//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ //=============================================================================// #ifndef KEYVALUES_H #define KEYVALUES_H #ifdef _WIN32 #pragma once #endif #ifndef NULL #ifdef __cplusplus #define NULL 0 #else #define NULL ((void *)0) #endif #endif #include "utlvector.h" #include "color.h" #include "exprevaluator.h" #define FOR_EACH_SUBKEY( kvRoot, kvSubKey ) \ for ( KeyValues * kvSubKey = kvRoot->GetFirstSubKey(); kvSubKey != NULL; kvSubKey = kvSubKey->GetNextKey() ) #define FOR_EACH_TRUE_SUBKEY( kvRoot, kvSubKey ) \ for ( KeyValues * kvSubKey = kvRoot->GetFirstTrueSubKey(); kvSubKey != NULL; kvSubKey = kvSubKey->GetNextTrueSubKey() ) #define FOR_EACH_VALUE( kvRoot, kvValue ) \ for ( KeyValues * kvValue = kvRoot->GetFirstValue(); kvValue != NULL; kvValue = kvValue->GetNextValue() ) class IBaseFileSystem; class CUtlBuffer; class Color; class CKeyValuesTokenReader; class KeyValues; class IKeyValuesDumpContext; typedef void * FileHandle_t; class CKeyValuesGrowableStringTable; // single byte identifies a xbox kv file in binary format // strings are pooled from a searchpath/zip mounted symbol table #define KV_BINARY_POOLED_FORMAT 0xAA #define FOR_EACH_SUBKEY( kvRoot, kvSubKey ) \ for ( KeyValues * kvSubKey = kvRoot->GetFirstSubKey(); kvSubKey != NULL; kvSubKey = kvSubKey->GetNextKey() ) #define FOR_EACH_TRUE_SUBKEY( kvRoot, kvSubKey ) \ for ( KeyValues * kvSubKey = kvRoot->GetFirstTrueSubKey(); kvSubKey != NULL; kvSubKey = kvSubKey->GetNextTrueSubKey() ) #define FOR_EACH_VALUE( kvRoot, kvValue ) \ for ( KeyValues * kvValue = kvRoot->GetFirstValue(); kvValue != NULL; kvValue = kvValue->GetNextValue() ) //----------------------------------------------------------------------------- // Purpose: Simple recursive data access class // Used in vgui for message parameters and resource files // Destructor deletes all child KeyValues nodes // Data is stored in key (string names) - (string/int/float)value pairs called nodes. // // About KeyValues Text File Format: // It has 3 control characters '{', '}' and '"'. Names and values may be quoted or // not. The quote '"' character must not be used within name or values, only for // quoting whole tokens. You may use escape sequences wile parsing and add within a // quoted token a \" to add quotes within your name or token. When using Escape // Sequence the parser must now that by setting KeyValues::UsesEscapeSequences( true ), // which it's off by default. Non-quoted tokens ends with a whitespace, '{', '}' and '"'. // So you may use '{' and '}' within quoted tokens, but not for non-quoted tokens. // An open bracket '{' after a key name indicates a list of subkeys which is finished // with a closing bracket '}'. Subkeys use the same definitions recursively. // Whitespaces are space, return, newline and tabulator. Allowed Escape sequences // are \n, \t, \\, \n and \". The number character '#' is used for macro purposes // (eg #include), don't use it as first character in key names. //----------------------------------------------------------------------------- class KeyValues { friend class CKeyValuesTokenReader; public: // By default, the KeyValues class uses a string table for the key names that is // limited to 4MB. The game will exit in error if this space is exhausted. In // general this is preferable for game code for performance and memory fragmentation // reasons. // // If this is not acceptable, you can use this call to switch to a table that can grow // arbitrarily. This call must be made before any KeyValues objects are allocated or it // will result in undefined behavior. If you use the growable string table, you cannot // share KeyValues pointers directly with any other module. You can serialize them