//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ //=============================================================================// #include "vrad.h" #include "VRAD_DispColl.h" #include "DispColl_Common.h" #include "radial.h" #include "CollisionUtils.h" #include "tier0\dbg.h" #define SAMPLE_BBOX_SLOP 5.0f #define TRIEDGE_EPSILON 0.001f float g_flMaxDispSampleSize = 512.0f; static FileHandle_t pDispFile = FILESYSTEM_INVALID_HANDLE; //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- CVRADDispColl::CVRADDispColl() { m_iParent = -1; m_flSampleRadius2 = 0.0f; m_flPatchSampleRadius2 = 0.0f; m_flSampleWidth = 0.0f; m_flSampleHeight = 0.0f; m_aLuxelCoords.Purge(); m_aVertNormals.Purge(); } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- CVRADDispColl::~CVRADDispColl() { m_aLuxelCoords.Purge(); m_aVertNormals.Purge(); } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- bool CVRADDispColl::Create( CCoreDispInfo *pDisp ) { // Base class create. if( !CDispCollTree::Create( pDisp ) ) return false; // Allocate VRad specific memory. m_aLuxelCoords.SetSize( GetSize() ); m_aVertNormals.SetSize( GetSize() ); // VRad specific base surface data. CCoreDispSurface *pSurf = pDisp->GetSurface(); m_iParent = pSurf->GetHandle(); // VRad specific displacement surface data. for ( int iVert = 0; iVert < m_aVerts.Count(); ++iVert ) { pDisp->GetNormal( iVert, m_aVertNormals[iVert] ); pDisp->GetLuxelCoord( 0, iVert, m_aLuxelCoords[iVert] ); } // Re-calculate the lightmap size (in uv) so that the luxels give // a better world-space uniform approx. due to the non-linear nature // of the displacement surface in uv-space dface_t *pFace = &g_pFaces[m_iParent]; if( pFace ) { CalcSampleRadius2AndBox( pFace ); } return true; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CVRADDispColl::CalcSampleRadius2AndBox( dface_t *pFace ) { // Get the luxel sample size. texinfo_t *pTexInfo = &texinfo[pFace->texinfo]; Assert ( pTexInfo ); if ( !pTexInfo ) return; // Todo: Width = Height now, should change all the code to look at one value. Vector vecTmp( pTexInfo->lightmapVecsLuxelsPerWorldUnits[0][0], pTexInfo->lightmapVecsLuxelsPerWorldUnits[0][1], pTexInfo->lightmapVecsLuxelsPerWorldUnits[0][2] ); float flWidth = 1.0f / VectorLength( vecTmp ); float flHeight = flWidth; // Save off the sample width and height. m_flSampleWidth = flWidth; m_flSampleHeight = flHeight; // Calculate the sample radius squared. float flSampleRadius = sqrt( ( ( flWidth * flWidth ) + ( flHeight * flHeight ) ) ); // * 2.2f;//RADIALDIST2; // AV - Removing the 2.2 scalar since 1.0 works better with CS:GO if ( flSampleRadius > g_flMaxDispSampleSize ) { flSampleRadius = g_flMaxDispSampleSize; } m_flSampleRadius2 = flSampleRadius * flSampleRadius; // Calculate the patch radius - the max sample edge length * the number of luxels per edge "chop." float flSampleSize = max( m_flSampleWidth, m_flSampleHeight ); float flPatchSampleRadius = flSampleSize * dispchop * ( g_bLargeDispSampleRadius ? 2.2f : 1.0f ); // AV - Removing the 2.2 scalar since 1.0 works better with CS:GO. TS - It fixes lighting artefacts in maps with many small displacements. if ( flPatchSampleRadius > g_MaxDispPatchRadius ) { flPatchSampleRadius = g_MaxDispPatchRadius; Warning( "Patch Sample Radius Clamped!