)p); } bool operator!=( const T *p ) const { return operator!=((const void*)p); } T * operator->() { return (T *)Get(); } T & operator *() { return *((T *)Get()); } const T * operator->() const { return (const T *)Get(); } const T & operator *() const { return *((const T *)Get()); } const T & operator[]( int i ) const { return *((const T *)Get() + i); } T & operator[]( int i ) { return *((T *)Get() + i); } private: // Disallowed operations CThreadLocalPtr( T *pFrom ); CThreadLocalPtr( const CThreadLocalPtr &from ); T **operator &(); T * const *operator &() const; void operator=( const CThreadLocalPtr &from ); bool operator==( const CThreadLocalPtr &p ) const; bool operator!=( const CThreadLocalPtr &p ) const; }; #if !defined(_PS3) } #endif #ifdef _OSX PLATFORM_INTERFACE GenericThreadLocals::CThreadLocalInt g_nThreadID; #else // _OSX #ifndef TIER0_DLL_EXPORT #ifndef _PS3 DLL_GLOBAL_IMPORT CTHREADLOCALINT g_nThreadID; #endif // !_PS3 #endif // TIER0_DLL_EXPORT #endif // _OSX #endif /// afx32 #endif //__win32 #endif // NO_THREAD_LOCAL #ifdef _WIN64 // 64 bit windows can use intrinsics for these, 32-bit can't #pragma intrinsic( _InterlockedCompareExchange64 ) #pragma intrinsic( _InterlockedExchange64 ) #pragma intrinsic( _InterlockedExchangeAdd64 ) inline int64 ThreadInterlockedIncrement64(int64 volatile *p) { AssertDbg((size_t)p % 8 == 0); return _InterlockedIncrement64((volatile int64*)p); } inline int64 ThreadInterlockedDecrement64(int64 volatile *p) { AssertDbg((size_t)p % 8 == 0); return _InterlockedDecrement64((volatile int64*)p); } #endif //----------------------------------------------------------------------------- // // A super-fast thread-safe integer A simple class encapsulating the notion of an // atomic integer used across threads that uses the built in and faster // "interlocked" functionality rather than a full-blown mutex. Useful for simple // things like reference counts, etc. // //----------------------------------------------------------------------------- template class CInterlockedIntT { public: CInterlockedIntT() : m_value( 0 ) { COMPILE_TIME_ASSERT( ( sizeof(T) == sizeof(int32) ) || ( sizeof(T) == sizeof(int64) ) ); } CInterlockedIntT( T value ) : m_value( value ) {} T operator()( void ) const { return m_value; } operator T() const { return m_value; } bool operator!() const { return ( m_value == 0 ); } bool operator==( T rhs ) const { return ( m_value == rhs ); } bool operator!=( T rhs ) const { return ( m_value != rhs ); } T operator++() { if ( sizeof(T) == sizeof(int32) ) return (T)ThreadInterlockedIncrement( (int32 *)&m_value ); else return (T)ThreadInterlockedIncrement64( (int64 *)&m_value ); } T operator++(int) { return operator++() - 1; } T operator--() { if ( sizeof(T) == sizeof(int32) ) return (T)ThreadInterlockedDecrement( (int32 *)&m_value ); else return (T)ThreadInterlockedDecrement64( (int64 *)&m_value ); } T operator--(int) { return operator--() + 1; } bool AssignIf( T conditionValue, T newValue ) { if ( sizeof(T) == sizeof(int32) ) return ThreadInterlockedAssignIf( (int32 *)&m_value, (int32)newValue, (int32)conditionValue ); else return ThreadInterlockedAssignIf64( (int64 *)&m_value, (int64)newValue, (int64)conditionValue ); } T operator=( T newValue ) { if ( sizeof(T) == sizeof(int32) ) ThreadInterlockedExchange((int32 *)&m_value, newValue); else ThreadInterlockedExchange64((int64 *)&m_value, newValue); return m_value; } // Atomic add is like += except it returns the previous value as its return value T AtomicAdd( T add ) { if ( sizeof(T) == sizeof(int32) ) return (T)ThreadInterlockedExchangeAdd( (int32 *)&m_value, (int32)add ); else return (T)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, (int64)add ); } void operator+=( T add ) { if ( sizeof(T) == sizeof(int32) ) ThreadInterlockedExchangeAdd( (int32 *)&m_value, (int32)add ); else ThreadInterlockedExchangeAdd64( (int64 *)&m_value, (int64)add ); } void operator-=( T subtract ) { operator+=( -subtract ); } void operator*=( T multiplier ) { T original, result; do { original = m_value; result = original * multiplier; } while ( !AssignIf( original, result ) ); } void operator/=( T divisor ) { T original, result; do { original = m_value; result = original / divisor; } while ( !AssignIf( original, result ) ); } T operator+( T rhs ) const { return m_value + rhs; } T operator-( T rhs ) const { return m_value - rhs; } T InterlockedExchange(T newValue) { if (sizeof(T) == sizeof(int32)) return (T)ThreadInterlockedExchange((int32*)&m_value, newValue); else return (T)ThreadInterlockedExchange64((int64*)&m_value, newValue); } private: volatile T m_value; }; typedef CInterlockedIntT CInterlockedInt; typedef CInterlockedIntT CInterlockedUInt; //----------------------------------------------------------------------------- #ifdef _M_X64 template class CInterlockedPtr { public: CInterlockedPtr() : m_value( 0 ) {} CInterlockedPtr( T *value ) : m_value( value ) {} operator T *() const { return m_value; } bool operator!() const { return ( m_value == 0 ); } bool operator==( T *rhs ) const { return ( m_value == rhs ); } bool operator!=( T *rhs ) const { return ( m_value != rhs ); } T *operator++() { return ((T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, sizeof(T) )) + 1; } T *operator++(int) { return (T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, sizeof(T) ); } T *operator--() { return ((T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, -sizeof(T) )) - 1; } T *operator--(int) { return (T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, -sizeof(T) ); } bool AssignIf( T *conditionValue, T *newValue ) { return _InterlockedCompareExchangePointer( (void * volatile *)&m_value, newValue, conditionValue ) == conditionValue; } T *operator=( T *newValue ) { _InterlockedExchangePointer( (void * volatile *) &m_value, newValue ); return newValue; } void operator+=( int add ) { _InterlockedExchangeAdd64( (volatile __int64 *)&m_value, add * sizeof(T) ); } void operator-=( int subtract ) { operator+=( -subtract ); } // Atomic add is like += except it returns the previous value as its return value T *AtomicAdd( int add ) { return ( T * )_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, add * sizeof(T) ); } T *operator+( int rhs ) const { return m_value + rhs; } T *operator-( int rhs ) const { return m_value - rhs; } T *operator+( unsigned rhs ) const { return m_value + rhs; } T *operator-( unsigned rhs ) const { return m_value - rhs; } size_t operator-( T *p ) const { return m_value - p; } size_t operator-( const CInterlockedPtr &p ) const { return m_value - p.m_value; } private: T * volatile m_value; }; #else template class CInterlockedPtr { public: CInterlockedPtr() : m_value( 0 ) { #ifdef PLATFORM_64BITS COMPILE_TIME_ASSERT( sizeof(T *) == sizeof(int64) ); #define THREADINTERLOCKEDEXCHANGEADD( _dest, _value ) ThreadInterlockedExchangeAdd64( (int64 *)(_dest), _value ) #else // PLATFORM_64BITS COMPILE_TIME_ASSERT( sizeof(T *) == sizeof(int32) ); #define THREADINTERLOCKEDEXCHANGEADD( _dest, _value ) ThreadInterlockedExchangeAdd( (int32 *)_dest, _value ) #endif // PLATFORM_64BITS } CInterlockedPtr( T *value ) : m_value( value ) {} operator T *() const { return m_value; } bool operator!