across // module boundaries. These limitations are acceptable in the Steam backend code // this option was written for, but may not be in other situations. Make sure to // understand the implications before using this. static void SetUseGrowableStringTable( bool bUseGrowableTable ); explicit KeyValues( const char *setName ); // // AutoDelete class to automatically free the keyvalues. // Simply construct it with the keyvalues you allocated and it will free them when falls out of scope. // When you decide that keyvalues shouldn't be deleted call Assign(NULL) on it. // If you constructed AutoDelete(NULL) you can later assign the keyvalues to be deleted with Assign(pKeyValues). // class AutoDelete { public: explicit inline AutoDelete( KeyValues *pKeyValues ) : m_pKeyValues( pKeyValues ) {} explicit inline AutoDelete( const char *pchKVName ) : m_pKeyValues( new KeyValues( pchKVName ) ) {} inline ~AutoDelete( void ) { delete m_pKeyValues; } inline void Assign( KeyValues *pKeyValues ) { m_pKeyValues = pKeyValues; } /// behaves more like an auto pointer detach ( flags itself to not delete the contained object, and returns a pointer to it) inline KeyValues * Detach() { KeyValues *retval = m_pKeyValues; Assign( NULL ); return retval; } KeyValues *operator->() { return m_pKeyValues; } operator KeyValues *() { return m_pKeyValues; } private: AutoDelete( AutoDelete const &x ); // forbid AutoDelete & operator= ( AutoDelete const &x ); // forbid protected: KeyValues *m_pKeyValues; }; // // AutoDeleteInline is useful when you want to hold your keyvalues object inside // and delete it right after using. // You can also pass temporary KeyValues object as an argument to a function by wrapping it into KeyValues::AutoDeleteInline // instance: call_my_function( KeyValues::AutoDeleteInline( new KeyValues( "test" ) ) ) // class AutoDeleteInline : public AutoDelete { public: explicit inline AutoDeleteInline( KeyValues *pKeyValues ) : AutoDelete( pKeyValues ) {} inline operator KeyValues *() const { return m_pKeyValues; } inline KeyValues * Get() const { return m_pKeyValues; } }; // Quick setup constructors KeyValues( const char *setName, const char *firstKey, const char *firstValue ); KeyValues( const char *setName, const char *firstKey, const wchar_t *firstValue ); KeyValues( const char *setName, const char *firstKey, int firstValue ); KeyValues( const char *setName, const char *firstKey, const char *firstValue, const char *secondKey, const char *secondValue ); KeyValues( const char *setName, const char *firstKey, int firstValue, const char *secondKey, int secondValue ); // destruct ~KeyValues(); // Section name const char *GetName() const; void SetName( const char *setName); // gets the name as a unique int int GetNameSymbol() const; int GetNameSymbolCaseSensitive() const; // File access. Set UsesEscapeSequences true, if resource file/buffer uses Escape Sequences (eg \n, \t) void UsesEscapeSequences(bool state); // default false bool LoadFromFile( IBaseFileSystem *filesystem, const char *resourceName, const char *pathID = NULL, GetSymbolProc_t pfnEvaluateSymbolProc = NULL); bool SaveToFile( IBaseFileSystem *filesystem, const char *resourceName, const char *pathID = NULL, bool bWriteEmptySubkeys = false); // Read from a buffer... Note that the buffer must be null terminated bool LoadFromBuffer( char const *resourceName, const char *pBuffer, IBaseFileSystem* pFileSystem = NULL, const char *pPathID = NULL, GetSymbolProc_t pfnEvaluateSymbolProc = NULL ); // Read from a utlbuffer... bool LoadFromBuffer( char const *resourceName, CUtlBuffer &buf, IBaseFileSystem* pFileSystem = NULL, const char *pPathID = NULL, GetSymbolProc_t pfnEvaluateSymbolProc = NULL ); // Find a keyValue, create it if it is not found. // Set bCreate to