\n" ); } m_flPatchSampleRadius2 = flPatchSampleRadius * flPatchSampleRadius; } //----------------------------------------------------------------------------- // Purpose: Get the min/max of the displacement surface. //----------------------------------------------------------------------------- void CVRADDispColl::GetSurfaceMinMax( Vector &boxMin, Vector &boxMax ) { // Initialize the minimum and maximum box boxMin = m_aVerts[0]; boxMax = m_aVerts[0]; for( int i = 1; i < m_aVerts.Count(); i++ ) { if( m_aVerts[i].x < boxMin.x ) { boxMin.x = m_aVerts[i].x; } if( m_aVerts[i].y < boxMin.y ) { boxMin.y = m_aVerts[i].y; } if( m_aVerts[i].z < boxMin.z ) { boxMin.z = m_aVerts[i].z; } if( m_aVerts[i].x > boxMax.x ) { boxMax.x = m_aVerts[i].x; } if( m_aVerts[i].y > boxMax.y ) { boxMax.y = m_aVerts[i].y; } if( m_aVerts[i].z > boxMax.z ) { boxMax.z = m_aVerts[i].z; } } } //----------------------------------------------------------------------------- // Purpose: Find the minor projection axes based on the given normal. //----------------------------------------------------------------------------- void CVRADDispColl::GetMinorAxes( Vector const &vecNormal, int &nAxis0, int &nAxis1 ) { nAxis0 = 0; nAxis1 = 1; if( FloatMakePositive( vecNormal.x ) > FloatMakePositive( vecNormal.y ) ) { if( FloatMakePositive( vecNormal.x ) > FloatMakePositive( vecNormal.z ) ) { nAxis0 = 1; nAxis1 = 2; } } else { if( FloatMakePositive( vecNormal.y ) > FloatMakePositive( vecNormal.z ) ) { nAxis0 = 0; nAxis1 = 2; } } } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void CVRADDispColl::BaseFacePlaneToDispUV( Vector const &vecPlanePt, Vector2D &dispUV ) { PointInQuadToBarycentric( m_vecSurfPoints[0], m_vecSurfPoints[3], m_vecSurfPoints[2], m_vecSurfPoints[1], vecPlanePt, dispUV ); } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void CVRADDispColl::DispUVToSurfPoint( Vector2D const &dispUV, Vector &vecPoint, float flPushEps ) { // Check to see that the point is on the surface. if ( dispUV.x < 0.0f || dispUV.x > 1.0f || dispUV.y < 0.0f || dispUV.y > 1.0f ) return; // Get the displacement power. int nWidth = ( ( 1 << m_nPower ) + 1 ); int nHeight = nWidth; // Scale the U, V coordinates to the displacement grid size. float flU = dispUV.x * static_cast( nWidth - 1.000001f ); float flV = dispUV.y * static_cast( nHeight - 1.000001f ); // Find the base U, V. int nSnapU = static_cast( flU ); int nSnapV = static_cast( flV ); // Use this to get the triangle orientation. bool bOdd = ( ( ( nSnapV * nWidth ) + nSnapU ) % 2 == 1 ); // Top Left to Bottom Right if( bOdd ) { DispUVToSurf_TriTLToBR( vecPoint, flPushEps, flU, flV, nSnapU, nSnapV, nWidth, nHeight ); } // Bottom Left to Top Right else { DispUVToSurf_TriBLToTR( vecPoint, flPushEps, flU, flV, nSnapU, nSnapV, nWidth, nHeight ); } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CVRADDispColl::DispUVToSurf_TriTLToBR( Vector &vecPoint, float flPushEps, float flU, float flV, int nSnapU, int nSnapV, int nWidth, int nHeight ) { int nNextU = nSnapU + 1; int nNextV = nSnapV + 1; if ( nNextU == nWidth) { --nNextU; } if ( nNextV == nHeight ) { --nNextV; } float flFracU = flU - static_cast( nSnapU ); float flFracV = flV - static_cast( nSnapV ); if( ( flFracU + flFracV ) >= ( 1.0f + TRIEDGE_EPSILON ) ) { int nIndices[3]; nIndices[0] = nNextV * nWidth + nSnapU; nIndices[1] = nNextV * nWidth + nNextU; nIndices[2] = nSnapV * nWidth + nNextU; Vector edgeU = m_aVerts[nIndices[0]] - m_aVerts[nIndices[1]]; Vector edgeV = m_aVerts[nIndices[2]] - m_aVerts[nIndices[1]]; vecPoint = m_aVerts[nIndices[1]] + edgeU * ( 1.0f - flFracU ) + edgeV * ( 1.0f - flFracV ); if ( flPushEps != 0.0f ) { Vector vecNormal; vecNormal = CrossProduct( edgeU, edgeV ); VectorNormalize( vecNormal ); vecPoint += ( vecNormal * flPushEps ); } } else { int nIndices[3]; nIndices[0] = nSnapV * nWidth + nSnapU; nIndices[1] = nNextV * nWidth + nSnapU; nIndices[2] = nSnapV * nWidth + nNextU; Vector edgeU = m_aVerts[nIndices[2]] - m_aVerts[nIndices[0]]; Vector edgeV = m_aVerts[nIndices[1]] - m_aVerts[nIndices[0]]; vecPoint = m_aVerts[nIndices[0]] + edgeU * flFracU + edgeV * flFracV; if ( flPushEps != 0.0f ) { Vector vecNormal; vecNormal = CrossProduct( edgeU, edgeV ); VectorNormalize( vecNormal ); vecPoint += ( vecNormal * flPushEps ); } } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CVRADDispColl::DispUVToSurf_TriBLToTR( Vector &vecPoint, float flPushEps, float flU, float flV, int nSnapU, int nSnapV, int nWidth, int nHeight ) { int nNextU = nSnapU + 1; int nNextV = nSnapV + 1; if ( nNextU == nWidth) { --nNextU; } if ( nNextV == nHeight ) { --nNextV; } float flFracU = flU - static_cast( nSnapU ); float flFracV = flV - static_cast( nSnapV ); if( flFracU < flFracV ) { int nIndices[3]; nIndices[0] = nSnapV * nWidth + nSnapU; nIndices[1] = nNextV * nWidth + nSnapU; nIndices[2] = nNextV * nWidth + nNextU; Vector edgeU = m_aVerts[nIndices[2]] - m_aVerts[nIndices[1]]; Vector edgeV = m_aVerts[nIndices[0]] - m_aVerts[nIndices[1]]; vecPoint = m_aVerts[nIndices[1]] + edgeU * flFracU + edgeV * ( 1.0f - flFracV ); if ( flPushEps != 0.0f ) { Vector vecNormal; vecNormal = CrossProduct( edgeV, edgeU ); VectorNormalize( vecNormal ); vecPoint += ( vecNormal * flPushEps ); } } else { int nIndices[3]; nIndices[0] = nSnapV * nWidth + nSnapU; nIndices[1] = nNextV * nWidth + nNextU; nIndices[2] = nSnapV * nWidth + nNextU; Vector edgeU = m_aVerts[nIndices[0]] - m_aVerts[nIndices[2]]; Vector edgeV = m_aVerts[nIndices[1]] - m_aVerts[nIndices[2]]; vecPoint = m_aVerts[nIndices[2]] + edgeU * ( 1.0f - flFracU ) + edgeV * flFracV; if ( flPushEps != 0.0f ) { Vector vecNormal; vecNormal = CrossProduct( edgeV, edgeU ); VectorNormalize( vecNormal ); vecPoint += ( vecNormal * flPushEps ); } } } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void CVRADDispColl::DispUVToSurfNormal( Vector2D const &dispUV, Vector &vecNormal ) { // Check to see that the point is on the surface. if ( dispUV.x < 0.0f || dispUV.x > 1.0f || dispUV.y < 0.0f || dispUV.y > 1.0f ) return; // Get the displacement power. int nWidth = ( ( 1 << m_nPower ) + 1 ); int nHeight = nWidth; // Scale the U, V coordinates to the displacement grid size. float flU = dispUV.x * static_cast( nWidth - 1.000001f ); float flV = dispUV.y * static_cast( nHeight - 1.000001f ); // Find the base U, V. int nSnapU = static_cast( flU ); int nSnapV = static_cast( flV ); int nNextU = nSnapU + 1; int nNextV = nSnapV + 1; if ( nNextU == nWidth) { --nNextU; } if ( nNextV == nHeight ) { --nNextV; } float flFracU = flU - static_cast( nSnapU ); float flFracV = flV - static_cast( nSnapV ); // Get the four normals "around" the "spot" int iQuad[VRAD_QUAD_SIZE]; iQuad[0] = ( nSnapV * nWidth ) + nSnapU; iQuad[1] = ( nNextV * nWidth ) + nSnapU; iQuad[2] = ( nNextV * nWidth ) + nNextU; iQuad[3] = ( nSnapV * nWidth ) + nNextU; // Find the blended normal (bi-linear). Vector vecTmpNormals[2], vecBlendedNormals[2], vecDispNormals[4]; for ( int iVert = 0; iVert < VRAD_QUAD_SIZE; ++iVert ) { GetVertNormal( iQuad[iVert], vecDispNormals[iVert] ); } vecTmpNormals[0] = vecDispNormals[0] * ( 1.0f - flFracU ); vecTmpNormals[1] = vecDispNormals[3] * flFracU; vecBlendedNormals[0] = vecTmpNormals[0] + vecTmpNormals[1]; VectorNormalize( vecBlendedNormals[0] ); vecTmpNormals[0] = vecDispNormals[1] * ( 1.0f - flFracU ); vecTmpNormals[1] = vecDispNormals[2] * flFracU; vecBlendedNormals[1] = vecTmpNormals[0] + vecTmpNormals[1]; VectorNormalize( vecBlendedNormals[1] ); vecTmpNormals[0] = vecBlendedNormals[0] * ( 1.0f - flFracV ); vecTmpNormals[1] = vecBlendedNormals[1] * flFracV; vecNormal = vecTmpNormals[0] + vecTmpNormals[1]; VectorNormalize( vecNormal ); } //----------------------------------------------------------------------------- // Purpose: // Output : float //----------------------------------------------------------------------------- float CVRADDispColl::CreateParentPatches( void ) { // Save the total surface area of the displacement. float flTotalArea = 0.0f; // Get the number of displacement subdivisions. int nInterval = GetWidth(); Vector vecPoints[4]; vecPoints[0].Init( m_aVerts[0].x, m_aVerts[0].y, m_aVerts[0].z ); vecPoints[1].Init( m_aVerts[(nInterval*(nInterval-1))].x, m_aVerts[(nInterval*(nInterval-1))].y, m_aVerts[(nInterval*(nInterval-1))].z ); vecPoints[2].Init( m_aVerts[((nInterval*nInterval)-1)].x, m_aVerts[((nInterval*nInterval)-1)].y, m_aVerts[((nInterval*nInterval)-1)].z ); vecPoints[3].Init( m_aVerts[(nInterval-1)].x, m_aVerts[(nInterval-1)].y, m_aVerts[(nInterval-1)].z ); // Create and initialize the patch. int iPatch = g_Patches.AddToTail(); if ( iPatch == g_Patches.InvalidIndex() ) return flTotalArea; // Keep track of the area of the patches. float flArea = 0.0f; if ( !InitParentPatch( iPatch, vecPoints, flArea ) ) { g_Patches.Remove( iPatch ); flArea = 0.0f; } // Return the displacement area. return flArea; } //----------------------------------------------------------------------------- // Purpose: // Input : iParentPatch - // nLevel - //----------------------------------------------------------------------------- void CVRADDispColl::CreateChildPatchesFromRoot( int iParentPatch, int *pChildPatch ) { // Initialize the child patch indices. pChildPatch[0] = g_Patches.InvalidIndex(); pChildPatch[1] = g_Patches.InvalidIndex(); // Get the number of displacement subdivisions. int nInterval = GetWidth(); // Get the parent patch. CPatch *pParentPatch = &g_Patches[iParentPatch]; if ( !pParentPatch ) return; // Split along the longest edge. Vector vecEdges[4]; vecEdges[0] = pParentPatch->winding->p[1] - pParentPatch->winding->p[0]; vecEdges[1] = pParentPatch->winding->p[2] - pParentPatch->winding->p[1]; vecEdges[2] = pParentPatch->winding->p[3] - pParentPatch->winding->p[2]; vecEdges[3] = pParentPatch->winding->p[3] - pParentPatch->winding->p[0]; // Should the patch be subdivided - check the area. float flMaxLength = max( m_flSampleWidth, m_flSampleHeight ); float flMinEdgeLength = flMaxLength * dispchop; // Find the longest edge. float flEdgeLength = 0.0f; int iLongEdge = -1; for ( int iEdge = 0; iEdge < 4; ++iEdge ) { float flLength = vecEdges[iEdge].Length(); if ( flEdgeLength < flLength ) { flEdgeLength = vecEdges[iEdge].Length(); iLongEdge = iEdge; } } // Small enough already, return. if ( flEdgeLength < flMinEdgeLength ) return; // Test area as well so we don't allow slivers. float flMinArea = ( dispchop * flMaxLength ) * ( dispchop * flMaxLength ); Vector vecNormal = vecEdges[3].Cross( vecEdges[0] ); float flTestArea = VectorNormalize( vecNormal ); if ( flTestArea < flMinArea ) return; // Get the points for the first triangle. int iPoints[3]; Vector vecPoints[3]; float flArea; iPoints[0] = ( nInterval * nInterval ) - 1; iPoints[1] = 0; iPoints[2] = nInterval * ( nInterval - 1 ); for ( int iPoint = 0; iPoint < 3; ++iPoint ) { VectorCopy( m_aVerts[iPoints[iPoint]], vecPoints[iPoint] ); } // Create and initialize the patch. pChildPatch[0] = g_Patches.AddToTail(); if ( pChildPatch[0] == g_Patches.InvalidIndex() ) return; if ( !InitPatch( pChildPatch[0], iParentPatch, 0, vecPoints, iPoints, flArea ) ) { g_Patches.Remove( pChildPatch[0] ); pChildPatch[0] = g_Patches.InvalidIndex(); return; } // Get the points for the second triangle. iPoints[0] = 0; iPoints[1] = ( nInterval * nInterval ) - 1; iPoints[2] = nInterval - 1; for ( int iPoint = 0; iPoint < 3; ++iPoint ) { VectorCopy( m_aVerts[iPoints[iPoint]], vecPoints[iPoint] ); } // Create and initialize the patch. pChildPatch[1] = g_Patches.AddToTail(); if ( pChildPatch[1] == g_Patches.InvalidIndex() ) { g_Patches.Remove( pChildPatch[0] ); pChildPatch[0] = g_Patches.InvalidIndex(); return; } if ( !InitPatch( pChildPatch[1], iParentPatch, 1, vecPoints, iPoints, flArea ) ) { g_Patches.Remove( pChildPatch[0] ); pChildPatch[0] = g_Patches.InvalidIndex(); g_Patches.Remove( pChildPatch[1] ); pChildPatch[1] = g_Patches.InvalidIndex(); return; } } //----------------------------------------------------------------------------- // Purpose: // Input : flMinArea - // Output : float //----------------------------------------------------------------------------- void CVRADDispColl::CreateChildPatches( int iParentPatch, int nLevel ) { // Get the parent patch. CPatch *pParentPatch = &g_Patches[iParentPatch]; if ( !pParentPatch ) return; // The root face is a quad - special case. if ( pParentPatch->winding->numpoints == 4 ) { int iChildPatch[2]; CreateChildPatchesFromRoot( iParentPatch, iChildPatch ); if ( iChildPatch[0] != g_Patches.InvalidIndex() && iChildPatch[1] != g_Patches.InvalidIndex() ) { CreateChildPatches( iChildPatch[0], 0 ); CreateChildPatches( iChildPatch[1], 0 ); } return; } // Calculate the the area of the patch (triangle!). Assert( pParentPatch->winding->numpoints == 3 ); if ( pParentPatch->winding->numpoints != 3 ) return; // Should the patch be subdivided - check the area. float flMaxLength = max( m_flSampleWidth, m_flSampleHeight ); float flMinEdgeLength = flMaxLength * dispchop; // Split along the longest edge. Vector vecEdges[3]; vecEdges[0] = pParentPatch->winding->p[1] - pParentPatch->winding->p[0]; vecEdges[1] = pParentPatch->winding->p[2] - pParentPatch->winding->p[0]; vecEdges[2] = pParentPatch->winding->p[2] - pParentPatch->winding->p[1]; // Find the longest edge. float flEdgeLength = 0.0f; int iLongEdge = -1; for ( int iEdge = 0; iEdge < 3; ++iEdge ) { if ( flEdgeLength < vecEdges[iEdge].Length() ) { flEdgeLength = vecEdges[iEdge].Length(); iLongEdge = iEdge; } } // Small enough already, return. if ( flEdgeLength < flMinEdgeLength ) return; // Test area as well so we don't allow slivers. float flMinArea = ( dispchop * flMaxLength ) * ( dispchop * flMaxLength ) * 0.5f; Vector vecNormal = vecEdges[1].Cross( vecEdges[0] ); float flTestArea = VectorNormalize( vecNormal ); flTestArea *= 0.5f; if ( flTestArea < flMinArea ) return; // Check to see if any more displacement verts exist - go to subdivision if not. if ( nLevel >= ( m_nPower * 2 ) ) { CreateChildPatchesSub( iParentPatch ); return; } int nChildIndices[2][3]; int nNewIndex = ( pParentPatch->indices[1] + pParentPatch->indices[0] ) / 2; nChildIndices[0][0] = pParentPatch->indices[2]; nChildIndices[0][1] = pParentPatch->indices[0]; nChildIndices[0][2] = nNewIndex; nChildIndices[1][0] = pParentPatch->indices[1]; nChildIndices[1][1] = pParentPatch->indices[2]; nChildIndices[1][2] = nNewIndex; Vector vecChildPoints[2][3]; for ( int iTri = 0; iTri < 2; ++iTri ) { for ( int iPoint = 0; iPoint < 3; ++iPoint ) { VectorCopy( m_aVerts[nChildIndices[iTri][iPoint]], vecChildPoints[iTri][iPoint] ); } } // Create and initialize the children patches. int iChildPatch[2] = { -1, -1 }; for ( int iChild = 0; iChild < 2; ++iChild ) { iChildPatch[iChild] = g_Patches.AddToTail(); float flArea = 0.0f; if ( !InitPatch( iChildPatch[iChild], iParentPatch, iChild, vecChildPoints[iChild], nChildIndices[iChild], flArea ) ) { if ( iChild == 0 ) { pParentPatch->child1 = g_Patches.InvalidIndex(); g_Patches.Remove( iChildPatch[iChild] ); break; } else { pParentPatch->child1 = g_Patches.InvalidIndex(); pParentPatch->child2 = g_Patches.InvalidIndex(); g_Patches.Remove( iChildPatch[iChild] ); g_Patches.Remove( iChildPatch[0] ); } } } // Continue creating children patches. int nNewLevel = ++nLevel; CreateChildPatches( iChildPatch[0], nNewLevel ); CreateChildPatches( iChildPatch[1], nNewLevel ); } //----------------------------------------------------------------------------- // Purpose: // Input : flMinArea - // Output : float //----------------------------------------------------------------------------- void CVRADDispColl::CreateChildPatchesSub( int iParentPatch ) { // Get the parent patch. CPatch *pParentPatch = &g_Patches[iParentPatch]; if ( !pParentPatch ) return; // Calculate the the area of the patch (triangle!). Assert( pParentPatch->winding->numpoints == 3 ); if ( pParentPatch->winding->numpoints != 3 ) return; // Should the patch be subdivided - check the area. float flMaxLength = max( m_flSampleWidth, m_flSampleHeight ); float flMinEdgeLength = flMaxLength * dispchop; // Split along the longest edge. Vector vecEdges[3]; vecEdges[0] = pParentPatch->winding->p[1] - pParentPatch->winding->p[0]; vecEdges[1] = pParentPatch->winding->p[2] - pParentPatch->winding->p[0]; vecEdges[2] = pParentPatch->winding->p[2] - pParentPatch->winding->p[1]; // Find the longest edge. float flEdgeLength = 0.0f; int iLongEdge = -1; for ( int iEdge = 0; iEdge < 3; ++iEdge ) { if ( flEdgeLength < vecEdges[iEdge].Length() ) { flEdgeLength = vecEdges[iEdge].Length(); iLongEdge = iEdge; } } // Small enough already, return. if ( flEdgeLength < flMinEdgeLength ) return; // Test area as well so we don't allow slivers. float flMinArea = ( dispchop * flMaxLength ) * ( dispchop * flMaxLength ) * 0.5f; Vector vecNormal = vecEdges[1].Cross( vecEdges[0] ); float flTestArea = VectorNormalize( vecNormal ); flTestArea *= 0.5f; if ( flTestArea < flMinArea ) return; // Create children patchs - 2 of them. Vector vecChildPoints[2][3]; switch ( iLongEdge ) { case 0: { vecChildPoints[0][0] = pParentPatch->winding->p[0]; vecChildPoints[0][1] = ( pParentPatch->winding->p[0] + pParentPatch->winding->p[1] ) * 0.5f; vecChildPoints[0][2] = pParentPatch->winding->p[2]; vecChildPoints[1][0] = ( pParentPatch->winding->p[0] + pParentPatch->winding->p[1] ) * 0.5f; vecChildPoints[1][1] = pParentPatch->winding->p[1]; vecChildPoints[1][2] = pParentPatch->winding->p[2]; break; } case 1: { vecChildPoints[0][0] = pParentPatch->winding->p[0]; vecChildPoints[0][1] = pParentPatch->winding->p[1]; vecChildPoints[0][2] = ( pParentPatch->winding->p[1] + pParentPatch->winding->p[2] ) * 0.5f; vecChildPoints[1][0] = ( pParentPatch->winding->p[1] + pParentPatch->winding->p[2] ) * 0.5f; vecChildPoints[1][1] = pParentPatch->winding->p[2]; vecChildPoints[1][2] = pParentPatch->winding->p[0]; break; } case 2: { vecChildPoints[0][0] = pParentPatch->winding->p[0]; vecChildPoints[0][1] = pParentPatch->winding->p[1]; vecChildPoints[0][2] = ( pParentPatch->winding->p[0] + pParentPatch->winding->p[2] ) * 0.5f; vecChildPoints[1][0] = ( pParentPatch->winding->p[0] + pParentPatch->winding->p[2] ) * 0.5f; vecChildPoints[1][1] = pParentPatch->winding->p[1]; vecChildPoints[1][2] = pParentPatch->winding->p[2]; break; } } // Create and initialize the children patches. int iChildPatch[2] = { 0, 0 }; int nChildIndices[3] = { -1, -1, -1 }; for ( int iChild = 0; iChild < 2; ++iChild ) { iChildPatch[iChild] = g_Patches.AddToTail(); float flArea = 0.0f; if ( !InitPatch( iChildPatch[iChild], iParentPatch, iChild, vecChildPoints[iChild], nChildIndices, flArea ) ) { if ( iChild == 0 ) { pParentPatch->child1 = g_Patches.InvalidIndex(); g_Patches.Remove( iChildPatch[iChild] ); break; } else { pParentPatch->child1 = g_Patches.InvalidIndex(); pParentPatch->child2 = g_Patches.InvalidIndex(); g_Patches.Remove( iChildPatch[iChild] ); g_Patches.Remove( iChildPatch[0] ); } } } // Continue creating children patches. CreateChildPatchesSub( iChildPatch[0] ); CreateChildPatchesSub( iChildPatch[1] ); } int PlaneTypeForNormal (Vector& normal) { vec_t ax, ay, az; // NOTE: should these have an epsilon around 1.0? if (normal[0] == 1.0 || normal[0] == -1.0) return PLANE_X; if (normal[1] == 1.0 || normal[1] == -1.0) return PLANE_Y; if (normal[2] == 1.0 || normal[2] == -1.0) return PLANE_Z; ax = fabs(normal[0]); ay = fabs(normal[1]); az = fabs(normal[2]); if (ax >= ay && ax >= az) return PLANE_ANYX; if (ay >= ax && ay >= az) return PLANE_ANYY; return PLANE_ANYZ; } //----------------------------------------------------------------------------- // Purpose: // Input : iPatch - // iParentPatch - // iChild - // *pPoints - // *pIndices - // &flArea - // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool CVRADDispColl::InitParentPatch( int iPatch, Vector *pPoints, float &flArea ) { // Get the current patch. CPatch *pPatch = &g_Patches[iPatch]; if ( !pPatch ) return false; // Clear the patch data. memset( pPatch, 0, sizeof( CPatch ) ); // This is a parent. pPatch->ndxNext = g_FacePatches.Element( GetParentIndex() ); g_FacePatches[GetParentIndex()] = iPatch; pPatch->faceNumber = GetParentIndex(); // Initialize parent and children indices. pPatch->child1 = g_Patches.InvalidIndex(); pPatch->child2 = g_Patches.InvalidIndex(); pPatch->parent = g_Patches.InvalidIndex(); pPatch->ndxNextClusterChild = g_Patches.InvalidIndex(); pPatch->ndxNextParent = g_Patches.InvalidIndex(); pPatch->staticPropIdx = -1; Vector vecEdges[2]; vecEdges[0] = pPoints[1] - pPoints[0]; vecEdges[1] = pPoints[3] - pPoints[0]; // Calculate the triangle normal and area. Vector vecNormal = vecEdges[1].Cross( vecEdges[0] ); flArea = VectorNormalize( vecNormal ); // Initialize the patch scale. pPatch->scale[0] = pPatch->scale[1] = 1.0f; // Set the patch chop - minchop (that is what the minimum area is based on). pPatch->chop = dispchop; // Displacements are not sky! pPatch->sky = false; // Copy the winding. Vector vecCenter( 0.0f, 0.0f, 0.0f ); pPatch->winding = AllocWinding( 4 ); pPatch->winding->numpoints = 4; for ( int iPoint = 0; iPoint < 4; ++iPoint ) { VectorCopy( pPoints[iPoint], pPatch->winding->p[iPoint] ); VectorAdd( pPoints[iPoint], vecCenter, vecCenter ); } // Set the origin and normal. VectorScale( vecCenter, ( 1.0f / 4.0f ), vecCenter ); VectorCopy( vecCenter, pPatch->origin ); VectorCopy( vecNormal, pPatch->normal ); // Create the plane. pPatch->plane = new dplane_t; if ( !pPatch->plane ) return false; VectorCopy( vecNormal, pPatch->plane->normal ); pPatch->plane->dist = vecNormal.Dot( pPoints[0] ); pPatch->plane->type = PlaneTypeForNormal( pPatch->plane->normal ); pPatch->planeDist = pPatch->plane->dist; // Set the area. pPatch->area = flArea; // Calculate the mins/maxs. Vector vecMin( FLT_MAX, FLT_MAX, FLT_MAX ); Vector vecMax( FLT_MIN, FLT_MIN, FLT_MIN ); for ( int iPoint = 0; iPoint < 4; ++iPoint ) { for ( int iAxis = 0; iAxis < 3; ++iAxis ) { vecMin[iAxis] = min( vecMin[iAxis], pPoints[iPoint][iAxis] ); vecMax[iAxis] = max( vecMax[iAxis], pPoints[iPoint][iAxis] ); } } VectorCopy( vecMin, pPatch->mins ); VectorCopy( vecMax, pPatch->maxs ); VectorCopy( vecMin, pPatch->face_mins ); VectorCopy( vecMax, pPatch->face_maxs ); // Check for bumpmap. dface_t *pFace = dfaces + pPatch->faceNumber; texinfo_t *pTexInfo = &texinfo[pFace->texinfo]; pPatch->needsBumpmap = pTexInfo->flags & SURF_BUMPLIGHT ? true : false; // Misc... pPatch->m_IterationKey = 0; // Calculate the base light, area, and reflectivity. BaseLightForFace( &g_pFaces[pPatch->faceNumber], pPatch->baselight, &pPatch->basearea, pPatch->reflectivity ); return true; } //----------------------------------------------------------------------------- // Purpose: // Input : *pPatch - // *pPoints - // &vecNormal - // flArea - //----------------------------------------------------------------------------- bool CVRADDispColl::InitPatch( int iPatch, int iParentPatch, int iChild, Vector *pPoints, int *pIndices, float &flArea ) { // Get the current patch. CPatch *pPatch = &g_Patches[iPatch]; if ( !pPatch ) return false; // Clear the patch data. memset( pPatch, 0, sizeof( CPatch ) ); pPatch->staticPropIdx = -1; // Setup the parent if we are not the parent. CPatch *pParentPatch = NULL; if ( iParentPatch != g_Patches.InvalidIndex() ) { // Get the parent patch. pParentPatch = &g_Patches[iParentPatch]; if ( !pParentPatch ) return false; } // Attach the face to the correct lists. if ( !pParentPatch ) { // This is a parent. pPatch->ndxNext = g_FacePatches.Element( GetParentIndex() ); g_FacePatches[GetParentIndex()] = iPatch; pPatch->faceNumber = GetParentIndex(); } else { pPatch->ndxNext = g_Patches.InvalidIndex(); pPatch->faceNumber = pParentPatch->faceNumber; // Attach to the parent patch. if ( iChild == 0 ) { pParentPatch->child1 = iPatch; } else { pParentPatch->child2 = iPatch; } } // Initialize parent and children indices. pPatch->child1 = g_Patches.InvalidIndex(); pPatch->child2 = g_Patches.InvalidIndex(); pPatch->ndxNextClusterChild = g_Patches.InvalidIndex(); pPatch->ndxNextParent = g_Patches.InvalidIndex(); pPatch->parent = iParentPatch; // Get triangle edges. Vector vecEdges[3]; vecEdges[0] = pPoints[1] - pPoints[0]; vecEdges[1] = pPoints[2] - pPoints[0]; vecEdges[2] = pPoints[2] - pPoints[1]; // Find the longest edge. // float flEdgeLength = 0.0f; // for ( int iEdge = 0; iEdge < 3; ++iEdge ) // { // if ( flEdgeLength < vecEdges[iEdge].Length() ) // { // flEdgeLength = vecEdges[iEdge].Length(); // } // } // Calculate the triangle normal and area. Vector vecNormal = vecEdges[1].Cross( vecEdges[0] ); flArea = VectorNormalize( vecNormal ); flArea *= 0.5f; // Initialize the patch scale. pPatch->scale[0] = pPatch->scale[1] = 1.0f; // Set the patch chop - minchop (that is what the minimum area is based on). pPatch->chop = dispchop; // Displacements are not sky! pPatch->sky = false; // Copy the winding. Vector vecCenter( 0.0f, 0.0f, 0.0f ); pPatch->winding = AllocWinding( 3 ); pPatch->winding->numpoints = 3; for ( int iPoint = 0; iPoint < 3; ++iPoint ) { VectorCopy( pPoints[iPoint], pPatch->winding->p[iPoint] ); VectorAdd( pPoints[iPoint], vecCenter, vecCenter ); pPatch->indices[iPoint] = static_cast( pIndices[iPoint] ); } // Set the origin and normal. VectorScale( vecCenter, ( 1.0f / 3.0f ), vecCenter ); VectorCopy( vecCenter, pPatch->origin ); VectorCopy( vecNormal, pPatch->normal ); // Create the plane. pPatch->plane = new dplane_t; if ( !pPatch->plane ) return false; VectorCopy( vecNormal, pPatch->plane->normal ); pPatch->plane->dist = vecNormal.Dot( pPoints[0] ); pPatch->plane->type = PlaneTypeForNormal( pPatch->plane->normal ); pPatch->planeDist = pPatch->plane->dist; // Set the area. pPatch->area = flArea; // Calculate the mins/maxs. Vector vecMin( FLT_MAX, FLT_MAX, FLT_MAX ); Vector vecMax( FLT_MIN, FLT_MIN, FLT_MIN ); for ( int iPoint = 0; iPoint < 3; ++iPoint ) { for ( int iAxis = 0; iAxis < 3; ++iAxis ) { vecMin[iAxis] = min( vecMin[iAxis], pPoints[iPoint][iAxis] ); vecMax[iAxis] = max( vecMax[iAxis], pPoints[iPoint][iAxis] ); } } VectorCopy( vecMin, pPatch->mins ); VectorCopy( vecMax, pPatch->maxs ); if ( !pParentPatch ) { VectorCopy( vecMin, pPatch->face_mins ); VectorCopy( vecMax, pPatch->face_maxs ); } else { VectorCopy( pParentPatch->face_mins, pPatch->face_mins ); VectorCopy( pParentPatch->face_maxs, pPatch->face_maxs ); } // Check for bumpmap. dface_t *pFace = dfaces + pPatch->faceNumber; texinfo_t *pTexInfo = &texinfo[pFace->texinfo]; pPatch->needsBumpmap = pTexInfo->flags & SURF_BUMPLIGHT ? true : false; // Misc... pPatch->m_IterationKey = 0; // Get the base light for the face. if ( !pParentPatch ) { BaseLightForFace( &g_pFaces[pPatch->faceNumber], pPatch->baselight, &pPatch->basearea, pPatch->reflectivity ); } else { VectorCopy( pParentPatch->baselight, pPatch->baselight ); pPatch->basearea = pParentPatch->basearea; pPatch->reflectivity = pParentPatch->reflectivity; } return true; } void CVRADDispColl::AddPolysForRayTrace( void ) { if ( !( m_nContents & MASK_OPAQUE ) ) return; for ( int ndxTri = 0; ndxTri < m_aTris.Count(); ndxTri++ ) { CDispCollTri *tri = m_aTris.Base() + ndxTri; int v[3]; for ( int ndxv = 0; ndxv < 3; ndxv++ ) v[ndxv] = tri->GetVert(ndxv); Vector fullCoverage; fullCoverage.x = 1.0f; g_RtEnv.AddTriangle( TRACE_ID_OPAQUE, m_aVerts[v[0]], m_aVerts[v[1]], m_aVerts[v[2]], fullCoverage ); } }