//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: Common collision utility methods // // $Header: $ // $NoKeywords: $ //=============================================================================// #if !defined(_STATIC_LINKED) || defined(_SHARED_LIB) #include "collisionutils.h" #include "cmodel.h" #include "mathlib/mathlib.h" #include "mathlib/vector.h" #include "tier0/dbg.h" #include #include "mathlib/vector4d.h" #include "trace.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #define UNINIT -99999.0 //----------------------------------------------------------------------------- // Clears the trace //----------------------------------------------------------------------------- static void Collision_ClearTrace( const Vector &vecRayStart, const Vector &vecRayDelta, CBaseTrace *pTrace ) { pTrace->startpos = vecRayStart; pTrace->endpos = vecRayStart; pTrace->endpos += vecRayDelta; pTrace->startsolid = false; pTrace->allsolid = false; pTrace->fraction = 1.0f; pTrace->contents = 0; } //----------------------------------------------------------------------------- // Compute the offset in t along the ray that we'll use for the collision //----------------------------------------------------------------------------- static float ComputeBoxOffset( const Ray_t& ray ) { if (ray.m_IsRay) return 1e-3f; // Find the projection of the box diagonal along the ray... float offset = FloatMakePositive(ray.m_Extents[0] * ray.m_Delta[0]) + FloatMakePositive(ray.m_Extents[1] * ray.m_Delta[1]) + FloatMakePositive(ray.m_Extents[2] * ray.m_Delta[2]); // We need to divide twice: Once to normalize the computation above // so we get something in units of extents, and the second to normalize // that with respect to the entire raycast. offset *= InvRSquared( ray.m_Delta ); // 1e-3 is an epsilon return offset + 1e-3; } //----------------------------------------------------------------------------- // Intersects a swept box against a triangle //----------------------------------------------------------------------------- float IntersectRayWithTriangle( const Ray_t& ray, const Vector& v1, const Vector& v2, const Vector& v3, bool oneSided ) { // This is cute: Use barycentric coordinates to represent the triangle // Vo(1-u-v) + V1u + V2v and intersect that with a line Po + Dt // This gives us 3 equations + 3 unknowns, which we can solve with // Cramer's rule... // E1x u + E2x v - Dx t = Pox - Vox // There's a couple of other optimizations, Cramer's rule involves // computing the determinant of a matrix which has been constructed // by three vectors. It turns out that // det | A B C | = -( A x C ) dot B or -(C x B) dot A // which we'll use below.. Vector edge1, edge2, org; VectorSubtract( v2, v1, edge1 ); VectorSubtract( v3, v1, edge2 ); // Cull out one-sided stuff if (oneSided) { Vector normal; CrossProduct( edge1, edge2, normal ); if (DotProduct( normal, ray.m_Delta ) >= 0.0f) return -1.0f; } // FIXME: This is inaccurate, but fast for boxes // We want to do a fast separating axis implementation here // with a swept triangle along the reverse direction of the ray. // Compute some intermediary terms Vector dirCrossEdge2, orgCrossEdge1; CrossProduct( ray.m_Delta, edge2, dirCrossEdge2 ); // Compute the denominator of Cramer's rule: // | -Dx E1x E2x | // det | -Dy E1y E2y | = (D x E2) dot E1 // | -Dz E1z E2z | float denom = DotProduct( dirCrossEdge2, edge1 ); if( FloatMakePositive( denom ) < 1e-6 ) return -1.0f; denom = 1.0f / denom; // Compute u. It's gotta lie in the range of 0 to 1. // | -Dx orgx E2x | // u = denom * det | -Dy orgy E2y | = (D x E2) dot org // | -Dz orgz E2z | VectorSubtract( ray.m_Start, v1, org ); float u = DotProduct( dirCrossEdge2, org ) * denom; if ((u < 0.0f) || (u > 1.0f)) return -1.0f; // Compute t and v the same way... // In barycentric coords, u + v < 1 CrossProduct( org, edge1, orgCrossEdge1 ); float v = DotProduct( orgCrossEdge1, ray.m_Delta ) * denom; if ((v < 0.0f) || (v + u > 1.0f)) return -1.0f; // Compute the distance along the ray direction that we need to fudge // when using swept boxes float boxt = ComputeBoxOffset( ray ); float t = DotProduct( orgCrossEdge1, edge2 ) * denom; if ((t < -boxt) || (t > 1.0f + boxt)) return -1.0f; return clamp( t, 0, 1 ); } //----------------------------------------------------------------------------- // computes the barycentric coordinates of an intersection //----------------------------------------------------------------------------- bool ComputeIntersectionBarycentricCoordinates( const Ray_t& ray, const Vector& v1, const Vector& v2, const Vector& v3, float& u, float& v, float *t ) { Vector edge1, edge2, org; VectorSubtract( v2, v1, edge1 ); VectorSubtract( v3, v1, edge2 ); // Compute some intermediary terms Vector dirCrossEdge2, orgCrossEdge1; CrossProduct( ray.m_Delta, edge2, dirCrossEdge2 ); // Compute the denominator of Cramer's rule: // | -Dx E1x E2x | // det | -Dy E1y E2y | = (D x E2) dot E1 // | -Dz E1z E2z | float denom = DotProduct( dirCrossEdge2, edge1 ); if( FloatMakePositive( denom ) < 1e-6 ) return false; denom = 1.0f / denom; // Compute u. It's gotta lie in the range of 0 to 1. // | -Dx orgx E2x | // u = denom * det | -Dy orgy E2y | = (D x E2) dot org // | -Dz orgz E2z | VectorSubtract( ray.m_Start, v1, org ); u = DotProduct( dirCrossEdge2, org ) * denom; // Compute t and v the same way... // In barycentric coords, u + v < 1 CrossProduct( org, edge1, orgCrossEdge1 ); v = DotProduct( orgCrossEdge1, ray.m_Delta ) * denom; // Compute the distance along the ray direction that we need to fudge // when using swept boxes if( t ) { float boxt = ComputeBoxOffset( ray ); *t = DotProduct( orgCrossEdge1, edge2 ) * denom; if( ( *t < -boxt ) || ( *t > 1.0f + boxt ) ) return false; } return true; } //----------------------------------------------------------------------------- // Intersects a plane with a triangle (requires barycentric definition) //----------------------------------------------------------------------------- int IntersectTriangleWithPlaneBarycentric( const Vector& org, const Vector& edgeU, const Vector& edgeV, const Vector4D& plane, Vector2D* pIntersection ) { // This uses a barycentric method, since we need that to determine // interpolated points, alphas, and normals // Given the plane equation P dot N + d = 0 // and the barycentric coodinate equation P = Org + EdgeU * u + EdgeV * v // Plug em in. Intersection occurs at u = 0 or v = 0 or u + v = 1 float orgDotNormal = DotProduct( org, plane.AsVector3D() ); float