() const { return ( m_value == 0 ); } bool operator==( T *rhs ) const { return ( m_value == rhs ); } bool operator!=( T *rhs ) const { return ( m_value != rhs ); } T *operator++() { return ((T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, sizeof(T) )) + 1; } T *operator++(int) { return (T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, sizeof(T) ); } T *operator--() { return ((T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, -sizeof(T) )) - 1; } T *operator--(int) { return (T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, -sizeof(T) ); } bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); } T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; } void operator+=( int add ) { THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, add * sizeof(T) ); } void operator-=( int subtract ) { operator+=( -subtract ); } // Atomic add is like += except it returns the previous value as its return value T *AtomicAdd( int add ) { return ( T * ) THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, add * sizeof(T) ); } T *operator+( int rhs ) const { return m_value + rhs; } T *operator-( int rhs ) const { return m_value - rhs; } T *operator+( unsigned rhs ) const { return m_value + rhs; } T *operator-( unsigned rhs ) const { return m_value - rhs; } size_t operator-( T *p ) const { return m_value - p; } size_t operator-( const CInterlockedPtr &p ) const { return m_value - p.m_value; } private: T * volatile m_value; #undef THREADINTERLOCKEDEXCHANGEADD }; #endif //----------------------------------------------------------------------------- // // Platform independent for critical sections management // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadMutex { public: CThreadMutex(); ~CThreadMutex(); //------------------------------------------------------ // Mutex acquisition/release. Const intentionally defeated. //------------------------------------------------------ void Lock(); void Lock() const { (const_cast(this))->Lock(); } void Unlock(); void Unlock() const { (const_cast(this))->Unlock(); } bool TryLock(); bool TryLock() const { return (const_cast(this))->TryLock(); } void LockSilent(); // A Lock() operation which never spews. Required by the logging system to prevent badness. void UnlockSilent(); // An Unlock() operation which never spews. Required by the logging system to prevent badness. //------------------------------------------------------ // Use this to make deadlocks easier to track by asserting // when it is expected that the current thread owns the mutex //------------------------------------------------------ bool AssertOwnedByCurrentThread(); //------------------------------------------------------ // On windows with THREAD_MUTEX_TRACING_ENABLED defined, this returns // true if the mutex is owned by the current thread. //------------------------------------------------------ bool IsOwnedByCurrentThread_DebugOnly(); //------------------------------------------------------ // Enable tracing to track deadlock problems //------------------------------------------------------ void SetTrace( bool ); private: // Disallow copying CThreadMutex( const CThreadMutex & ); CThreadMutex &operator=( const CThreadMutex & ); #if defined( _WIN32 ) // Efficient solution to breaking the windows.h dependency, invariant is tested. #ifdef _WIN64 #define TT_SIZEOF_CRITICALSECTION 40 #else #ifndef _X360 #define TT_SIZEOF_CRITICALSECTION 24 #else #define TT_SIZEOF_CRITICALSECTION 28 #endif // !_X360 #endif // _WIN64 byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION]; #elif defined( _PS3 ) sys_mutex_t m_Mutex; #elif defined(POSIX) pthread_mutex_t m_Mutex; pthread_mutexattr_t m_Attr; #else #error #endif #ifdef THREAD_MUTEX_TRACING_SUPPORTED // Debugging (always herge to allow mixed debug/release builds w/o changing size) uint m_currentOwnerID; uint16 m_lockCount; bool m_bTrace; #endif }; //----------------------------------------------------------------------------- // // An alternative mutex that is useful for cases when thread contention is // rare, but a mutex is required. Instances should be declared volatile. // Sleep of 0 may not be sufficient to keep high priority threads from starving // lesser threads. This class is not a suitable replacement for a critical // section if the resource contention is high. // //----------------------------------------------------------------------------- #if !defined(THREAD_PROFILER) class CThreadFastMutex { public: CThreadFastMutex() : m_ownerID( 0 ), m_depth( 0 ) { } private: FORCEINLINE bool TryLockInline( const uint32 threadId ) volatile { if ( threadId != m_ownerID && !ThreadInterlockedAssignIf( (volatile int32 *)&m_ownerID, (int32)threadId, 0 ) ) return false; ThreadMemoryBarrier(); ++m_depth; return true; } bool TryLock( const uint32 threadId ) volatile { return TryLockInline( threadId ); } PLATFORM_CLASS void Lock( const uint32 threadId, unsigned nSpinSleepTime ) volatile; public: bool TryLock() volatile { #ifdef _DEBUG if ( m_depth == INT_MAX ) DebuggerBreak(); if ( m_depth < 0 ) DebuggerBreak(); #endif return TryLockInline( ThreadGetCurrentId() ); } #ifndef _DEBUG FORCEINLINE #endif void Lock( unsigned int nSpinSleepTime = 0 ) volatile { const uint32 threadId = ThreadGetCurrentId(); if ( !TryLockInline( threadId ) ) { ThreadPause(); Lock( threadId, nSpinSleepTime ); } #ifdef _DEBUG if ( m_ownerID != (int32)ThreadGetCurrentId() ) DebuggerBreak(); if ( m_depth == INT_MAX ) DebuggerBreak(); if ( m_depth < 0 ) DebuggerBreak(); #endif } #ifndef _DEBUG FORCEINLINE #endif void Unlock() volatile { #ifdef _DEBUG if ( m_ownerID != (int32)ThreadGetCurrentId() ) DebuggerBreak(); if ( m_depth <= 0 ) DebuggerBreak(); #endif --m_depth; if ( !m_depth ) { ThreadMemoryBarrier(); ThreadInterlockedExchange( &m_ownerID, 0 ); } } bool TryLock() const volatile { return (const_cast(this))->TryLock(); } void Lock(unsigned nSpinSleepTime = 0 ) const volatile { (const_cast(this))->Lock( nSpinSleepTime ); } void Unlock() const volatile { (const_cast(this))->Unlock(); } // To match regular CThreadMutex: bool AssertOwnedByCurrentThread() { return true; } void SetTrace( bool ) {} uint32 GetOwnerId() const { return m_ownerID; } int GetDepth() const { return m_depth; } private: volatile uint32 m_ownerID; int m_depth; }; class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex { public: CAlignedThreadFastMutex() { Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 ); } private: uint8 pad[128-sizeof(CThreadFastMutex)]; }; #else #ifdef _PS3 class CThreadFastMutex { public: CThreadFastMutex(); ~CThreadFastMutex(); //------------------------------------------------------ // Mutex acquisition/release. Const intentionally defeated. //------------------------------------------------------ void Lock(); void Lock() const { (const_cast(this))->Lock(); } void Unlock(); void Unlock() const { (const_cast(this))->Unlock(); } bool TryLock(); bool TryLock() const { return (const_cast(this))->TryLock(); } //------------------------------------------------------ // Use this to make deadlocks easier to track by asserting // when it is expected that the current thread owns the mutex //------------------------------------------------------ bool AssertOwnedByCurrentThread(); //------------------------------------------------------ // Enable tracing to track deadlock problems //------------------------------------------------------ void SetTrace( bool ); private: // Disallow copying CThreadFastMutex( const CThreadFastMutex & ); //CThreadFastMutex &operator=( const CThreadFastMutex & ); sys_lwmutex_t m_Mutex; sys_mutex_t m_SlowMutex; }; #else typedef CThreadMutex CThreadFastMutex; #endif class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex { public: CAlignedThreadFastMutex() { Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 ); } private: uint8 pad[128-sizeof(CThreadFastMutex)]; }; #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- class CThreadNullMutex { public: static void Lock() {} static void Unlock() {} static bool TryLock() { return true; } static bool AssertOwnedByCurrentThread() { return true; } static void SetTrace( bool b ) {} static uint32 GetOwnerId() { return 0; } static int GetDepth() { return 0; } }; //----------------------------------------------------------------------------- // // A mutex decorator class used to control the use of a mutex, to make it // less expensive when not multithreading // //----------------------------------------------------------------------------- template class CThreadConditionalMutex : public BaseClass { public: void Lock() { if ( *pCondition ) BaseClass::Lock(); } void Lock() const { if ( *pCondition ) BaseClass::Lock(); } void Unlock() { if ( *pCondition ) BaseClass::Unlock(); } void Unlock() const { if ( *pCondition ) BaseClass::Unlock(); } bool TryLock() { if ( *pCondition ) return BaseClass::TryLock(); else return true; } bool TryLock() const { if ( *pCondition ) return BaseClass::TryLock(); else return true; } bool AssertOwnedByCurrentThread() { if ( *pCondition ) return BaseClass::AssertOwnedByCurrentThread(); else return true; } void SetTrace( bool b ) { if ( *pCondition ) BaseClass::SetTrace( b ); } }; //----------------------------------------------------------------------------- // Mutex decorator that blows up if another thread enters //----------------------------------------------------------------------------- template class CThreadTerminalMutex : public BaseClass { public: bool TryLock() { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; } bool TryLock() const { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; } void Lock() { if ( !TryLock() ) BaseClass::Lock(); } void Lock() const { if ( !TryLock() ) BaseClass::Lock(); } }; //----------------------------------------------------------------------------- // // Class to Lock a critical section, and unlock it automatically // when the lock goes out of scope // //----------------------------------------------------------------------------- template class CAutoLockT { public: FORCEINLINE CAutoLockT( MUTEX_TYPE &lock) : m_lock(lock) { m_lock.Lock(); } FORCEINLINE CAutoLockT(const MUTEX_TYPE &lock) : m_lock(const_cast(lock)) { m_lock.Lock(); } FORCEINLINE ~CAutoLockT() { m_lock.Unlock(); } private: MUTEX_TYPE &m_lock; // Disallow copying CAutoLockT( const CAutoLockT & ); CAutoLockT &operator=( const CAutoLockT & ); }; typedef CAutoLockT CAutoLock; //--------------------------------------------------------- template struct CAutoLockTypeDeducer {}; template <> struct CAutoLockTypeDeducer { typedef CThreadMutex Type_t; }; template <> struct CAutoLockTypeDeducer { typedef CThreadNullMutex Type_t; }; #if !defined(THREAD_PROFILER) template <> struct CAutoLockTypeDeducer { typedef CThreadFastMutex Type_t; }; template <> struct CAutoLockTypeDeducer { typedef CAlignedThreadFastMutex Type_t; }; #else template <> struct CAutoLockTypeDeducer { typedef CAlignedThreadFastMutex Type_t; }; #endif #define AUTO_LOCK_( type, mutex ) \ CAutoLockT< type > UNIQUE_ID( static_cast( mutex ) ) #if defined(GNUC) template T strip_cv_quals_for_mutex(T&); template T strip_cv_quals_for_mutex(const T&); template T strip_cv_quals_for_mutex(volatile T&); template T strip_cv_quals_for_mutex(const volatile T&); #define AUTO_LOCK( mutex ) \ AUTO_LOCK_( decltype(::strip_cv_quals_for_mutex(mutex)), mutex ) #elif defined( __clang__ ) #define AUTO_LOCK( mutex ) \ AUTO_LOCK_( typename CAutoLockTypeDeducer::Type_t, mutex ) #else #define AUTO_LOCK( mutex ) \ AUTO_LOCK_( CAutoLockTypeDeducer::Type_t, mutex ) #endif #define AUTO_LOCK_FM( mutex ) \ AUTO_LOCK_( CThreadFastMutex, mutex ) #define LOCAL_THREAD_LOCK_( tag ) \ ; \ static CThreadFastMutex autoMutex_##tag; \ AUTO_LOCK( autoMutex_##tag ) #define LOCAL_THREAD_LOCK() \ LOCAL_THREAD_LOCK_(_) //----------------------------------------------------------------------------- // // Base class for event, semaphore and mutex objects. // //----------------------------------------------------------------------------- // TW_TIMEOUT must match WAIT_TIMEOUT definition #define TW_TIMEOUT 0x00000102 // TW_FAILED must match WAIT_FAILED definition #define TW_FAILED 0xFFFFFFFF class PLATFORM_CLASS CThreadSyncObject { public: ~CThreadSyncObject(); //----------------------------------------------------- // Query if object is useful //----------------------------------------------------- bool operator!