//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $Header: $ // $NoKeywords: $ //=============================================================================// #ifndef UTLMAP_H #define UTLMAP_H #ifdef _WIN32 #pragma once #endif #include "tier0/dbg.h" #include "utlrbtree.h" //----------------------------------------------------------------------------- // // Purpose: An associative container. Pretty much identical to std::map. // //----------------------------------------------------------------------------- // This is a useful macro to iterate from start to end in order in a map #define FOR_EACH_MAP( mapName, iteratorName ) \ for ( int iteratorName = (mapName).FirstInorder(); (mapName).IsUtlMap && iteratorName != (mapName).InvalidIndex(); iteratorName = (mapName).NextInorder( iteratorName ) ) // faster iteration, but in an unspecified order #define FOR_EACH_MAP_FAST( mapName, iteratorName ) \ for ( int iteratorName = 0; (mapName).IsUtlMap && iteratorName < (mapName).MaxElement(); ++iteratorName ) if ( !(mapName).IsValidIndex( iteratorName ) ) continue; else struct base_utlmap_t { public: // This enum exists so that FOR_EACH_MAP and FOR_EACH_MAP_FAST cannot accidentally // be used on a type that is not a CUtlMap. If the code compiles then all is well. // The check for IsUtlMap being true should be free. // Using an enum rather than a static const bool ensures that this trick works even // with optimizations disabled on gcc. enum { IsUtlMap = true }; }; template class CUtlMap : public base_utlmap_t { public: typedef K KeyType_t; typedef T ElemType_t; typedef I IndexType_t; // constructor, destructor // Left at growSize = 0, the memory will first allocate 1 element and double in size // at each increment. // LessFunc_t is required, but may be set after the constructor using SetLessFunc() below CUtlMap( int growSize = 0, int initSize = 0, const LessFunc_t &lessfunc = 0 ) : m_Tree( growSize, initSize, CKeyLess( lessfunc ) ) { } CUtlMap( LessFunc_t lessfunc ) : m_Tree( CKeyLess( lessfunc ) ) { } void EnsureCapacity( int num ) { m_Tree.EnsureCapacity( num ); } // gets particular elements ElemType_t & Element( IndexType_t i ) { return m_Tree.Element( i ).elem; } const ElemType_t & Element( IndexType_t i ) const { return m_Tree.Element( i ).elem; } ElemType_t & operator[]( IndexType_t i ) { return m_Tree.Element( i ).elem; } const ElemType_t & operator[]( IndexType_t i ) const { return m_Tree.Element( i ).elem; } KeyType_t & Key( IndexType_t i ) { return m_Tree.Element( i ).key; } const KeyType_t & Key( IndexType_t i ) const { return m_Tree.Element( i ).key; } // Num elements unsigned int Count() const { return m_Tree.Count(); } // Max "size" of the vector IndexType_t MaxElement() const { return m_Tree.MaxElement(); } // Checks if a node is valid and in the map bool IsValidIndex( IndexType_t i ) const { return m_Tree.IsValidIndex( i ); } // Checks if the map as a whole is valid bool IsValid() const { return m_Tree.IsValid(); } // Invalid index static IndexType_t InvalidIndex() { return CTree::InvalidIndex(); } // Sets the less func void SetLessFunc( LessFunc_t func ) { m_Tree.SetLessFunc( CKeyLess( func ) ); } // Insert method (inserts in order) IndexType_t Insert( const KeyType_t &key, const ElemType_t &insert ) { Node_t node; node.key = key; node.elem = insert; return m_Tree.Insert( node ); } IndexType_t Insert( const KeyType_t &key ) { Node_t node; node.key = key; return m_Tree.Insert( node ); } // API to macth src2 for Panormama // Note in src2 straight Insert() calls will assert on duplicates // Chosing not to take that change until discussed further IndexType_t InsertWithDupes( const KeyType_t &key, const ElemType_t &insert ) { Node_t node; node.key = key; node.elem = insert; return m_Tree.Insert( node ); } IndexType_t InsertWithDupes( const KeyType_t &key ) { Node_t node; node.key = key; return m_Tree.Insert( node ); } bool HasElement( const KeyType_t &key ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.HasElement( dummyNode ); } // Find method IndexType_t Find( const KeyType_t &key ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.Find( dummyNode ); } // FindFirst method // This finds the first inorder occurrence of key IndexType_t FindFirst( const KeyType_t &key ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.FindFirst( dummyNode ); } const ElemType_t &FindElement( const KeyType_t &key, const ElemType_t &defaultValue ) const { IndexType_t i = Find( key ); if ( i == InvalidIndex() ) return defaultValue; return Element( i ); } // First element >= key IndexType_t FindClosest( const KeyType_t &key, CompareOperands_t eFindCriteria ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.FindClosest( dummyNode, eFindCriteria ); } // Remove methods void RemoveAt( IndexType_t i ) { m_Tree.RemoveAt( i ); } bool Remove( const KeyType_t &key ) { Node_t dummyNode; dummyNode.key = key; return m_Tree.Remove( dummyNode ); } void RemoveAll( ) { m_Tree.RemoveAll(); } void Purge( ) { m_Tree.Purge(); } // Purges the list and calls delete on each element in it. void PurgeAndDeleteElements(); // Iteration IndexType_t FirstInorder() const { return m_Tree.FirstInorder(); } IndexType_t NextInorder( IndexType_t i ) const { return m_Tree.NextInorder( i ); } IndexType_t PrevInorder( IndexType_t i ) const { return m_Tree.PrevInorder( i ); } IndexType_t LastInorder() const { return m_Tree.LastInorder(); } // API Matching src2 for Panorama IndexType_t NextInorderSameKey( IndexType_t i ) const { IndexType_t iNext = NextInorder( i ); if ( !IsValidIndex( iNext ) ) return InvalidIndex(); if ( Key( iNext ) != Key( i ) ) return InvalidIndex(); return iNext; } // If you change the search key, this can be used to reinsert the // element into the map. void Reinsert( const KeyType_t &key, IndexType_t i ) { m_Tree[i].key = key; m_Tree.Reinsert(i); } IndexType_t InsertOrReplace( const KeyType_t &key, const ElemType_t &insert ) { IndexType_t i = Find( key ); if ( i != InvalidIndex() ) { Element( i ) = insert; return i; } return Insert( key, insert ); } void Swap( CUtlMap< K, T, I > &that ) { m_Tree.Swap( that.m_Tree ); } struct Node_t { Node_t() { } Node_t( const Node_t &from ) : key( from.key ), elem( from.elem ) { } KeyType_t key; ElemType_t elem; }; class CKeyLess { public: CKeyLess( const LessFunc_t& lessFunc ) : m_LessFunc(lessFunc) {} bool operator!() const { return !m_LessFunc; } bool operator()( const Node_t &left, const Node_t &right ) const { return m_LessFunc( left.key, right.key ); } LessFunc_t m_LessFunc; }; typedef CUtlRBTree CTree; CTree *AccessTree() { return &m_Tree; } protected: CTree m_Tree; }; //----------------------------------------------------------------------------- // Purges the list and calls delete on each element in it. template< typename K, typename T, typename I, typename LessFunc_t > inline void CUtlMap::PurgeAndDeleteElements() { for ( I i = 0; i < MaxElement(); ++i ) { if ( !IsValidIndex( i ) ) continue; delete Element( i ); } Purge(); } #endif // UTLMAP_H