true to create the key if it doesn't already exist (which ensures a valid pointer will be returned) KeyValues *FindKey(const char *keyName, bool bCreate = false); KeyValues *FindKey(int keySymbol) const; KeyValues *CreateNewKey(); // creates a new key, with an autogenerated name. name is guaranteed to be an integer, of value 1 higher than the highest other integer key name void AddSubKey( KeyValues *pSubkey ); // Adds a subkey. Make sure the subkey isn't a child of some other keyvalues void RemoveSubKey(KeyValues *subKey); // removes a subkey from the list, DOES NOT DELETE IT void InsertSubKey( int nIndex, KeyValues *pSubKey ); // Inserts the given sub-key before the Nth child location bool ContainsSubKey( KeyValues *pSubKey ); // Returns true if this key values contains the specified sub key, false otherwise. void SwapSubKey( KeyValues *pExistingSubKey, KeyValues *pNewSubKey ); // Swaps an existing subkey for a new one, DOES NOT DELETE THE OLD ONE but takes ownership of the new one void ElideSubKey( KeyValues *pSubKey ); // Removes a subkey but inserts all of its children in its place, in-order (flattens a tree, like firing a manager!) KeyValues* CreateKey( const char *keyName ); KeyValues* CreatePeerKey( const char *keyName ); // Key iteration. // // NOTE: GetFirstSubKey/GetNextKey will iterate keys AND values. Use the functions // below if you want to iterate over just the keys or just the values. // KeyValues *GetFirstSubKey() const; // returns the first subkey in the list KeyValues *GetNextKey() const; // returns the next subkey void SetNextKey( KeyValues * pDat); KeyValues *FindLastSubKey(); // returns the LAST subkey in the list. This requires a linked list iteration to find the key. Returns NULL if we don't have any children bool BInteriorNode() const { return GetFirstSubKey() != NULL; } bool BLeafNode() const { return GetFirstSubKey() == NULL; } // // These functions can be used to treat it like a true key/values tree instead of // confusing values with keys. // // So if you wanted to iterate all subkeys, then all values, it would look like this: // for ( KeyValues *pKey = pRoot->GetFirstTrueSubKey(); pKey; pKey = pKey->GetNextTrueSubKey() ) // { // Msg( "Key name: %s\n", pKey->GetName() ); // } // for ( KeyValues *pValue = pRoot->GetFirstValue(); pKey; pKey = pKey->GetNextValue() ) // { // Msg( "Int value: %d\n", pValue->GetInt() ); // Assuming pValue->GetDataType() == TYPE_INT... // } KeyValues* GetFirstTrueSubKey(); KeyValues* GetNextTrueSubKey(); KeyValues* GetFirstValue(); // When you get a value back, you can use GetX and pass in NULL to get the value. KeyValues* GetNextValue(); // Data access int GetInt( const char *keyName = NULL, int defaultValue = 0 ); uint64 GetUint64( const char *keyName = NULL, uint64 defaultValue = 0 ); float GetFloat( const char *keyName = NULL, float defaultValue = 0.0f ); const char *GetString( const char *keyName = NULL, const char *defaultValue = "" ); const wchar_t *GetWString( const char *keyName = NULL, const wchar_t *defaultValue = L"" ); void *GetPtr( const char *keyName = NULL, void *defaultValue = (void*)0 ); Color GetColor( const char *keyName = NULL , const Color &defaultColor = Color( 0, 0, 0, 0 ) ); bool GetBool( const char *keyName = NULL, bool defaultValue = false ) { return GetInt( keyName, defaultValue ? 1 : 0 ) ? true : false; } bool IsEmpty(const char *keyName = NULL); // Data access int GetInt( int keySymbol, int defaultValue = 0 ); uint64 GetUint64( int keySymbol, uint64 defaultValue = 0 ); float GetFloat( int keySymbol, float defaultValue = 0.0f ); const char *GetString( int keySymbol, const char *defaultValue = "" ); const wchar_t *GetWString( int keySymbol, const wchar_t *defaultValue = L"" ); void *GetPtr( int keySymbol, void *defaultValue = (void*)0 ); Color GetColor( int keySymbol /* default value is all black */); bool GetBool( int keySymbol, bool defaultValue = false ) { return GetInt( keySymbol, defaultValue ? 