() const; //----------------------------------------------------- // Access handle //----------------------------------------------------- #ifdef _WIN32 operator HANDLE() { return GetHandle(); } const HANDLE GetHandle() const { return m_hSyncObject; } #endif //----------------------------------------------------- // Wait for a signal from the object //----------------------------------------------------- bool Wait( uint32 dwTimeout = TT_INFINITE ); //----------------------------------------------------- // Wait for a signal from any of the specified objects. // // Returns the index of the object that signaled the event // or THREADSYNC_TIMEOUT if the timeout was hit before the wait condition was met. // // Returns TW_FAILED if an incoming object is invalid. // // If bWaitAll=true, then it'll return 0 if all the objects were set. //----------------------------------------------------- static uint32 WaitForMultiple( int nObjects, CThreadSyncObject **ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE ); // This builds a list of pointers and calls straight through to the other WaitForMultiple. static uint32 WaitForMultiple( int nObjects, CThreadSyncObject *ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE ); protected: CThreadSyncObject(); void AssertUseable(); #ifdef _WIN32 HANDLE m_hSyncObject; bool m_bCreatedHandle; #elif defined( _PS3 ) static sys_lwmutex_t m_staticMutex; static uint32_t m_bstaticMutexInitialized; static uint32_t m_bstaticMutexInitializing; #elif defined(POSIX) pthread_mutex_t m_Mutex; pthread_cond_t m_Condition; bool m_bInitalized; int m_cSet; bool m_bManualReset; bool m_bWakeForEvent; #else #error "Implement me" #endif private: CThreadSyncObject( const CThreadSyncObject & ); CThreadSyncObject &operator=( const CThreadSyncObject & ); }; //----------------------------------------------------------------------------- // // Wrapper for unnamed event objects // //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // // CThreadSemaphore // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject { public: CThreadSemaphore(int32 initialValue, int32 maxValue); //----------------------------------------------------- // Increases the count of the semaphore object by a specified // amount. Wait() decreases the count by one on return. //----------------------------------------------------- bool Release(int32 releaseCount = 1, int32 * pPreviousCount = NULL ); bool Wait( uint32 dwTimeout = TT_INFINITE ); private: CThreadSemaphore(const CThreadSemaphore &); CThreadSemaphore &operator=(const CThreadSemaphore &); #ifdef _PS3 bool AddWaitingThread(); void RemoveWaitingThread(); sys_semaphore_t m_Semaphore; sys_semaphore_value_t m_sema_max_val; uint32_t m_numWaitingThread; uint32_t m_bInitalized; uint32_t m_semaCount; #endif }; #if defined( _WIN32 ) //----------------------------------------------------------------------------- // // A mutex suitable for out-of-process, multi-processor usage // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject { public: CThreadFullMutex( bool bEstablishInitialOwnership = false, const char * pszName = NULL ); //----------------------------------------------------- // Release ownership of the mutex //----------------------------------------------------- bool Release(); // To match regular CThreadMutex: void Lock() { Wait(); } void Lock( unsigned timeout ) { Wait( timeout ); } void Unlock() { Release(); } bool AssertOwnedByCurrentThread() { return true; } void SetTrace( bool ) {} private: CThreadFullMutex( const CThreadFullMutex & ); CThreadFullMutex &operator=( const CThreadFullMutex & ); }; #endif enum NamedEventResult_t { TT_EventDoesntExist = 0, TT_EventNotSignaled, TT_EventSignaled }; #if defined( _PS3 ) //--------------------------------------------------------------------------- // CThreadEventWaitObject - the purpose of this class is to help implement // WaitForMultipleObejcts on PS3. // // Each event maintains a linked list of CThreadEventWaitObjects. When a // thread wants to wait on an event it passes the event a semaphore that // ptr to see the index of the event that triggered it // // The thread-specific mutex is to ensure that setting the index and setting the // semaphore are atomic //--------------------------------------------------------------------------- class CThreadEventWaitObject { public: CThreadEventWaitObject *m_pPrev, *m_pNext; sys_semaphore_t *m_pSemaphore; int m_index; int *m_pFlag; CThreadEventWaitObject() {} void Init(sys_semaphore_t *pSem, int index, int *pFlag) { m_pSemaphore = pSem; m_index = index; m_pFlag = pFlag; } void Set(); }; #endif //_PS3 class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject { public: CThreadEvent( bool fManualReset = false ); #ifdef PLATFORM_WINDOWS CThreadEvent( const char *name, bool initialState = false, bool bManualReset = false ); static NamedEventResult_t CheckNamedEvent( const char *name, uint32 dwTimeout = 0 ); CThreadEvent( HANDLE hHandle ); #endif //----------------------------------------------------- // Set the state to signaled //----------------------------------------------------- bool Set(); //----------------------------------------------------- // Set the state to nonsignaled //----------------------------------------------------- bool Reset(); //----------------------------------------------------- // Check if the event is signaled //----------------------------------------------------- bool Check(); // Please, use for debugging only! bool Wait( uint32 dwTimeout = TT_INFINITE ); // See CThreadSyncObject for definitions of these functions. static uint32 WaitForMultiple( int nObjects, CThreadEvent **ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE ); // To implement these, I need to check that casts are safe static uint32 WaitForMultiple( int nObjects, CThreadEvent *ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE ); #ifdef _PS3 void RegisterWaitingThread(sys_semaphore_t *pSemaphore, int index, int *flag); void UnregisterWaitingThread(sys_semaphore_t *pSemaphore); #endif protected: #ifdef _PS3 // These virtual functions need to be inline in order for the class to be exported from tier0.prx virtual bool