edgeUDotNormal = DotProduct( edgeU, plane.AsVector3D() ); float edgeVDotNormal = DotProduct( edgeV, plane.AsVector3D() ); int ptIdx = 0; // u = 0 if ( edgeVDotNormal != 0.0f ) { pIntersection[ptIdx].x = 0.0f; pIntersection[ptIdx].y = - ( orgDotNormal - plane.w ) / edgeVDotNormal; if ((pIntersection[ptIdx].y >= 0.0f) && (pIntersection[ptIdx].y <= 1.0f)) ++ptIdx; } // v = 0 if ( edgeUDotNormal != 0.0f ) { pIntersection[ptIdx].x = - ( orgDotNormal - plane.w ) / edgeUDotNormal; pIntersection[ptIdx].y = 0.0f; if ((pIntersection[ptIdx].x >= 0.0f) && (pIntersection[ptIdx].x <= 1.0f)) ++ptIdx; } // u + v = 1 if (ptIdx == 2) return ptIdx; if ( edgeVDotNormal != edgeUDotNormal ) { pIntersection[ptIdx].x = - ( orgDotNormal - plane.w + edgeVDotNormal) / ( edgeUDotNormal - edgeVDotNormal); pIntersection[ptIdx].y = 1.0f - pIntersection[ptIdx].x;; if ((pIntersection[ptIdx].x >= 0.0f) && (pIntersection[ptIdx].x <= 1.0f) && (pIntersection[ptIdx].y >= 0.0f) && (pIntersection[ptIdx].y <= 1.0f)) ++ptIdx; } Assert( ptIdx < 3 ); return ptIdx; } //----------------------------------------------------------------------------- // Returns true if a box intersects with a sphere //----------------------------------------------------------------------------- bool IsSphereIntersectingSphere( const Vector& center1, float radius1, const Vector& center2, float radius2 ) { Vector delta; VectorSubtract( center2, center1, delta ); float distSq = delta.LengthSqr(); float radiusSum = radius1 + radius2; return (distSq <= (radiusSum * radiusSum)); } //----------------------------------------------------------------------------- // Returns true if a box intersects with a sphere //----------------------------------------------------------------------------- bool IsBoxIntersectingSphere( const Vector& boxMin, const Vector& boxMax, const Vector& center, float radius ) { // See Graphics Gems, box-sphere intersection float dmin = 0.0f; float flDelta; // Unrolled the loop.. this is a big cycle stealer... if (center[0] < boxMin[0]) { flDelta = center[0] - boxMin[0]; dmin += flDelta * flDelta; } else if (center[0] > boxMax[0]) { flDelta = boxMax[0] - center[0]; dmin += flDelta * flDelta; } if (center[1] < boxMin[1]) { flDelta = center[1] - boxMin[1]; dmin += flDelta * flDelta; } else if (center[1] > boxMax[1]) { flDelta = boxMax[1] - center[1]; dmin += flDelta * flDelta; } if (center[2] < boxMin[2]) { flDelta = center[2] - boxMin[2]; dmin += flDelta * flDelta; } else if (center[2] > boxMax[2]) { flDelta = boxMax[2] - center[2]; dmin += flDelta * flDelta; } return dmin < radius * radius; } bool IsBoxIntersectingSphereExtents( const Vector& boxCenter, const Vector& boxHalfDiag, const Vector& center, float radius ) { // See Graphics Gems, box-sphere intersection float dmin = 0.0f; float flDelta, flDiff; // Unrolled the loop.. this is a big cycle stealer... flDiff = FloatMakePositive( center.x - boxCenter.x ); if (flDiff > boxHalfDiag.x) { flDelta = flDiff - boxHalfDiag.x; dmin += flDelta * flDelta; } flDiff = FloatMakePositive( center.y - boxCenter.y ); if (flDiff > boxHalfDiag.y) { flDelta = flDiff - boxHalfDiag.y; dmin += flDelta * flDelta; } flDiff = FloatMakePositive( center.z - boxCenter.z ); if (flDiff > boxHalfDiag.z) { flDelta = flDiff - boxHalfDiag.z; dmin += flDelta * flDelta; } return dmin < radius * radius; } //----------------------------------------------------------------------------- // Returns true if a rectangle intersects with a circle //----------------------------------------------------------------------------- bool IsCircleIntersectingRectangle( const Vector2D& boxMin, const Vector2D& boxMax, const Vector2D& center, float radius ) { // See Graphics Gems, box-sphere intersection float dmin = 0.0f; float flDelta; if (center[0] < boxMin[0]) { flDelta = center[0] - boxMin[0]; dmin += flDelta * flDelta; } else if (center[0] > boxMax[0]) { flDelta = boxMax[0] - center[0]; dmin += flDelta * flDelta; } if (center[1] < boxMin[1]) { flDelta = center[1] - boxMin[1]; dmin += flDelta * flDelta; } else if (center[1] > boxMax[1]) { flDelta = boxMax[1] - center[1]; dmin += flDelta * flDelta; } return dmin < radius * radius; } //----------------------------------------------------------------------------- // returns true if there's an intersection between ray and sphere //----------------------------------------------------------------------------- bool IsRayIntersectingSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector& vecCenter, float flRadius, float flTolerance ) { // For this algorithm, find a point on the ray which is closest to the sphere origin // Do this by making a plane passing through the sphere origin // whose normal is parallel to the ray. Intersect that plane with the ray. // Plane: N dot P = I, N = D (ray direction), I = C dot N = C dot D // Ray: P = O + D * t // D dot ( O + D * t ) = C dot D // D dot O + D dot D * t = C dot D // t = (C - O) dot D / D dot D // Clamp t to (0,1) // Find distance of the point on the ray to the sphere center. Assert( flTolerance >= 0.0f ); flRadius += flTolerance; Vector vecRayToSphere; VectorSubtract( vecCenter, vecRayOrigin, vecRayToSphere ); float flNumerator = DotProduct( vecRayToSphere, vecRayDelta ); float t; if (flNumerator <= 0.0f) { t = 0.0f; } else { float flDenominator = DotProduct( vecRayDelta, vecRayDelta ); if ( flNumerator > flDenominator ) t = 1.0f; else t = flNumerator / flDenominator; } Vector vecClosestPoint; VectorMA( vecRayOrigin, t, vecRayDelta, vecClosestPoint ); return ( vecClosestPoint.DistToSqr( vecCenter ) <= flRadius * flRadius ); // NOTE: This in an alternate algorithm which I didn't use because I'd have to use a sqrt // So it's probably faster to do this other algorithm. I'll leave the comments here // for how to go back if we want to // Solve using the ray equation + the sphere equation // P = o + dt // (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2 // (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2 // (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 + // (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 + // (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2 // (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t + // (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0 // or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a // a = DotProduct( vecRayDelta, vecRayDelta ); // b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta ) // c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius; // Valid