1 : 0 ) ? true : false; } bool IsEmpty( int keySymbol ); // Key writing void SetWString( const char *keyName, const wchar_t *value ); void SetString( const char *keyName, const char *value ); void SetInt( const char *keyName, int value ); void SetUint64( const char *keyName, uint64 value ); void SetFloat( const char *keyName, float value ); void SetPtr( const char *keyName, void *value ); void SetColor( const char *keyName, Color value); void SetBool( const char *keyName, bool value ) { SetInt( keyName, value ? 1 : 0 ); } // Memory allocation (optimized) void *operator new( size_t iAllocSize ); void *operator new( size_t iAllocSize, int nBlockUse, const char *pFileName, int nLine ); void operator delete( void *pMem ); void operator delete( void *pMem, int nBlockUse, const char *pFileName, int nLine ); KeyValues& operator=( KeyValues& src ); bool IsEqual( KeyValues *pRHS ); // Adds a chain... if we don't find stuff in this keyvalue, we'll look // in the one we're chained to. void ChainKeyValue( KeyValues* pChain ); void RecursiveSaveToFile( CUtlBuffer& buf, int indentLevel ); bool WriteAsBinary( CUtlBuffer &buffer ) const; bool ReadAsBinary( CUtlBuffer &buffer, int nStackDepth = 0 ); // Same as the other binary functions, but filter out and remove empty keys (like when seralizing to a file ) bool WriteAsBinaryFiltered( CUtlBuffer &buffer ); bool ReadAsBinaryFiltered( CUtlBuffer &buffer, int nStackDepth = 0 ); // Allocate & create a new copy of the keys KeyValues *MakeCopy( void ) const; // Make a new copy of all subkeys, add them all to the passed-in keyvalues void CopySubkeys( KeyValues *pParent ) const; // Clear out all subkeys, and the current value void Clear( void ); // Data type enum types_t { TYPE_NONE = 0, TYPE_STRING, TYPE_INT, TYPE_FLOAT, TYPE_PTR, TYPE_WSTRING, TYPE_COLOR, TYPE_UINT64, TYPE_COMPILED_INT_BYTE, // hack to collapse 1 byte ints in the compiled format TYPE_COMPILED_INT_0, // hack to collapse 0 in the compiled format TYPE_COMPILED_INT_1, // hack to collapse 1 in the compiled format TYPE_NUMTYPES, }; types_t GetDataType(const char *keyName = NULL); types_t GetDataType() const; // for backward compat void deleteThis(); void SetStringValue( char const *strValue ); // unpack a key values list into a structure void UnpackIntoStructure( struct KeyValuesUnpackStructure const *pUnpackTable, void *pDest ); // Process conditional keys for widescreen support. bool ProcessResolutionKeys( const char *pResString ); // Dump keyvalues recursively into a dump context bool Dump( IKeyValuesDumpContext *pDump, int nIndentLevel = 0 ); // Merge operations describing how two keyvalues can be combined enum MergeKeyValuesOp_t { MERGE_KV_ALL, MERGE_KV_UPDATE, // update values are copied into storage, adding new keys to storage or updating existing ones MERGE_KV_DELETE, // update values specify keys that get deleted from storage MERGE_KV_BORROW, // update values only update existing keys in storage, keys in update that do not exist in storage are discarded }; void MergeFrom( KeyValues *kvMerge, MergeKeyValuesOp_t eOp = MERGE_KV_ALL ); // Assign keyvalues from a string static KeyValues * FromString( char const *szName, char const *szStringVal, char const **ppEndOfParse = NULL ); /// Create a child key, given that we know which child is currently the last child. /// This avoids the O(N^2) behaviour when adding children in sequence to KV, /// when CreateKey() wil have to re-locate the end of the list each time. This happens, /// for example, every time we load any KV file whatsoever. KeyValues* CreateKeyUsingKnownLastChild( const