AddWaitingThread() { //This checks if the event is already signaled and if not creates a semaphore which will be signaled //when the event is finally signaled. bool result; sys_lwmutex_lock(&m_staticMutex, 0); if (m_bSet) result=false; else { result=true; m_numWaitingThread++; if ( m_numWaitingThread == 1 ) { sys_semaphore_attribute_t semAttr; sys_semaphore_attribute_initialize( semAttr ); int err = sys_semaphore_create( &m_Semaphore, &semAttr, 0, 256 ); Assert( err == CELL_OK ); m_bInitalized = true; } } sys_lwmutex_unlock(&m_staticMutex); return result; } virtual void RemoveWaitingThread() { sys_lwmutex_lock(&m_staticMutex, 0); m_numWaitingThread--; if ( m_numWaitingThread == 0) { int err = sys_semaphore_destroy( m_Semaphore ); Assert( err == CELL_OK ); m_bInitalized = false; } sys_lwmutex_unlock(&m_staticMutex); } #endif private: CThreadEvent( const CThreadEvent & ); CThreadEvent &operator=( const CThreadEvent & ); #if defined( _PS3 ) uint32_t m_bSet; bool m_bManualReset; sys_semaphore_t m_Semaphore; uint32_t m_numWaitingThread; uint32_t m_bInitalized; CThreadEventWaitObject m_waitObjects[CTHREADEVENT_MAX_WAITING_THREADS+2]; CThreadEventWaitObject *m_pWaitObjectsPool; CThreadEventWaitObject *m_pWaitObjectsList; CThreadEventWaitObject* LLUnlinkNode(CThreadEventWaitObject *node); CThreadEventWaitObject* LLLinkNode(CThreadEventWaitObject* list, CThreadEventWaitObject *node); #endif }; // Hard-wired manual event for use in array declarations class CThreadManualEvent : public CThreadEvent { public: CThreadManualEvent() : CThreadEvent( true ) { } }; PLATFORM_INTERFACE int ThreadWaitForObjects( int nEvents, const HANDLE *pHandles, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); inline int ThreadWaitForEvents( int nEvents, const CThreadEvent *pEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { return ThreadWaitForObjects( nEvents, (const HANDLE *)pEvents, bWaitAll, timeout ); } //----------------------------------------------------------------------------- // // CThreadRWLock // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadRWLock { public: CThreadRWLock(); void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite(); void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: void WaitForRead(); #ifdef WIN32 CThreadFastMutex m_mutex; #else CThreadMutex m_mutex; #endif CThreadEvent m_CanWrite; CThreadEvent m_CanRead; int m_nWriters; int m_nActiveReaders; int m_nPendingReaders; }; //----------------------------------------------------------------------------- // // CThreadSpinRWLock // //----------------------------------------------------------------------------- #ifndef OLD_SPINRWLOCK class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock { public: CThreadSpinRWLock() { m_lockInfo.m_i32 = 0; m_writerId = 0; #ifdef REENTRANT_THREAD_SPIN_RW_LOCK m_iWriteDepth = 0; #endif } bool IsLockedForWrite(); bool IsLockedForRead(); FORCEINLINE bool TryLockForWrite(); bool TryLockForWrite_UnforcedInline(); void LockForWrite(); void SpinLockForWrite(); FORCEINLINE bool TryLockForRead(); bool TryLockForRead_UnforcedInline(); void LockForRead(); void SpinLockForRead(); void UnlockWrite(); void UnlockRead(); bool TryLockForWrite() const { return const_cast(this)->TryLockForWrite(); } bool TryLockForRead() const { return const_cast(this)->TryLockForRead(); } void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: enum { THREAD_SPIN = (8*1024) }; union LockInfo_t { struct { #if PLAT_LITTLE_ENDIAN uint16 m_nReaders; uint16 m_fWriting; #else uint16 m_fWriting; uint16 m_nReaders; #endif }; uint32 m_i32; }; LockInfo_t m_lockInfo; ThreadId_t m_writerId; #ifdef REENTRANT_THREAD_SPIN_RW_LOCK int m_iWriteDepth; uint32 pad; #endif } ALIGN8_POST; #else /* (commented out to reduce distraction in colorized editor, remove entirely when new implementation settles) class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock { public: CThreadSpinRWLock() { COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int64 ) ); Assert( (intp)this % 8 == 0 ); memset( this, 0, sizeof( *this ) ); } bool TryLockForWrite(); bool TryLockForRead(); void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite(); bool TryLockForWrite() const { return const_cast(this)->TryLockForWrite(); } bool TryLockForRead() const { return const_cast(this)->TryLockForRead(); } void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: // This structure is used as an atomic & exchangeable 64-bit value. It would probably be better to just have one 64-bit value // and accessor functions that make/break it, but at this late stage of development, I'm just wrapping it into union // Beware of endianness: on Xbox/PowerPC m_writerId is high-word of m_i64; on PC, it's low-dword of m_i64 union LockInfo_t { struct { uint32 m_writerId; int m_nReaders; }; int64 m_i64; }; bool AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand ); bool TryLockForWrite( const uint32 threadId ); void SpinLockForWrite( const uint32 threadId ); volatile LockInfo_t m_lockInfo; CInterlockedInt m_nWriters; } ALIGN8_POST; */ #endif //----------------------------------------------------------------------------- // // A thread wrapper similar to a Java thread. // //----------------------------------------------------------------------------- #ifdef _PS3 // Everything must be inline for this to work across PRX boundaries class CThread; PLATFORM_INTERFACE CThread *GetCurThreadPS3(); PLATFORM_INTERFACE void SetCurThreadPS3( CThread * ); PLATFORM_INTERFACE void AllocateThreadID( void ); PLATFORM_INTERFACE void FreeThreadID( void ); #endif class PLATFORM_CLASS CThread { public: CThread(); virtual ~CThread(); //----------------------------------------------------- const char *GetName(); void SetName( const char *pszName ); size_t CalcStackDepth( void *pStackVariable ) { return ((byte *)m_pStackBase - (byte *)pStackVariable); } //----------------------------------------------------- // Functions for the other threads //----------------------------------------------------- // Start thread running - error if already running virtual bool Start( unsigned nBytesStack = 0, ThreadPriorityEnum_t nPriority = TP_PRIORITY_DEFAULT ); // Returns true if thread has been created and hasn't yet exited bool IsAlive(); // This method causes the current thread to wait until this thread // is no longer alive. bool Join( unsigned timeout = TT_INFINITE ); // Access the thread handle directly ThreadHandle_t GetThreadHandle(); #ifdef _WIN32 uint GetThreadId(); #endif //----------------------------------------------------- int GetResult(); //----------------------------------------------------- // Functions for both this, and maybe, and other threads //----------------------------------------------------- // Forcibly, abnormally, but relatively cleanly stop the thread void Stop( int exitCode = 0 ); // Get the priority int GetPriority() const; // Set the priority bool SetPriority( int priority ); // Suspend a thread, can only call from the thread itself unsigned Suspend(); // Resume a suspended thread unsigned Resume(); // Check if thread is suspended bool IsSuspended() { return !m_NotSuspendedEvent.Check(); } // Force hard-termination of thread. Used for critical failures. bool Terminate( int exitCode = 0 ); //----------------------------------------------------- // Global methods //----------------------------------------------------- // Get the Thread object that represents the current thread, if any. // Can return NULL if the current thread was not created using // CThread static CThread *GetCurrentCThread(); // Offer a context switch. Under Win32, equivalent to Sleep(0) #ifdef Yield #undef Yield #endif static void Yield(); // This method causes the current thread to yield and not to be // scheduled for further execution until a certain amount of real // time has elapsed, more or less. Duration is in milliseconds static void Sleep( unsigned duration ); protected: // Optional pre-run call, with ability to fail-create. Note Init() // is forced synchronous with Start() virtual bool Init(); // Thread will run this function on startup, must be supplied by // derived class, performs the intended action of the thread. virtual int Run() = 0; // Called when the thread exits virtual void OnExit(); // Allow for custom start waiting virtual bool WaitForCreateComplete( CThreadEvent *pEvent ); const ThreadId_t GetThreadID() const { return (ThreadId_t)m_threadId; } #ifdef PLATFORM_WINDOWS const ThreadHandle_t GetThreadHandle() const { return (ThreadHandle_t)m_hThread; } static unsigned long __stdcall ThreadProc( void * pv ); typedef unsigned long (__stdcall *ThreadProc_t)( void * ); #else static void* ThreadProc( void * pv ); typedef void* (*ThreadProc_t)( void * pv ); #endif static void ThreadProcRunWithMinidumpHandler( void *pv ); virtual ThreadProc_t GetThreadProc(); virtual bool IsThreadRunning(); CThreadMutex m_Lock; CThreadEvent m_ExitEvent; // Set right before the thread's function exits. private: enum Flags { SUPPORT_STOP_PROTOCOL = 1 << 0 }; // Thread initially runs this. param is actually 'this'. function // just gets this and calls ThreadProc struct ThreadInit_t { CThread * pThread; CThreadEvent *pInitCompleteEvent; bool * pfInitSuccess; #if defined( THREAD_PARENT_STACK_TRACE_ENABLED ) void * ParentStackTrace[THREAD_PARENT_STACK_TRACE_LENGTH]; #endif }; // make copy constructor and assignment operator inaccessible CThread( const CThread & ); CThread &operator=( const CThread & ); #ifdef _WIN32 HANDLE m_hThread; ThreadId_t m_threadId; #elif defined( _PS3 ) sys_ppu_thread_t m_threadId; volatile sys_ppu_thread_t m_threadZombieId; // Mutex and condition variable used by the Suspend / Resume logic sys_mutex_t m_mutexSuspend; sys_cond_t m_condSuspend; //EAPS3 Event to indicate that a thread has terminated. This helps with the replacing of WaitForMultipleObjects // on the PS3, since it waits for a thread to finish. CThreadEvent m_threadEnd; #elif defined(POSIX) pthread_t m_threadId; volatile pthread_t m_threadZombieId; #endif int m_result; char m_szName[32]; void * m_pStackBase; unsigned m_flags; CThreadManualEvent m_NotSuspendedEvent; }; // The CThread implementation needs to be inlined for performance on the PS3 - It makes a difference of more than 1ms/frame // Since the dependency checker isn't smart enough to take an #ifdef _PS3 into account, all platforms will inline it. #ifdef _PS3 #include "threadtools.inl" #endif //----------------------------------------------------------------------------- // // A helper class to let you sleep a thread for memory validation, you need to handle // m_bSleepForValidate in your ::Run() call and set m_bSleepingForValidate when sleeping // //----------------------------------------------------------------------------- class PLATFORM_CLASS CValidatableThread : public CThread { public: CValidatableThread() { m_bSleepForValidate = false; m_bSleepingForValidate = false; } #ifdef DBGFLAG_VALIDATE virtual void SleepForValidate() { m_bSleepForValidate = true; } bool BSleepingForValidate() { return m_bSleepingForValidate; } virtual void WakeFromValidate() { m_bSleepForValidate = false; } #endif protected: bool m_bSleepForValidate; bool m_bSleepingForValidate; }; //----------------------------------------------------------------------------- // Simple thread class encompasses the notion of a worker thread, handing // synchronized communication. //----------------------------------------------------------------------------- // These are internal reserved error results from a call attempt enum WTCallResult_t { WTCR_FAIL = -1, WTCR_TIMEOUT = -2, WTCR_THREAD_GONE = -3, }; class PLATFORM_CLASS CWorkerThread : public CThread { public: CWorkerThread(); //----------------------------------------------------- // // Inter-thread communication // // Calls in either direction take place on the same "channel." // Seperate functions are specified to make identities obvious // //----------------------------------------------------- // Master: Signal the thread, and block for a response int CallWorker( unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true ); // Worker: Signal the thread, and block for a response int CallMaster( unsigned, unsigned timeout = TT_INFINITE ); // Wait for the next request bool WaitForCall( unsigned dwTimeout, unsigned *pResult = NULL ); bool WaitForCall( unsigned *pResult = NULL ); // Is there a request? bool PeekCall( unsigned *pParam = NULL ); // Reply to the request void Reply( unsigned ); // Wait for a reply in the case when CallWorker() with timeout != TT_INFINITE int WaitForReply( unsigned timeout = TT_INFINITE ); // If you want to do WaitForMultipleObjects you'll need to include // this handle in your wait list or you won't be responsive CThreadEvent& GetCallHandle(); // (returns m_EventSend) // Find out what the request was unsigned GetCallParam() const; // Boost the worker thread to the master thread, if