solutions are possible only if b^2 - 4ac >= 0 // Therefore, compute that value + see if we got it } //----------------------------------------------------------------------------- // // IntersectInfiniteRayWithSphere // // Returns whether or not there was an intersection. // Returns the two intersection points // //----------------------------------------------------------------------------- bool IntersectInfiniteRayWithSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector &vecSphereCenter, float flRadius, float *pT1, float *pT2 ) { // Solve using the ray equation + the sphere equation // P = o + dt // (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2 // (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2 // (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 + // (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 + // (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2 // (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t + // (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0 // or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a // a = DotProduct( vecRayDelta, vecRayDelta ); // b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta ) // c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius; Vector vecSphereToRay; VectorSubtract( vecRayOrigin, vecSphereCenter, vecSphereToRay ); float a = DotProduct( vecRayDelta, vecRayDelta ); // This would occur in the case of a zero-length ray if ( a == 0.0f ) { *pT1 = *pT2 = 0.0f; return vecSphereToRay.LengthSqr() <= flRadius * flRadius; } float b = 2 * DotProduct( vecSphereToRay, vecRayDelta ); float c = DotProduct( vecSphereToRay, vecSphereToRay ) - flRadius * flRadius; float flDiscrim = b * b - 4 * a * c; if ( flDiscrim < 0.0f ) return false; flDiscrim = sqrt( flDiscrim ); float oo2a = 0.5f / a; *pT1 = ( - b - flDiscrim ) * oo2a; *pT2 = ( - b + flDiscrim ) * oo2a; return true; } //----------------------------------------------------------------------------- // // IntersectRayWithSphere // // Returns whether or not there was an intersection. // Returns the two intersection points, clamped to (0,1) // //----------------------------------------------------------------------------- bool IntersectRayWithSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector &vecSphereCenter, float flRadius, float *pT1, float *pT2 ) { if ( !IntersectInfiniteRayWithSphere( vecRayOrigin, vecRayDelta, vecSphereCenter, flRadius, pT1, pT2 ) ) return false; if (( *pT1 > 1.0f ) || ( *pT2 < 0.0f )) return false; // Clamp it! if ( *pT1 < 0.0f ) *pT1 = 0.0f; if ( *pT2 > 1.0f ) *pT2 = 1.0f; return true; } // returns true if the sphere and cone intersect // NOTE: cone sine/cosine are the half angle of the cone bool IsSphereIntersectingCone( const Vector &sphereCenter, float sphereRadius, const Vector &coneOrigin, const Vector &coneNormal, float coneSine, float coneCosine ) { Vector backCenter = coneOrigin - (sphereRadius / coneSine) * coneNormal; Vector delta = sphereCenter - backCenter; float deltaLen = delta.Length(); if ( DotProduct(coneNormal, delta) >= deltaLen*coneCosine ) { delta = sphereCenter - coneOrigin; deltaLen = delta.Length(); if ( -DotProduct(coneNormal, delta) >= deltaLen * coneSine ) { return ( deltaLen <= sphereRadius ) ? true : false; } return true; } return false; } //----------------------------------------------------------------------------- // returns true if the point is in the box //----------------------------------------------------------------------------- bool IsPointInBox( const Vector& pt, const Vector& boxMin, const Vector& boxMax ) { Assert( boxMin[0] <= boxMax[0] ); Assert( boxMin[1] <= boxMax[1] ); Assert( boxMin[2] <= boxMax[2] ); // on x360/PS3, force use of SIMD version. if (IsX360() || IsPS3()) { return IsPointInBox( LoadUnaligned3SIMD(pt.Base()), LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()) ) ; } if ( (pt[0] > boxMax[0]) || (pt[0] < boxMin[0]) ) return false; if ( (pt[1] > boxMax[1]) || (pt[1] < boxMin[1]) ) return false; if ( (pt[2] > boxMax[2]) || (pt[2] < boxMin[2]) ) return false; return true; } bool IsPointInCone( const Vector &pt, const Vector &origin, const Vector &axis, float cosAngle, float length ) { Vector delta = pt - origin; float dist = VectorNormalize( delta ); float dot = DotProduct( delta, axis ); if ( dot < cosAngle ) return false; if ( dist * dot > length ) return false; return true; } //----------------------------------------------------------------------------- // returns true if there's an intersection between two boxes //----------------------------------------------------------------------------- bool IsBoxIntersectingBox( const Vector& boxMin1, const Vector& boxMax1, const Vector& boxMin2, const Vector& boxMax2 ) { Assert( boxMin1[0] <= boxMax1[0] ); Assert( boxMin1[1] <= boxMax1[1] ); Assert( boxMin1[2] <= boxMax1[2] ); Assert( boxMin2[0] <= boxMax2[0] ); Assert( boxMin2[1] <= boxMax2[1] ); Assert( boxMin2[2] <= boxMax2[2] ); if ( (boxMin1[0] > boxMax2[0]) || (boxMax1[0] < boxMin2[0]) ) return false; if ( (boxMin1[1] > boxMax2[1]) || (boxMax1[1] < boxMin2[1]) ) return false; if ( (boxMin1[2] > boxMax2[2]) || (boxMax1[2] < boxMin2[2]) ) return false; return true; } bool IsBoxIntersectingBoxExtents( const Vector& boxCenter1, const Vector& boxHalfDiagonal1, const Vector& boxCenter2, const Vector& boxHalfDiagonal2 ) { Vector vecDelta, vecSize; VectorSubtract( boxCenter1, boxCenter2, vecDelta ); VectorAdd( boxHalfDiagonal1, boxHalfDiagonal2, vecSize ); return ( FloatMakePositive( vecDelta.x ) <= vecSize.x ) && ( FloatMakePositive( vecDelta.y ) <= vecSize.y ) && ( FloatMakePositive( vecDelta.z ) <= vecSize.z ); } //----------------------------------------------------------------------------- // // IsOBBIntersectingOBB // // returns true if there's an intersection between two OBBs // //----------------------------------------------------------------------------- bool IsOBBIntersectingOBB( const Vector &vecOrigin1, const QAngle &vecAngles1, const Vector& boxMin1, const Vector& boxMax1, const Vector &vecOrigin2, const QAngle &vecAngles2, const Vector& boxMin2, const Vector& boxMax2, float flTolerance ) { // FIXME: Simple case AABB check doesn't work because the min and max extents are not oriented based on the angle // this fast check would only be good for cubes. /*if ( vecAngles1 == vecAngles2 ) { const Vector &vecDelta = vecOrigin2 - vecOrigin1; Vector vecOtherMins, vecOtherMaxs; VectorAdd( boxMin2, vecDelta, vecOtherMins ); VectorAdd( boxMax2, vecDelta, vecOtherMaxs ); return IsBoxIntersectingBox( boxMin1, boxMax1, vecOtherMins, vecOtherMaxs ); }*/ // OBB test... cplane_t plane; bool bFoundPlane = ComputeSeparatingPlane( vecOrigin1, vecAngles1, boxMin1, boxMax1, vecOrigin2, vecAngles2, boxMin2, boxMax2, flTolerance, &plane ); return (bFoundPlane == false); } // NOTE: This is only very slightly faster on high end PCs and x360 #define USE_SIMD_RAY_CHECKS 1 //----------------------------------------------------------------------------- // returns true if there's an intersection between box and ray //----------------------------------------------------------------------------- bool FASTCALL IsBoxIntersectingRay( const Vector& boxMin, const Vector& boxMax, const Vector& origin, const Vector& vecDelta, float flTolerance ) { #if USE_SIMD_RAY_CHECKS // Load the unaligned ray/box parameters into SIMD registers fltx4 start = LoadUnaligned3SIMD(origin.Base()); fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base()); fltx4 boxMins = LoadUnaligned3SIMD( boxMin.Base() ); fltx4 boxMaxs = LoadUnaligned3SIMD( boxMax.Base() ); fltx4 epsilon = ReplicateX4(flTolerance); // compute the mins/maxs of the box expanded by the ray extents // relocate the problem so that the ray start is at the origin. fltx4 offsetMins = SubSIMD(boxMins, start); fltx4 offsetMaxs = SubSIMD(boxMaxs, start); fltx4 offsetMinsExpanded = SubSIMD(offsetMins, epsilon); fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, epsilon); // Check to see if both the origin (start point) and the end point (delta) are on the front side // of any of the box sides - if so there can be no intersection bi32x4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded); bi32x4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded); bi32x4 minsMask = AndSIMD( startOutMins, endOutMins ); bi32x4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded); bi32x4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded); bi32x4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs ); if ( IsAnyTrue(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask)))) return false; // now build the per-axis interval of t for intersections fltx4 invDelta = ReciprocalSaturateSIMD(delta); fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta ); fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta ); bi32x4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs)); // only consider axes where we crossed a plane tmins = MaskedAssign( crossPlane, tmins, Four_Negative_FLT_MAX ); tmaxs = MaskedAssign( crossPlane, tmaxs, Four_FLT_MAX ); // now sort the interval per axis fltx4 mint = MinSIMD( tmins, tmaxs ); fltx4 maxt = MaxSIMD( tmins, tmaxs ); // now find the intersection of the intervals on all axes fltx4 firstOut = FindLowestSIMD3(maxt); fltx4 lastIn = FindHighestSIMD3(mint); // NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut] firstOut = MinSIMD(firstOut, Four_Ones); lastIn = MaxSIMD(lastIn, Four_Zeros); // If the final interval is valid lastIn boxMax[i] + flTolerance) ) return false; continue; } // non-parallel case // Find the t's corresponding to the entry and exit of // the ray along x, y, and z. The find the furthest entry // point, and the closest exit point. Once that is done, // we know we don't collide if the closest exit point // is behind the starting location. We also don't collide if // the closest exit point is in front of the furthest entry point float invDelta = 1.0f / vecDelta[i]; float t1 = (boxMin[i] - flTolerance - origin[i]) * invDelta; float t2 = (boxMax[i] + flTolerance - origin[i]) * invDelta; if (t1 > t2) { float temp = t1; t1 = t2; t2 = temp; } if (t1 > tmin) tmin = t1; if (t2 < tmax) tmax = t2; if (tmin > tmax) return false; if (tmax < 0) return false; if (tmin > 1) return false; } return true; #endif } //----------------------------------------------------------------------------- // returns true if there's an intersection between box and ray //----------------------------------------------------------------------------- bool FASTCALL IsBoxIntersectingRay( const Vector& boxMin, const Vector& boxMax, const Vector& origin, const Vector& vecDelta, const Vector& vecInvDelta, float flTolerance ) { #if USE_SIMD_RAY_CHECKS // Load the unaligned ray/box parameters into SIMD registers fltx4 start = LoadUnaligned3SIMD(origin.Base()); fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base()); fltx4 boxMins = LoadUnaligned3SIMD( boxMin.Base() ); fltx4 boxMaxs = LoadUnaligned3SIMD( boxMax.Base() ); // compute the mins/maxs of the box expanded by the ray extents // relocate the problem so that the ray start is at the origin. boxMins = SubSIMD(boxMins, start); boxMaxs = SubSIMD(boxMaxs, start); // Check to see if both the origin (start point) and the end point (delta) are on the front side // of any of the box sides - if so there can be no intersection bi32x4 startOutMins = CmpLtSIMD(Four_Zeros, boxMins); bi32x4 endOutMins = CmpLtSIMD(delta,boxMins); bi32x4 minsMask = AndSIMD( startOutMins, endOutMins ); bi32x4 startOutMaxs = CmpGtSIMD(Four_Zeros, boxMaxs); bi32x4 endOutMaxs = CmpGtSIMD(delta,boxMaxs); bi32x4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs ); if ( IsAnyTrue(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask)))) return false; // now build the per-axis interval of t for intersections fltx4 epsilon = ReplicateX4(flTolerance); fltx4 invDelta = LoadUnaligned3SIMD(vecInvDelta.Base()); boxMins = SubSIMD(boxMins, epsilon); boxMaxs = AddSIMD(boxMaxs, epsilon); boxMins = MulSIMD( boxMins, invDelta ); boxMaxs = MulSIMD( boxMaxs, invDelta ); bi32x4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs)); // only consider axes where we crossed a plane boxMins = MaskedAssign( crossPlane, boxMins, Four_Negative_FLT_MAX ); boxMaxs = MaskedAssign( crossPlane, boxMaxs, Four_FLT_MAX ); // now sort the interval per axis fltx4 mint = MinSIMD( boxMins, boxMaxs ); fltx4 maxt = MaxSIMD( boxMins, boxMaxs ); // now find the intersection of the intervals on all axes fltx4 firstOut = FindLowestSIMD3(maxt); fltx4 lastIn = FindHighestSIMD3(mint); // NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut] firstOut = MinSIMD(firstOut, Four_Ones); lastIn = MaxSIMD(lastIn, Four_Zeros); // If the final interval is valid lastIn boxMax[i] + flTolerance ) ) return false; continue; } // Non-parallel case // Find the t's corresponding to the entry and exit of // the ray along x, y, and z. The find the furthest