char *keyName, KeyValues *pLastChild ); void AddSubkeyUsingKnownLastChild( KeyValues *pSubKey, KeyValues *pLastChild ); private: KeyValues( KeyValues& ); // prevent copy constructor being used void RecursiveCopyKeyValues( KeyValues& src ); void RemoveEverything(); // void RecursiveSaveToFile( IBaseFileSystem *filesystem, CUtlBuffer &buffer, int indentLevel ); // void WriteConvertedString( CUtlBuffer &buffer, const char *pszString ); // NOTE: If both filesystem and pBuf are non-null, it'll save to both of them. // If filesystem is null, it'll ignore f. void RecursiveSaveToFile( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, int indentLevel, bool bWriteEmptySubkeys = false ); void WriteConvertedString( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, const char *pszString ); void RecursiveLoadFromBuffer( char const *resourceName, CKeyValuesTokenReader &buf, GetSymbolProc_t pfnEvaluateSymbolProc ); // for handling #include "filename" void AppendIncludedKeys( CUtlVector< KeyValues * >& includedKeys ); void ParseIncludedKeys( char const *resourceName, const char *filetoinclude, IBaseFileSystem* pFileSystem, const char *pPathID, CUtlVector< KeyValues * >& includedKeys, GetSymbolProc_t pfnEvaluateSymbolProc ); // For handling #base "filename" void MergeBaseKeys( CUtlVector< KeyValues * >& baseKeys ); void RecursiveMergeKeyValues( KeyValues *baseKV ); // NOTE: If both filesystem and pBuf are non-null, it'll save to both of them. // If filesystem is null, it'll ignore f. void InternalWrite( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, const void *pData, int len ); void Init(); void WriteIndents( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, int indentLevel ); void FreeAllocatedValue(); void AllocateValueBlock(int size); bool ReadAsBinaryPooledFormat( CUtlBuffer &buf, IBaseFileSystem *pFileSystem, unsigned int poolKey, GetSymbolProc_t pfnEvaluateSymbolProc ); bool EvaluateConditional( const char *pExpressionString, GetSymbolProc_t pfnEvaluateSymbolProc ); uint32 m_iKeyName : 24; // keyname is a symbol defined in KeyValuesSystem uint32 m_iKeyNameCaseSensitive1 : 8; // 1st part of case sensitive symbol defined in KeyValueSystem // These are needed out of the union because the API returns string pointers char *m_sValue; wchar_t *m_wsValue; // we don't delete these union { int m_iValue; float m_flValue; void *m_pValue; unsigned char m_Color[4]; }; char m_iDataType; char m_bHasEscapeSequences; // true, if while parsing this KeyValue, Escape Sequences are used (default false) uint16 m_iKeyNameCaseSensitive2; // 2nd part of case sensitive symbol defined in KeyValueSystem; KeyValues *m_pPeer; // pointer to next key in list KeyValues *m_pSub; // pointer to Start of a new sub key list KeyValues *m_pChain;// Search here if it's not in our list GetSymbolProc_t m_pExpressionGetSymbolProc; private: // Statics to implement the optional growable string table // Function pointers that will determine which mode we are in static int (*s_pfGetSymbolForString)( const char *name, bool bCreate ); static const char *(*s_pfGetStringForSymbol)( int symbol ); static CKeyValuesGrowableStringTable *s_pGrowableStringTable; public: // Functions that invoke the default behavior static int GetSymbolForStringClassic( const char *name, bool bCreate = true ); static const char *GetStringForSymbolClassic( int symbol ); // Functions that use the growable string table static int GetSymbolForStringGrowable( const char *name, bool bCreate = true ); static const char *GetStringForSymbolGrowable( int symbol ); }; typedef KeyValues::AutoDelete KeyValuesAD; enum KeyValuesUnpackDestinationTypes_t { UNPACK_TYPE_FLOAT, // dest is a float UNPACK_TYPE_VECTOR, // dest is a Vector UNPACK_TYPE_VECTOR_COLOR, // dest is a