//========= Copyright 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: N-way tree container class // // $Revision: $ // $NoKeywords: $ //=============================================================================// #ifndef UTLNTREE_H #define UTLNTREE_H #ifdef _WIN32 #pragma once #endif #include "basetypes.h" #include "utlmemory.h" #include "tier0/dbg.h" #define INVALID_NTREE_IDX ((I)~0) //----------------------------------------------------------------------------- // class CUtlNTree: // description: // A lovely index-based linked list! T is the class type, I is the index // type, which usually should be an unsigned short or smaller. //----------------------------------------------------------------------------- template class CUtlNTree { public: typedef T ElemType_t; typedef I IndexType_t; // constructor, destructor CUtlNTree( int growSize = 0, int initSize = 0 ); CUtlNTree( void *pMemory, int memsize ); ~CUtlNTree( ); // gets particular elements T& Element( I i ); const T& Element( I i ) const; T& operator[]( I i ); const T& operator[]( I i ) const; // Make sure we have a particular amount of memory void EnsureCapacity( int num ); // Clears the tree, doesn't deallocate memory void RemoveAll(); // Memory deallocation void Purge(); // Allocation/deallocation methods I Alloc( ); void Free( I elem ); void FreeSubTree( I elem ); // list modification void SetRoot( I root ); void LinkChildBefore( I parent, I before, I elem ); void LinkChildAfter( I parent, I after, I elem ); void Unlink( I elem ); // Alloc + link combined I InsertChildBefore( I parent, I before ); I InsertChildAfter( I parent, I after ); I InsertChildBefore( I parent, I before, const T &elem ); I InsertChildAfter( I parent, I after, const T &elem ); // Unlink + free combined void Remove( I elem ); void RemoveSubTree( I elem ); // invalid index inline static I InvalidIndex() { return INVALID_NTREE_IDX; } inline static size_t ElementSize() { return sizeof(Node_t); } // list statistics int Count() const; I MaxElementIndex() const; // Traversing the list I Root() const; I FirstChild( I i ) const; I PrevSibling( I i ) const; I NextSibling( I i ) const; I Parent( I i ) const; // Are nodes in the list or valid? bool IsValidIndex( I i ) const; bool IsInTree( I i ) const; protected: // What the linked list element looks like struct Node_t { T m_Element; I m_Parent; I m_FirstChild; I m_PrevSibling; I m_NextSibling; private: // No copy constructor for these... Node_t( const Node_t& ); }; // constructs the class void ConstructList(); // Allocates the element, doesn't call the constructor I AllocInternal(); // Gets at the node element.... Node_t& InternalNode( I i ) { return m_Memory[i]; } const Node_t& InternalNode( I i ) const { return m_Memory[i]; } void ResetDbgInfo() { m_pElements = m_Memory.Base(); } // copy constructors not allowed CUtlNTree( CUtlNTree const& tree ) { Assert(0); } CUtlMemory m_Memory; I m_Root; I m_FirstFree; I m_ElementCount; // The number actually in the tree I m_MaxElementIndex; // The max index we've ever assigned // For debugging purposes; // it's in release builds so this can be used in libraries correctly Node_t *m_pElements; }; //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template CUtlNTree::CUtlNTree( int growSize, int initSize ) : m_Memory(growSize, initSize) { ConstructList(); ResetDbgInfo(); } template CUtlNTree::CUtlNTree( void* pMemory, int memsize ) : m_Memory(pMemory, memsize/sizeof(T)) { ConstructList(); ResetDbgInfo(); } template CUtlNTree::~CUtlNTree( ) { RemoveAll(); } template void CUtlNTree::ConstructList() { m_Root = InvalidIndex(); m_FirstFree = InvalidIndex(); m_ElementCount = m_MaxElementIndex = 0; } //----------------------------------------------------------------------------- // gets particular elements //----------------------------------------------------------------------------- template inline T& CUtlNTree::Element( I i ) { return m_Memory[i].m_Element; } template inline const T& CUtlNTree::Element( I i ) const { return m_Memory[i].m_Element; } template inline T& CUtlNTree::operator[]( I i ) { return m_Memory[i].m_Element; } template inline const T& CUtlNTree::operator[]( I i ) const { return m_Memory[i].m_Element; } //----------------------------------------------------------------------------- // list statistics //----------------------------------------------------------------------------- template inline int CUtlNTree::Count() const { return m_ElementCount; } template inline I CUtlNTree::MaxElementIndex() const { return m_MaxElementIndex; } //----------------------------------------------------------------------------- // Traversing the list //----------------------------------------------------------------------------- template inline I CUtlNTree::Root() const { return m_Root; } template inline I CUtlNTree::FirstChild( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_FirstChild; } template inline I CUtlNTree::PrevSibling( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_PrevSibling; } template inline I CUtlNTree::NextSibling( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_NextSibling; } template inline I CUtlNTree::Parent( I i ) const { Assert( IsInTree(i) ); return InternalNode(i).m_Parent; } //----------------------------------------------------------------------------- // Are nodes in the list or valid? //----------------------------------------------------------------------------- template inline bool CUtlNTree::IsValidIndex( I i ) const { return (i < m_MaxElementIndex) && (i >= 0); } template inline bool CUtlNTree::IsInTree( I i ) const { bool bIndexPositive = ( 0 > (I)(-1) ) ? (i >= 0) : true; return (i < m_MaxElementIndex) && bIndexPositive && (InternalNode(i).m_PrevSibling != i); } //----------------------------------------------------------------------------- // Makes sure we have enough memory allocated to store a requested # of elements //----------------------------------------------------------------------------- template< class T, class I > void CUtlNTree::EnsureCapacity( int num ) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.EnsureCapacity(num); ResetDbgInfo(); } //----------------------------------------------------------------------------- // Deallocate memory //----------------------------------------------------------------------------- template void CUtlNTree::Purge() { RemoveAll(); m_Memory.Purge( ); m_FirstFree = InvalidIndex(); m_MaxElementIndex = 0; ResetDbgInfo(); } //----------------------------------------------------------------------------- // Node allocation/deallocation //----------------------------------------------------------------------------- template I CUtlNTree::AllocInternal( ) { I elem; if ( m_FirstFree == INVALID_NTREE_IDX ) { // Nothing in the free list; add. // Since nothing is in the free list, m_MaxElementIndex == total # of elements // the list knows about. if ((int)m_MaxElementIndex == m_Memory.NumAllocated()) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.Grow(); } Assert( m_MaxElementIndex != INVALID_NTREE_IDX ); elem = (I)m_MaxElementIndex; ++m_MaxElementIndex; if ( elem == InvalidIndex() ) { Error("CUtlNTree overflow!\n"); } } else { elem = m_FirstFree; m_FirstFree = InternalNode( m_FirstFree ).m_NextSibling; } Node_t &node = InternalNode( elem ); node.m_NextSibling = node.m_PrevSibling = node.m_Parent = node.m_FirstChild = INVALID_NTREE_IDX; ResetDbgInfo(); // one more element baby ++m_ElementCount; return elem; } template I CUtlNTree::Alloc( ) { I elem = AllocInternal(); Construct( &Element(elem) ); return elem; } template void CUtlNTree::Free( I elem ) { Assert( IsInTree( elem ) ); Unlink( elem ); // If there's children, this will result in leaks. Use FreeSubTree instead. Assert( FirstChild( elem ) == INVALID_NTREE_IDX ); Node_t &node = InternalNode( elem ); Destruct( &node.m_Element ); node.m_NextSibling = m_FirstFree; node.m_PrevSibling = elem; // Marks it as being in the free list node.m_Parent = node.m_FirstChild = INVALID_NTREE_IDX; m_FirstFree = elem; // one less element baby --m_ElementCount; } template void CUtlNTree::FreeSubTree( I elem ) { Assert( IsValidIndex( elem ) ); I child = FirstChild( elem ); while ( child != INVALID_NTREE_IDX ) { I next = NextSibling( child ); FreeSubTree( child ); child = next; } Free( elem ); } //----------------------------------------------------------------------------- // Clears the tree //----------------------------------------------------------------------------- template void CUtlNTree::RemoveAll() { if ( m_MaxElementIndex == 0 ) return; // Put everything into the free list (even unlinked things ) I prev = InvalidIndex(); for (int i = (int)m_MaxElementIndex; --i >= 0; prev = (I)i ) { Node_t &node = InternalNode( i ); if ( IsInTree( i ) ) { Destruct( &node.m_Element ); } node.m_NextSibling = prev; node.m_PrevSibling = (I)i; // Marks it as being in the free list node.m_Parent = node.m_FirstChild = INVALID_NTREE_IDX; } // First free points to the first element m_FirstFree = 0; // Clear everything else out m_Root = INVALID_NTREE_IDX; m_ElementCount = 0; } //----------------------------------------------------------------------------- // list modification //----------------------------------------------------------------------------- template void CUtlNTree::SetRoot( I root ) { // Resetting the root while it's got stuff in it is bad... Assert( m_Root == InvalidIndex() ); m_Root = root; } //----------------------------------------------------------------------------- // Links a node after a particular node //----------------------------------------------------------------------------- template void CUtlNTree::LinkChildAfter( I parent, I after, I elem ) { Assert( IsInTree(elem) ); // Unlink it if it's in the list at the moment Unlink(elem); Node_t& newElem = InternalNode(elem); newElem.m_Parent = parent; newElem.m_PrevSibling = after; if ( after != INVALID_NTREE_IDX ) { Node_t& prevSiblingNode = InternalNode( after ); newElem.m_NextSibling = prevSiblingNode.m_NextSibling; prevSiblingNode.m_NextSibling = elem; } else { if ( parent != INVALID_NTREE_IDX ) { Node_t& parentNode = InternalNode( parent ); newElem.m_NextSibling = parentNode.m_FirstChild; parentNode.m_FirstChild = elem; } else { newElem.m_NextSibling = m_Root; if ( m_Root != INVALID_NTREE_IDX ) { Node_t& rootNode = InternalNode( m_Root ); rootNode.m_PrevSibling = elem; } m_Root = elem; } } if ( newElem.m_NextSibling != INVALID_NTREE_IDX ) { Node_t& nextSiblingNode = InternalNode( newElem.m_NextSibling ); nextSiblingNode.m_PrevSibling = elem; } } //----------------------------------------------------------------------------- // Links a node before a particular node //----------------------------------------------------------------------------- template void CUtlNTree::LinkChildBefore( I parent, I before, I elem ) { Assert( IsValidIndex(elem) ); if ( before != INVALID_NTREE_IDX ) { LinkChildAfter( parent, InternalNode( before ).m_PrevSibling, elem ); return; } // NOTE: I made the choice to do an O(n) operation here // instead of store more data per node (LastChild). // This might not be the right choice. Revisit if we get perf problems. I after; if ( parent != INVALID_NTREE_IDX ) { after = InternalNode( parent ).m_FirstChild; } else { after = m_Root; } if ( after == INVALID_NTREE_IDX ) { LinkChildAfter( parent, after, elem ); return; } I next = InternalNode( after ).m_NextSibling; while ( next != InvalidIndex() ) { after = next; next = InternalNode( next ).m_NextSibling; } LinkChildAfter( parent, after, elem ); } //----------------------------------------------------------------------------- // Unlinks a node from the tree //----------------------------------------------------------------------------- template void CUtlNTree::Unlink( I elem ) { Assert( IsInTree(elem) ); Node_t *pOldNode = &InternalNode( elem ); // If we're the first guy, reset the head // otherwise, make our previous node's next pointer = our next if ( pOldNode->m_PrevSibling != INVALID_NTREE_IDX ) { InternalNode( pOldNode->m_PrevSibling ).m_NextSibling = pOldNode->m_NextSibling; } else { if ( pOldNode->m_Parent != INVALID_NTREE_IDX ) { InternalNode( pOldNode->m_Parent ).m_FirstChild = pOldNode->m_NextSibling; } else if ( m_Root == elem ) { m_Root = pOldNode->m_NextSibling; } } // If we're the last guy, reset the tail // otherwise, make our next node's prev pointer = our prev if ( pOldNode->m_NextSibling != INVALID_NTREE_IDX ) { InternalNode( pOldNode->m_NextSibling ).m_PrevSibling = pOldNode->m_PrevSibling; } // Unlink everything except children pOldNode->m_Parent = pOldNode->m_PrevSibling = pOldNode->m_NextSibling = INVALID_NTREE_IDX; } //----------------------------------------------------------------------------- // Alloc + link combined //----------------------------------------------------------------------------- template I CUtlNTree::InsertChildBefore( I parent, I before ) { I elem = AllocInternal(); Construct( &Element( elem ) ); LinkChildBefore( parent, before, elem ); return elem; } template I CUtlNTree::InsertChildAfter( I parent, I after ) { I elem = AllocInternal(); Construct( &Element( elem ) ); LinkChildAfter( parent, after, elem ); return elem; } template I CUtlNTree::InsertChildBefore( I parent, I before, const T &data ) { I elem = AllocInternal(); CopyConstruct( &Element( elem ), data ); LinkChildBefore( parent, before, elem ); return elem; } template I CUtlNTree::InsertChildAfter( I parent, I after, const T &data ) { I elem = AllocInternal(); CopyConstruct( &Element( elem ), data ); LinkChildAfter( parent, after, elem ); return elem; } //----------------------------------------------------------------------------- // Unlink + free combined //----------------------------------------------------------------------------- template void CUtlNTree::Remove( I elem ) { Unlink( elem ); Free( elem ); } template void CUtlNTree::RemoveSubTree( I elem ) { UnlinkSubTree( elem ); Free( elem ); } #endif // UTLNTREE_H