entry // point, and the closest exit point. Once that is done, // we know we don't collide if the closest exit point // is behind the starting location. We also don't collide if // the closest exit point is in front of the furthest entry point float t1 = ( boxMin[i] - flTolerance - origin[i] ) * vecInvDelta[i]; float t2 = ( boxMax[i] + flTolerance - origin[i] ) * vecInvDelta[i]; if ( t1 > t2 ) { float temp = t1; t1 = t2; t2 = temp; } if (t1 > tmin) tmin = t1; if (t2 < tmax) tmax = t2; if (tmin > tmax) return false; if (tmax < 0) return false; if (tmin > 1) return false; } return true; #endif } //----------------------------------------------------------------------------- // Intersects a ray with a aabb, return true if they intersect //----------------------------------------------------------------------------- bool FASTCALL IsBoxIntersectingRay( const Vector& vecBoxMin, const Vector& vecBoxMax, const Ray_t& ray, float flTolerance ) { // On the x360/PS3, we force use of the SIMD functions. #if defined( _X360 ) || defined( _PS3 ) if ( IsX360() || IsPS3() ) { return IsBoxIntersectingRay( LoadUnaligned3SIMD(vecBoxMin.Base()), LoadUnaligned3SIMD(vecBoxMax.Base()), ray, ReplicateX4(flTolerance)); } #endif if ( !ray.m_IsSwept ) { Vector rayMins, rayMaxs; VectorSubtract( ray.m_Start, ray.m_Extents, rayMins ); VectorAdd( ray.m_Start, ray.m_Extents, rayMaxs ); if ( flTolerance != 0.0f ) { rayMins.x -= flTolerance; rayMins.y -= flTolerance; rayMins.z -= flTolerance; rayMaxs.x += flTolerance; rayMaxs.y += flTolerance; rayMaxs.z += flTolerance; } return IsBoxIntersectingBox( vecBoxMin, vecBoxMax, rayMins, rayMaxs ); } Vector vecExpandedBoxMin, vecExpandedBoxMax; VectorSubtract( vecBoxMin, ray.m_Extents, vecExpandedBoxMin ); VectorAdd( vecBoxMax, ray.m_Extents, vecExpandedBoxMax ); return IsBoxIntersectingRay( vecExpandedBoxMin, vecExpandedBoxMax, ray.m_Start, ray.m_Delta, flTolerance ); } //----------------------------------------------------------------------------- // returns true if there's an intersection between box and ray (SIMD version) //----------------------------------------------------------------------------- #if defined( _X360 ) || defined( _PS3 ) bool FASTCALL IsBoxIntersectingRay( fltx4 boxMin, fltx4 boxMax, fltx4 origin, fltx4 delta, fltx4 invDelta, // ray parameters fltx4 vTolerance ///< eg from ReplicateX4(flTolerance) ) #else bool FASTCALL IsBoxIntersectingRay( const fltx4 &inBoxMin, const fltx4 & inBoxMax, const fltx4 & origin, const fltx4 & delta, const fltx4 & invDelta, // ray parameters const fltx4 & vTolerance ///< eg from ReplicateX4(flTolerance) ) #endif { // Load the unaligned ray/box parameters into SIMD registers // compute the mins/maxs of the box expanded by the ray extents // relocate the problem so that the ray start is at the origin. #if defined( _X360 ) || defined( _PS3 ) boxMin = SubSIMD(boxMin, origin); boxMax = SubSIMD(boxMax, origin); #else fltx4 boxMin = SubSIMD(inBoxMin, origin); fltx4 boxMax = SubSIMD(inBoxMax, origin); #endif // Check to see if the origin (start point) and the end point (delta) are on the same side // of any of the box sides - if so there can be no intersection bi32x4 startOutMins = AndSIMD( CmpLtSIMD(Four_Zeros, boxMin), CmpLtSIMD(delta,boxMin) ); bi32x4 startOutMaxs = AndSIMD( CmpGtSIMD(Four_Zeros, boxMax), CmpGtSIMD(delta,boxMax) ); if ( IsAnyTrue(SetWToZeroSIMD(OrSIMD(startOutMaxs,startOutMins)))) return false; // now build the per-axis interval of t for intersections boxMin = SubSIMD(boxMin, vTolerance); boxMax = AddSIMD(boxMax, vTolerance); boxMin = MulSIMD( boxMin, invDelta ); boxMax = MulSIMD( boxMax, invDelta ); // now sort the interval per axis fltx4 mint = MinSIMD( boxMin, boxMax ); fltx4 maxt = MaxSIMD( boxMin, boxMax ); // now find the intersection of the intervals on all axes fltx4 firstOut = FindLowestSIMD3(maxt); fltx4 lastIn = FindHighestSIMD3(mint); // NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut] firstOut = MinSIMD(firstOut, Four_Ones); lastIn = MaxSIMD(lastIn, Four_Zeros); // If the final interval is valid lastInt1 = -1.0f; pTrace->t2 = 1.0f; pTrace->hitside = -1; // UNDONE: This makes this code a little messy pTrace->startsolid = true; for ( i = 0; i < 6; ++i ) { if ( i >= 3 ) { d1 = vecRayStart[i-3] - boxMaxs[i-3]; d2 = d1 + vecRayDelta[i-3]; } else { d1 = -vecRayStart[i] + boxMins[i]; d2 = d1 - vecRayDelta[i]; } // if completely in front of face, no intersection if (d1 > 0 && d2 > 0) { // UNDONE: Have to revert this in case it's still set // UNDONE: Refactor to have only 2 return points (true/false) from this function pTrace->startsolid = false; return false; } // completely inside, check next face if (d1 <= 0 && d2 <= 0) continue; if (d1 > 0) { pTrace->startsolid = false; } // crosses face if (d1 > d2) { f = d1 - flTolerance; if ( f < 0 ) { f = 0; } f = f / (d1-d2); if (f > pTrace->t1) { pTrace->t1 = f; pTrace->hitside = i; } } else { // leave f = (d1 + flTolerance) / (d1-d2); if (f < pTrace->t2) { pTrace->t2 = f; } } } return pTrace->startsolid || (pTrace->t1 < pTrace->t2 && pTrace->t1 >= 0.0f); } //----------------------------------------------------------------------------- // Intersects a ray against a box //----------------------------------------------------------------------------- bool IntersectRayWithBox( const Vector &vecRayStart, const Vector &vecRayDelta, const Vector &boxMins, const Vector &boxMaxs, float flTolerance, CBaseTrace *pTrace, float *pFractionLeftSolid ) { Collision_ClearTrace( vecRayStart, vecRayDelta, pTrace ); BoxTraceInfo_t trace; if ( IntersectRayWithBox( vecRayStart, vecRayDelta, boxMins, boxMaxs, flTolerance, &trace ) ) { pTrace->startsolid = trace.startsolid; if (trace.t1 < trace.t2 && trace.t1 >= 0.0f) { pTrace->fraction = trace.t1; VectorMA( pTrace->startpos, trace.t1, vecRayDelta, pTrace->endpos ); pTrace->contents = CONTENTS_SOLID; pTrace->plane.normal = vec3_origin; if ( trace.hitside >= 3 ) { trace.hitside -= 3; pTrace->plane.dist = boxMaxs[trace.hitside]; pTrace->plane.normal[trace.hitside] = 1.0f; pTrace->plane.type = trace.hitside; } else { pTrace->plane.dist = -boxMins[trace.hitside]; pTrace->plane.normal[trace.hitside] = -1.0f; pTrace->plane.type = trace.hitside; } return true; } if ( pTrace->startsolid ) { pTrace->allsolid = (trace.t2 <= 0.0f) || (trace.t2 >= 1.0f); pTrace->fraction = 0; if ( pFractionLeftSolid ) { *pFractionLeftSolid = trace.t2; } pTrace->endpos = pTrace->startpos; pTrace->contents = CONTENTS_SOLID; pTrace->plane.dist = pTrace->startpos[0]; pTrace->plane.normal.Init( 1.0f, 0.0f, 0.0f ); pTrace->plane.type = 0; pTrace->startpos = vecRayStart + (trace.t2 * vecRayDelta); return true; } } return false; } //----------------------------------------------------------------------------- // Intersects a ray against a box //----------------------------------------------------------------------------- bool IntersectRayWithBox( const Ray_t &ray, const Vector &boxMins, const Vector &boxMaxs, float flTolerance, CBaseTrace *pTrace, float *pFractionLeftSolid ) { if ( !ray.m_IsRay ) { Vector vecExpandedMins = boxMins - ray.m_Extents; Vector vecExpandedMaxs = boxMaxs + ray.m_Extents; bool bIntersects = IntersectRayWithBox( ray.m_Start, ray.m_Delta, vecExpandedMins, vecExpandedMaxs, flTolerance, pTrace, pFractionLeftSolid ); pTrace->startpos += ray.m_StartOffset; pTrace->endpos += ray.m_StartOffset; return bIntersects; } return IntersectRayWithBox( ray.m_Start, ray.m_Delta, boxMins, boxMaxs, flTolerance, pTrace, pFractionLeftSolid ); } //----------------------------------------------------------------------------- // Intersects a ray against an OBB, returns t1 and t2 //----------------------------------------------------------------------------- bool IntersectRayWithOBB( const Vector &vecRayStart, const Vector &vecRayDelta, const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, BoxTraceInfo_t *pTrace ) { // FIXME: Two transforms is pretty expensive. Should we optimize this? Vector start, delta; VectorITransform( vecRayStart, matOBBToWorld, start ); VectorIRotate( vecRayDelta, matOBBToWorld, delta ); return IntersectRayWithBox( start, delta, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); } //----------------------------------------------------------------------------- // Intersects a ray against an OBB //----------------------------------------------------------------------------- bool IntersectRayWithOBB( const Vector &vecRayStart, const Vector &vecRayDelta, const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { Collision_ClearTrace( vecRayStart, vecRayDelta, pTrace ); // FIXME: Make it work with tolerance Assert( flTolerance == 0.0f ); // OPTIMIZE: Store this in the box instead of computing it here // compute center in local space Vector vecBoxExtents = (vecOBBMins + vecOBBMaxs) * 0.5; Vector vecBoxCenter; // transform to world space VectorTransform( vecBoxExtents, matOBBToWorld, vecBoxCenter ); // calc extents from local center vecBoxExtents = vecOBBMaxs - vecBoxExtents; // OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more // sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS. // save the extents of the ray along Vector extent, uextent; Vector segmentCenter = vecRayStart + vecRayDelta - vecBoxCenter; extent.Init(); // check box axes for separation for ( int j = 0; j < 3; j++ ) { extent[j] = vecRayDelta.x * matOBBToWorld[0][j] + vecRayDelta.y * matOBBToWorld[1][j] + vecRayDelta.z * matOBBToWorld[2][j]; uextent[j] = fabsf(extent[j]); float coord = segmentCenter.x * matOBBToWorld[0][j] + segmentCenter.y * matOBBToWorld[1][j] + segmentCenter.z * matOBBToWorld[2][j]; coord = fabsf(coord); if ( coord > (vecBoxExtents[j] + uextent[j]) ) return false; } // now check cross axes for separation float tmp, cextent; Vector cross = vecRayDelta.Cross( segmentCenter ); cextent = cross.x * matOBBToWorld[0][0] + cross.y * matOBBToWorld[1][0] + cross.z * matOBBToWorld[2][0]; cextent = fabsf(cextent); tmp = vecBoxExtents[1]*uextent[2] + vecBoxExtents[2]*uextent[1]; if ( cextent > tmp ) return false; cextent = cross.x * matOBBToWorld[0][1] + cross.y * matOBBToWorld[1][1] + cross.z * matOBBToWorld[2][1]; cextent = fabsf(cextent); tmp = vecBoxExtents[0]*uextent[2] + vecBoxExtents[2]*uextent[0]; if ( cextent > tmp ) return false; cextent = cross.x * matOBBToWorld[0][2] + cross.y * matOBBToWorld[1][2] + cross.z * matOBBToWorld[2][2]; cextent = fabsf(cextent); tmp = vecBoxExtents[0]*uextent[1] + vecBoxExtents[1]*uextent[0]; if ( cextent > tmp ) return false; // !!! We hit this box !!! compute intersection point and return // Compute ray start in bone space Vector start; VectorITransform( vecRayStart, matOBBToWorld, start ); // extent is ray.m_Delta in bone space, recompute delta in bone space extent *= 2.0f; // delta was prescaled by the current t, so no need to see if this intersection // is closer trace_t boxTrace; if ( !IntersectRayWithBox( start, extent, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ) ) return false; // Fix up the start/end pos and fraction Vector vecTemp; VectorTransform( pTrace->endpos, matOBBToWorld, vecTemp ); pTrace->endpos = vecTemp; pTrace->startpos = vecRayStart; pTrace->fraction *= 2.0f; // Fix up the plane information float flSign = pTrace->plane.normal[ pTrace->plane.type ]; pTrace->plane.normal[0] = flSign * matOBBToWorld[0][pTrace->plane.type]; pTrace->plane.normal[1] = flSign * matOBBToWorld[1][pTrace->plane.type]; pTrace->plane.normal[2] = flSign * matOBBToWorld[2][pTrace->plane.type]; pTrace->plane.dist = DotProduct( pTrace->endpos, pTrace->plane.normal ); pTrace->plane.type = 3; return true; } //----------------------------------------------------------------------------- // Intersects a ray against an OBB //----------------------------------------------------------------------------- bool IntersectRayWithOBB( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector &vecBoxOrigin, const QAngle &angBoxRotation, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { if (angBoxRotation == vec3_angle) { Vector vecAbsMins, vecAbsMaxs; VectorAdd( vecBoxOrigin, vecOBBMins, vecAbsMins ); VectorAdd( vecBoxOrigin, vecOBBMaxs, vecAbsMaxs ); return IntersectRayWithBox( vecRayOrigin, vecRayDelta, vecAbsMins, vecAbsMaxs, flTolerance, pTrace ); } matrix3x4_t obbToWorld; AngleMatrix( angBoxRotation, vecBoxOrigin, obbToWorld ); return IntersectRayWithOBB( vecRayOrigin, vecRayDelta, obbToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); } //----------------------------------------------------------------------------- // Box support map //----------------------------------------------------------------------------- inline void ComputeSupportMap( const Vector &vecDirection, const Vector &vecBoxMins, const Vector &vecBoxMaxs, float pDist[2] ) { int nIndex = (vecDirection.x > 0.0f); pDist[nIndex] = vecBoxMaxs.x * vecDirection.x; pDist[1 - nIndex] = vecBoxMins.x * vecDirection.x; nIndex = (vecDirection.y > 0.0f); pDist[nIndex] += vecBoxMaxs.y * vecDirection.y; pDist[1 - nIndex] += vecBoxMins.y * vecDirection.y; nIndex = (vecDirection.z > 0.0f); pDist[nIndex] += vecBoxMaxs.z * vecDirection.z; pDist[1 - nIndex] += vecBoxMins.z * vecDirection.z; } inline void ComputeSupportMap( const Vector &vecDirection, int i1, int i2, const Vector &vecBoxMins, const Vector &vecBoxMaxs, float pDist[2] ) { int nIndex = (vecDirection[i1] > 0.0f); pDist[nIndex] = vecBoxMaxs[i1] * vecDirection[i1]; pDist[1 - nIndex] = vecBoxMins[i1] * vecDirection[i1]; nIndex = (vecDirection[i2] > 0.0f); pDist[nIndex] += vecBoxMaxs[i2] * vecDirection[i2]; pDist[1 - nIndex] += vecBoxMins[i2] * vecDirection[i2]; } //----------------------------------------------------------------------------- // Intersects a ray against an OBB //----------------------------------------------------------------------------- static int s_ExtIndices[3][2] = { { 2, 1 }, { 0, 2 }, { 0, 1 }, }; static int s_MatIndices[3][2] = { { 1, 2 }, { 2, 0 }, { 1, 0 }, }; bool IntersectRayWithOBB( const Ray_t &ray, const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { if ( ray.m_IsRay ) { return IntersectRayWithOBB( ray.m_Start, ray.m_Delta, matOBBToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); } Collision_ClearTrace( ray.m_Start + ray.m_StartOffset, ray.m_Delta, pTrace ); // Compute a bounding sphere around the bloated OBB Vector vecOBBCenter; VectorAdd( vecOBBMins, vecOBBMaxs, vecOBBCenter ); vecOBBCenter *= 0.5f; vecOBBCenter.x += matOBBToWorld[0][3]; vecOBBCenter.y += matOBBToWorld[1][3]; vecOBBCenter.z += matOBBToWorld[2][3]; Vector vecOBBHalfDiagonal; VectorSubtract( vecOBBMaxs, vecOBBMins, vecOBBHalfDiagonal ); vecOBBHalfDiagonal *= 0.5f; float flRadius = vecOBBHalfDiagonal.Length() + ray.m_Extents.Length(); if ( !IsRayIntersectingSphere( ray.m_Start, ray.m_Delta, vecOBBCenter, flRadius, flTolerance ) ) return false; // Ok, we passed the trivial reject, so lets do the dirty deed. // Basically we're going to do the GJK thing explicitly. We'll shrink the ray down // to a point, and bloat the OBB by the ray's extents. This will generate facet // planes which are perpendicular to all of the separating axes typically seen in // a standard seperating axis implementation. // We're going to create a number of planes through various vertices in the OBB // which represent all of the separating planes. Then we're going to bloat the planes // by the ray extents. // We're going to do all work in OBB-space because it's easier to do the // support-map in this case // First, transform the ray into the space of the OBB Vector vecLocalRayOrigin, vecLocalRayDirection; VectorITransform( ray.m_Start, matOBBToWorld, vecLocalRayOrigin ); VectorIRotate( ray.m_Delta, matOBBToWorld, vecLocalRayDirection ); // Next compute all separating planes Vector pPlaneNormal[15]; float ppPlaneDist[15][2]; int i; for ( i = 0; i < 3; ++i ) { // Each plane needs to be bloated an amount = to the abs dot product of // the ray extents with the plane normal // For the OBB planes, do it in world space; // and use the direction of the OBB (the ith column of matOBBToWorld) in world space vs extents pPlaneNormal[i].Init( ); pPlaneNormal[i][i] = 1.0f; float flExtentDotNormal = FloatMakePositive( matOBBToWorld[0][i] * ray.m_Extents.x ) + FloatMakePositive( matOBBToWorld[1][i] * ray.m_Extents.y ) + FloatMakePositive( matOBBToWorld[2][i] * ray.m_Extents.z ); ppPlaneDist[i][0] = vecOBBMins[i] - flExtentDotNormal; ppPlaneDist[i][1] = vecOBBMaxs[i] + flExtentDotNormal; // For the ray-extents planes, they are bloated by the extents // Use the support map to determine which VectorCopy( matOBBToWorld[i], pPlaneNormal[i+3].Base() ); ComputeSupportMap( pPlaneNormal[i+3], vecOBBMins, vecOBBMaxs, ppPlaneDist[i+3] ); ppPlaneDist[i+3][0] -= ray.m_Extents[i]; ppPlaneDist[i+3][1] += ray.m_Extents[i]; // Now the edge cases... (take the cross product of x,y,z axis w/ ray extent axes // given by the rows of the obb to world matrix. // Compute the ray extent bloat in world space because it's easier... // These are necessary to compute the world-space versions of // the edges so we can compute the extent dot products float flRayExtent0 = ray.m_Extents[s_ExtIndices[i][0]]; float flRayExtent1 = ray.m_Extents[s_ExtIndices[i][1]]; const float *pMatRow0 = matOBBToWorld[s_MatIndices[i][0]]; const float *pMatRow1 = matOBBToWorld[s_MatIndices[i][1]]; // x axis of the OBB + world ith axis pPlaneNormal[i+6].Init( 0.0f, -matOBBToWorld[i][2], matOBBToWorld[i][1] ); ComputeSupportMap( pPlaneNormal[i+6], 1, 2, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+6] ); flExtentDotNormal = FloatMakePositive( pMatRow0[0] ) * flRayExtent0 + FloatMakePositive( pMatRow1[0] ) * flRayExtent1; ppPlaneDist[i+6][0] -= flExtentDotNormal; ppPlaneDist[i+6][1] += flExtentDotNormal; // y axis of the OBB + world ith axis pPlaneNormal[i+9].Init( matOBBToWorld[i][2], 0.0f, -matOBBToWorld[i][0] ); ComputeSupportMap( pPlaneNormal[i+9], 0, 2, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+9] ); flExtentDotNormal = FloatMakePositive( pMatRow0[1] ) * flRayExtent0 + FloatMakePositive( pMatRow1[1] ) * flRayExtent1; ppPlaneDist[i+9][0] -= flExtentDotNormal; ppPlaneDist[i+9][1] += flExtentDotNormal; // z axis of the OBB + world ith axis pPlaneNormal[i+12].Init( -matOBBToWorld[i][1], matOBBToWorld[i][0], 0.0f ); ComputeSupportMap( pPlaneNormal[i+12], 0, 1, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+12] ); flExtentDotNormal = FloatMakePositive( pMatRow0[2] ) * flRayExtent0 + FloatMakePositive( pMatRow1[2] ) * flRayExtent1; ppPlaneDist[i+12][0] -= flExtentDotNormal; ppPlaneDist[i+12][1] += flExtentDotNormal; } float enterfrac, leavefrac; float d1[2], d2[2]; float f; int hitplane = -1; int hitside = -1; enterfrac = -1.0f; leavefrac = 1.0f; pTrace->startsolid = true; Vector vecLocalRayEnd; VectorAdd( vecLocalRayOrigin, vecLocalRayDirection, vecLocalRayEnd ); for ( i = 0; i < 15; ++i ) { // FIXME: Not particularly optimal since there's a lot of 0's in the plane normals float flStartDot = DotProduct( pPlaneNormal[i], vecLocalRayOrigin ); float flEndDot = DotProduct( pPlaneNormal[i], vecLocalRayEnd ); // NOTE: Negative here is because the plane normal + dist // are defined in negative terms for the far plane (plane dist index 0) d1[0] = -(flStartDot - ppPlaneDist[i][0]); d2[0] = -(flEndDot - ppPlaneDist[i][0]); d1[1] = flStartDot - ppPlaneDist[i][1]; d2[1] = flEndDot - ppPlaneDist[i][1]; int j; for ( j = 0; j < 2; ++j ) { // if completely in front near plane or behind far