vector, src is a color UNPACK_TYPE_STRING, // dest is a char *. unpacker will allocate. UNPACK_TYPE_INT, // dest is an int UNPACK_TYPE_FOUR_FLOATS, // dest is an array of 4 floats. source is a string like "1 2 3 4" UNPACK_TYPE_TWO_FLOATS, // dest is an array of 2 floats. source is a string like "1 2" }; #define UNPACK_FIXED( kname, kdefault, dtype, ofs ) { kname, kdefault, dtype, ofs, 0 } #define UNPACK_VARIABLE( kname, kdefault, dtype, ofs, sz ) { kname, kdefault, dtype, ofs, sz } #define UNPACK_END_MARKER { NULL, NULL, UNPACK_TYPE_FLOAT, 0 } struct KeyValuesUnpackStructure { char const *m_pKeyName; // null to terminate tbl char const *m_pKeyDefault; // null ok KeyValuesUnpackDestinationTypes_t m_eDataType; // UNPACK_TYPE_INT, .. size_t m_nFieldOffset; // use offsetof to set size_t m_nFieldSize; // for strings or other variable length }; //----------------------------------------------------------------------------- // inline methods //----------------------------------------------------------------------------- inline int KeyValues::GetInt( int keySymbol, int defaultValue ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetInt( (const char *)NULL, defaultValue ) : defaultValue; } inline uint64 KeyValues::GetUint64( int keySymbol, uint64 defaultValue ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetUint64( (const char *)NULL, defaultValue ) : defaultValue; } inline float KeyValues::GetFloat( int keySymbol, float defaultValue ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetFloat( (const char *)NULL, defaultValue ) : defaultValue; } inline const char *KeyValues::GetString( int keySymbol, const char *defaultValue ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetString( (const char *)NULL, defaultValue ) : defaultValue; } inline const wchar_t *KeyValues::GetWString( int keySymbol, const wchar_t *defaultValue ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetWString( (const char *)NULL, defaultValue ) : defaultValue; } inline void *KeyValues::GetPtr( int keySymbol, void *defaultValue ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetPtr( (const char *)NULL, defaultValue ) : defaultValue; } inline Color KeyValues::GetColor( int keySymbol ) { Color defaultValue( 0, 0, 0, 0 ); KeyValues *dat = FindKey( keySymbol ); return dat ? dat->GetColor( ) : defaultValue; } inline bool KeyValues::IsEmpty( int keySymbol ) { KeyValues *dat = FindKey( keySymbol ); return dat ? dat->IsEmpty( ) : true; } // // KeyValuesDumpContext and generic implementations // class IKeyValuesDumpContext { public: virtual bool KvBeginKey( KeyValues *pKey, int nIndentLevel ) = 0; virtual bool KvWriteValue( KeyValues *pValue, int nIndentLevel ) = 0; virtual bool KvEndKey( KeyValues *pKey, int nIndentLevel ) = 0; }; class IKeyValuesDumpContextAsText : public IKeyValuesDumpContext { public: virtual bool KvBeginKey( KeyValues *pKey, int nIndentLevel ); virtual bool KvWriteValue( KeyValues *pValue, int nIndentLevel ); virtual bool KvEndKey( KeyValues *pKey, int nIndentLevel ); public: virtual bool KvWriteIndent( int nIndentLevel ); virtual bool KvWriteText( char const *szText ) = 0; }; class CKeyValuesDumpContextAsDevMsg : public IKeyValuesDumpContextAsText { public: // Overrides developer level to dump in DevMsg, zero to dump as Msg CKeyValuesDumpContextAsDevMsg( int nDeveloperLevel = 1 ) : m_nDeveloperLevel( nDeveloperLevel ) {} public: virtual bool KvBeginKey( KeyValues *pKey, int nIndentLevel ); virtual bool KvWriteText( char const *szText ); protected: int m_nDeveloperLevel; }; inline bool KeyValuesDumpAsDevMsg( KeyValues *pKeyValues, int nIndentLevel = 0, int nDeveloperLevel = 1 ) { CKeyValuesDumpContextAsDevMsg ctx( nDeveloperLevel ); return pKeyValues->Dump( &ctx, nIndentLevel ); } #endif // KEYVALUES_H