worker thread is lesser, return old priority int BoostPriority(); protected: typedef uint32 ( *WaitFunc_t)( uint32 nHandles, CThreadEvent** ppHandles, int bWaitAll, uint32 timeout ); int Call( unsigned, unsigned timeout, bool fBoost, WaitFunc_t = NULL ); int WaitForReply( unsigned timeout, WaitFunc_t ); private: CWorkerThread( const CWorkerThread & ); CWorkerThread &operator=( const CWorkerThread & ); CThreadEvent m_EventSend; CThreadEvent m_EventComplete; unsigned m_Param; int m_ReturnVal; }; // a unidirectional message queue. A queue of type T. Not especially high speed since each message // is malloced/freed. Note that if your message class has destructors/constructors, they MUST be // thread safe! template class CMessageQueue { CThreadEvent SignalEvent; // signals presence of data CThreadMutex QueueAccessMutex; // the parts protected by the mutex struct MsgNode { MsgNode *Next; T Data; }; MsgNode *Head; MsgNode *Tail; public: CMessageQueue( void ) { Head = Tail = NULL; } // check for a message. not 100% reliable - someone could grab the message first bool MessageWaiting( void ) { return ( Head != NULL ); } void WaitMessage( T *pMsg ) { for(;;) { while( ! MessageWaiting() ) SignalEvent.Wait(); QueueAccessMutex.Lock(); if (! Head ) { // multiple readers could make this null QueueAccessMutex.Unlock(); continue; } *( pMsg ) = Head->Data; MsgNode *remove_this = Head; Head = Head->Next; if (! Head) // if empty, fix tail ptr Tail = NULL; QueueAccessMutex.Unlock(); delete remove_this; break; } } void QueueMessage( T const &Msg) { MsgNode *new1=new MsgNode; new1->Data=Msg; new1->Next=NULL; QueueAccessMutex.Lock(); if ( Tail ) { Tail->Next=new1; Tail = new1; } else { Head = new1; Tail = new1; } SignalEvent.Set(); QueueAccessMutex.Unlock(); } }; //----------------------------------------------------------------------------- // // CThreadMutex. Inlining to reduce overhead and to allow client code // to decide debug status (tracing) // //----------------------------------------------------------------------------- #ifdef MSVC typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION; typedef RTL_CRITICAL_SECTION CRITICAL_SECTION; #ifndef _X360 extern "C" { void __declspec(dllimport) __stdcall InitializeCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *); }; #endif #endif //--------------------------------------------------------- #if !defined(POSIX) || defined( _GAMECONSOLE ) inline void CThreadMutex::Lock() { #if defined(_PS3) #ifndef NO_THREAD_SYNC sys_mutex_lock( m_Mutex, 0 ); #endif #else #if defined( THREAD_MUTEX_TRACING_ENABLED ) uint thisThreadID = ThreadGetCurrentId(); if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) ) Msg( _T( "Thread %u about to wait for lock %p owned by %u\n" ), ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); #endif LockSilent(); #ifdef THREAD_MUTEX_TRACING_ENABLED if (m_lockCount == 0) { // we now own it for the first time. Set owner information m_currentOwnerID = thisThreadID; if ( m_bTrace ) Msg( _T( "Thread %u now owns lock 0x%p\n" ), m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); } m_lockCount++; #endif #endif } //--------------------------------------------------------- inline void CThreadMutex::Unlock() { #if defined( _PS3 ) #ifndef NO_THREAD_SYNC sys_mutex_unlock( m_Mutex ); #endif #else #ifdef THREAD_MUTEX_TRACING_ENABLED AssertMsg( m_lockCount >= 1, "Invalid unlock of thread lock" ); m_lockCount--; if (m_lockCount == 0) { if ( m_bTrace ) Msg( _T( "Thread %u releasing lock 0x%p\n" ), m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); m_currentOwnerID = 0; } #endif UnlockSilent(); #endif } //--------------------------------------------------------- inline void CThreadMutex::LockSilent() { #ifdef MSVC EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); #else DebuggerBreak(); // should not be called - not defined for this platform/compiler!!! #endif } //--------------------------------------------------------- inline void CThreadMutex::UnlockSilent() { #ifdef MSVC LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); #else DebuggerBreak(); // should not be called - not defined for this platform/compiler!!! #endif } //--------------------------------------------------------- inline bool CThreadMutex::AssertOwnedByCurrentThread() { #ifdef THREAD_MUTEX_TRACING_ENABLED #ifdef _WIN32 if (ThreadGetCurrentId() == m_currentOwnerID) return true; AssertMsg3( 0, "Expected thread %u as owner of lock 0x%p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); return false; #elif defined( _PS3 ) return true; #endif #else return true; #endif } inline bool CThreadMutex::IsOwnedByCurrentThread_DebugOnly() { #if defined ( THREAD_MUTEX_TRACING_ENABLED ) && defined ( _WIN32 ) return ThreadGetCurrentId() == m_currentOwnerID; #else return true; #endif } //--------------------------------------------------------- inline void CThreadMutex::SetTrace( bool bTrace ) { #ifdef _WIN32 #ifdef THREAD_MUTEX_TRACING_ENABLED m_bTrace = bTrace; #endif #elif defined _PS3 //EAPS3 #endif } //--------------------------------------------------------- #elif defined(POSIX) && !defined( _GAMECONSOLE ) inline CThreadMutex::CThreadMutex() { // enable recursive locks as we need them pthread_mutexattr_init( &m_Attr ); pthread_mutexattr_settype( &m_Attr, PTHREAD_MUTEX_RECURSIVE ); pthread_mutex_init( &m_Mutex, &m_Attr ); } //--------------------------------------------------------- inline CThreadMutex::~CThreadMutex() { pthread_mutex_destroy( &m_Mutex ); } //--------------------------------------------------------- inline void CThreadMutex::Lock() { pthread_mutex_lock( &m_Mutex ); } //--------------------------------------------------------- inline void CThreadMutex::Unlock() { pthread_mutex_unlock( &m_Mutex ); } //--------------------------------------------------------- inline void CThreadMutex::LockSilent() { pthread_mutex_lock( &m_Mutex ); } //--------------------------------------------------------- inline void CThreadMutex::UnlockSilent() { pthread_mutex_unlock( &m_Mutex ); } //--------------------------------------------------------- inline bool CThreadMutex::AssertOwnedByCurrentThread() { return true; } //--------------------------------------------------------- inline void CThreadMutex::SetTrace(bool fTrace) { } #else #error #endif // POSIX //----------------------------------------------------------------------------- // // CThreadRWLock inline functions // //----------------------------------------------------------------------------- inline CThreadRWLock::CThreadRWLock() : m_CanRead( true ), m_nWriters( 0 ), m_nActiveReaders( 0 ), m_nPendingReaders( 0 ) { } inline void CThreadRWLock::LockForRead() { m_mutex.Lock(); if ( m_nWriters) { WaitForRead(); } m_nActiveReaders++; m_mutex.Unlock(); } inline void CThreadRWLock::UnlockRead() { m_mutex.Lock(); m_nActiveReaders--; if ( m_nActiveReaders == 0 && m_nWriters != 0 ) { m_CanWrite.Set(); } m_mutex.Unlock(); } //----------------------------------------------------------------------------- // // CThreadSpinRWLock inline functions // //----------------------------------------------------------------------------- #ifndef OLD_SPINRWLOCK #if defined(TEST_THREAD_SPIN_RW_LOCK) #define RWLAssert( exp ) if ( exp ) ; else DebuggerBreak(); #else #define RWLAssert( exp ) ((void)0) #endif inline bool CThreadSpinRWLock::IsLockedForWrite() { return ( m_lockInfo.m_fWriting == 1 ); } inline bool CThreadSpinRWLock::IsLockedForRead() { return ( m_lockInfo.m_nReaders > 0 ); } FORCEINLINE bool CThreadSpinRWLock::TryLockForWrite() { volatile LockInfo_t &curValue = m_lockInfo; if ( !( curValue.m_i32 & 0x00010000 ) && ThreadInterlockedAssignIf( &curValue.m_i32, 0x00010000, 0 ) ) { ThreadMemoryBarrier(); RWLAssert( m_iWriteDepth == 0 && m_writerId == 0 ); m_writerId = ThreadGetCurrentId(); #ifdef REENTRANT_THREAD_SPIN_RW_LOCK m_iWriteDepth++; #endif return true; } return false; } inline bool CThreadSpinRWLock::TryLockForWrite_UnforcedInline() { if ( TryLockForWrite() ) { return true; } #ifdef REENTRANT_THREAD_SPIN_RW_LOCK if ( m_writerId != ThreadGetCurrentId() ) { return false; } m_iWriteDepth++; return true; #else return false; #endif } FORCEINLINE void CThreadSpinRWLock::LockForWrite() { if ( !TryLockForWrite() ) { SpinLockForWrite(); } } FORCEINLINE bool CThreadSpinRWLock::TryLockForRead() { volatile LockInfo_t &curValue = m_lockInfo; if ( !( curValue.m_i32 & 0x00010000 ) ) // !m_lockInfo.m_fWriting { LockInfo_t oldValue; LockInfo_t newValue; oldValue.m_i32 = ( curValue.m_i32 & 0xffff ); newValue.m_i32 = oldValue.m_i32 + 1; if ( ThreadInterlockedAssignIf( &m_lockInfo.m_i32, newValue.m_i32, oldValue.m_i32 ) ) { ThreadMemoryBarrier(); RWLAssert( m_lockInfo.m_fWriting == 0 ); return true; } } return false; } inline bool CThreadSpinRWLock::TryLockForRead_UnforcedInline() { #ifdef REENTRANT_THREAD_SPIN_RW_LOCK if ( m_lockInfo.m_i32 & 0x00010000 ) // m_lockInfo.m_fWriting { if ( m_writerId == ThreadGetCurrentId() ) { m_lockInfo.m_nReaders++; return true; } return false; } #endif return TryLockForRead(); } FORCEINLINE void CThreadSpinRWLock::LockForRead() { if ( !TryLockForRead() ) { SpinLockForRead(); } } FORCEINLINE void CThreadSpinRWLock::UnlockWrite() { RWLAssert( m_writerId == ThreadGetCurrentId() ); #ifdef REENTRANT_THREAD_SPIN_RW_LOCK if ( --m_iWriteDepth == 0 ) #endif { m_writerId = 0; ThreadMemoryBarrier(); m_lockInfo.m_i32 = 0; } } #ifndef REENTRANT_THREAD_SPIN_RW_LOCK FORCEINLINE #else inline #endif void CThreadSpinRWLock::UnlockRead() { RWLAssert( m_writerId == 0 || ( m_writerId == ThreadGetCurrentId() && m_lockInfo.m_fWriting ) ); #ifdef REENTRANT_THREAD_SPIN_RW_LOCK if ( !( m_lockInfo.m_i32 & 0x00010000 ) ) // !m_lockInfo.m_fWriting #endif { ThreadMemoryBarrier(); ThreadInterlockedDecrement( &m_lockInfo.m_i32 ); RWLAssert( m_writerId == 0 && !m_lockInfo.m_fWriting ); } #ifdef REENTRANT_THREAD_SPIN_RW_LOCK else if ( m_writerId == ThreadGetCurrentId() ) { m_lockInfo.m_nReaders--; } else { RWLAssert( 0 ); } #endif } #else /* (commented out to reduce distraction in colorized editor, remove entirely when new implementation settles) inline bool CThreadSpinRWLock::AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand ) { // Note: using unions guarantees no aliasing bugs. Casting structures through *(int64*)& // may create hard-to-catch bugs because when you do that, compiler doesn't know that the newly computed pointer // is actually aliased with LockInfo_t structure. It's rarely a problem in practice, but when it is, it's a royal pain to debug. return ThreadInterlockedAssignIf64( &m_lockInfo.m_i64, newValue.m_i64, comperand.m_i64 ); } FORCEINLINE bool CThreadSpinRWLock::TryLockForWrite( const uint32 threadId ) { // In order to grab a write lock, there can be no readers and no owners of the write lock if ( m_lockInfo.m_nReaders > 0 || ( m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId ) ) { return false; } static const LockInfo_t oldValue = { {0, 0} }; LockInfo_t newValue = { { threadId, 0 } }; if ( AssignIf( newValue, oldValue ) ) { ThreadMemoryBarrier(); return true; } return false; } inline bool CThreadSpinRWLock::TryLockForWrite() { m_nWriters++; if ( !TryLockForWrite( ThreadGetCurrentId() ) ) { m_nWriters--; return false; } return true; } FORCEINLINE bool CThreadSpinRWLock::TryLockForRead() { if ( m_nWriters != 0 ) { return false; } // In order to grab a write lock, the number of readers must not change and no thread can own the write LockInfo_t oldValue; LockInfo_t newValue; if( IsX360() || IsPS3() ) { // this is the code equivalent to original code (see below) that doesn't cause LHS on Xbox360 // WARNING: This code assumes BIG Endian CPU oldValue.m_i64 = uint32( m_lockInfo.m_nReaders ); newValue.m_i64 = oldValue.m_i64 + 1; // NOTE: when we have -1 (or 0xFFFFFFFF) readers, this will result in non-equivalent code } else { // this is the original code that worked here for a while oldValue.m_nReaders = m_lockInfo.m_nReaders; oldValue.m_writerId = 0; newValue.m_nReaders = oldValue.m_nReaders + 1; newValue.m_writerId = 0; } if ( AssignIf( newValue, oldValue ) ) { ThreadMemoryBarrier(); return true; } return false; } inline void CThreadSpinRWLock::LockForWrite() { const uint32 threadId = ThreadGetCurrentId(); m_nWriters++; if ( !TryLockForWrite( threadId ) ) { ThreadPause(); SpinLockForWrite( threadId ); } } */ #endif // read data from a memory address template FORCEINLINE T ReadVolatileMemory( T const *pPtr ) { volatile const T * pVolatilePtr = ( volatile const T * ) pPtr; return *pVolatilePtr; } //----------------------------------------------------------------------------- #if defined( _WIN32 ) #pragma warning(pop) #endif #if defined( _PS3 ) BOOL SetEvent( CThreadEvent *pEvent ); BOOL ResetEvent( CThreadEvent *pEvent ); DWORD WaitForMultipleObjects(DWORD nCount, CThreadEvent **lppHandles, BOOL bWaitAll, DWORD dwMilliseconds ); #endif // _PS3 #endif // THREADTOOLS_H