plane no intersection if (d1[j] > 0 && d2[j] > 0) return false; // completely inside, check next plane set if (d1[j] <= 0 && d2[j] <= 0) continue; if (d1[j] > 0) { pTrace->startsolid = false; } // crosses face float flDenom = 1.0f / (d1[j] - d2[j]); if (d1[j] > d2[j]) { f = d1[j] - flTolerance; if ( f < 0 ) { f = 0; } f *= flDenom; if (f > enterfrac) { enterfrac = f; hitplane = i; hitside = j; } } else { // leave f = (d1[j] + flTolerance) * flDenom; if (f < leavefrac) { leavefrac = f; } } } } if (enterfrac < leavefrac && enterfrac >= 0.0f) { pTrace->fraction = enterfrac; VectorMA( pTrace->startpos, enterfrac, ray.m_Delta, pTrace->endpos ); pTrace->contents = CONTENTS_SOLID; // Need to transform the plane into world space... cplane_t temp; temp.normal = pPlaneNormal[hitplane]; temp.dist = ppPlaneDist[hitplane][hitside]; if (hitside == 0) { temp.normal *= -1.0f; temp.dist *= -1.0f; } temp.type = 3; MatrixITransformPlane( matOBBToWorld, temp, pTrace->plane ); return true; } if ( pTrace->startsolid ) { pTrace->allsolid = (leavefrac <= 0.0f) || (leavefrac >= 1.0f); pTrace->fraction = 0; pTrace->endpos = pTrace->startpos; pTrace->contents = CONTENTS_SOLID; pTrace->plane.dist = pTrace->startpos[0]; pTrace->plane.normal.Init( 1.0f, 0.0f, 0.0f ); pTrace->plane.type = 0; return true; } return false; } //----------------------------------------------------------------------------- // Intersects a ray against an OBB //----------------------------------------------------------------------------- bool IntersectRayWithOBB( const Ray_t &ray, const Vector &vecBoxOrigin, const QAngle &angBoxRotation, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { if ( angBoxRotation == vec3_angle ) { Vector vecWorldMins, vecWorldMaxs; VectorAdd( vecBoxOrigin, vecOBBMins, vecWorldMins ); VectorAdd( vecBoxOrigin, vecOBBMaxs, vecWorldMaxs ); return IntersectRayWithBox( ray, vecWorldMins, vecWorldMaxs, flTolerance, pTrace ); } if ( ray.m_IsRay ) { return IntersectRayWithOBB( ray.m_Start, ray.m_Delta, vecBoxOrigin, angBoxRotation, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); } matrix3x4_t matOBBToWorld; AngleMatrix( angBoxRotation, vecBoxOrigin, matOBBToWorld ); return IntersectRayWithOBB( ray, matOBBToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- void GetNonMajorAxes( const Vector &vNormal, Vector2D &axes ) { axes[0] = 0; axes[1] = 1; if( FloatMakePositive( vNormal.x ) > FloatMakePositive( vNormal.y ) ) { if( FloatMakePositive( vNormal.x ) > FloatMakePositive( vNormal.z ) ) { axes[0] = 1; axes[1] = 2; } } else { if( FloatMakePositive( vNormal.y ) > FloatMakePositive( vNormal.z ) ) { axes[0] = 0; axes[1] = 2; } } } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- QuadBarycentricRetval_t QuadWithParallelEdges( const Vector &vecOrigin, const Vector &vecU, float lengthU, const Vector &vecV, float lengthV, const Vector &pt, Vector2D &vecUV ) { Ray_t rayAxis; Ray_t rayPt; // // handle the u axis // rayAxis.m_Start = vecOrigin; rayAxis.m_Delta = vecU; rayAxis.m_IsRay = true; rayPt.m_Start = pt; rayPt.m_Delta = vecV * -( lengthV * 10.0f ); rayPt.m_IsRay = true; float s, t; IntersectRayWithRay( rayAxis, rayPt, t, s ); vecUV[0] = t / lengthU; // // handle the v axis // rayAxis.m_Delta = vecV; rayPt.m_Delta = vecU * -( lengthU * 10.0f ); IntersectRayWithRay( rayAxis, rayPt, t, s ); vecUV[1] = t / lengthV; // inside of the quad?? if( ( vecUV[0] < 0.0f ) || ( vecUV[0] > 1.0f ) || ( vecUV[1] < 0.0f ) || ( vecUV[1] > 1.0f ) ) return BARY_QUADRATIC_FALSE; return BARY_QUADRATIC_TRUE; } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void ResolveQuadratic( double tPlus, double tMinus, const Vector axisU0, const Vector axisU1, const Vector axisV0, const Vector axisV1, const Vector axisOrigin, const Vector pt, int projU, double &s, double &t ) { // calculate the sPlus, sMinus pair(s) double sDenomPlus = ( axisU0[projU] * ( 1 - tPlus ) ) + ( axisU1[projU] * tPlus ); double sDenomMinus = ( axisU0[projU] * ( 1 - tMinus ) ) + ( axisU1[projU] * tMinus ); double sPlus = UNINIT, sMinus = UNINIT; if( FloatMakePositive( sDenomPlus ) >= 1e-5 ) { sPlus = ( pt[projU] - axisOrigin[projU] - ( axisV0[projU] * tPlus ) ) / sDenomPlus; } if( FloatMakePositive( sDenomMinus ) >= 1e-5 ) { sMinus = ( pt[projU] - axisOrigin[projU] - ( axisV0[projU] * tMinus ) ) / sDenomMinus; } if( ( tPlus >= 0.0 ) && ( tPlus <= 1.0 ) && ( sPlus >= 0.0 ) && ( sPlus <= 1.0 ) ) { s = sPlus; t = tPlus; return; } if( ( tMinus >= 0.0 ) && ( tMinus <= 1.0 ) && ( sMinus >= 0.0 ) && ( sMinus <= 1.0 ) ) { s = sMinus; t = tMinus; return; } double s0, t0, s1, t1; s0 = sPlus; t0 = tPlus; if( s0 >= 1.0 ) { s0 -= 1.0; } if( t0 >= 1.0 ) { t0 -= 1.0; } s1 = sMinus; t1 = tMinus; if( s1 >= 1.0 ) { s1 -= 1.0; } if( t1 >= 1.0 ) { t1 -= 1.0; } s0 = FloatMakePositive( s0 ); t0 = FloatMakePositive( t0 ); s1 = FloatMakePositive( s1 ); t1 = FloatMakePositive( t1 ); double max0, max1; max0 = s0; if( t0 > max0 ) { max0 = t0; } max1 = s1; if( t1 > max1 ) { max1 = t1; } if( max0 > max1 ) { s = sMinus; t = tMinus; } else { s = sPlus; t = tPlus; } } //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- QuadBarycentricRetval_t PointInQuadToBarycentric( const Vector &v1, const Vector &v2, const Vector &v3, const Vector &v4, const Vector &point, Vector2D &uv ) { #define PIQ_TEXTURE_EPSILON 0.001 #define PIQ_PLANE_EPSILON 0.1 #define PIQ_DOT_EPSILON 0.99f // // Think of a quad with points v1, v2, v3, v4 and u, v line segments // u0 = v2 - v1 // u1 = v3 - v4 // v0 = v4 - v1 // v1 = v3 - v2 // Vector axisU[2], axisV[2]; Vector axisUNorm[2], axisVNorm[2]; axisU[0] = axisUNorm[0] = v2 - v1; axisU[1] = axisUNorm[1] = v3 - v4; axisV[0] = axisVNorm[0] = v4 - v1; axisV[1] = axisVNorm[1] = v3 - v2; float lengthU[2], lengthV[2]; lengthU[0] = VectorNormalize( axisUNorm[0] ); lengthU[1] = VectorNormalize( axisUNorm[1] ); lengthV[0] = VectorNormalize( axisVNorm[0] ); lengthV[1] = VectorNormalize( axisVNorm[1] ); // // check for an early out - parallel opposite edges! // NOTE: quad property if 1 set of opposite edges is parallel and equal // in length, then the other set of edges is as well // if( axisUNorm[0].Dot( axisUNorm[1] ) > PIQ_DOT_EPSILON ) { if( FloatMakePositive( lengthU[0] - lengthU[1] ) < PIQ_PLANE_EPSILON ) { return QuadWithParallelEdges( v1, axisUNorm[0], lengthU[0], axisVNorm[0], lengthV[0], point, uv ); } } // // since we are solving for s in our equations below we need to ensure that // the v axes are non-parallel // bool bFlipped = false; if( axisVNorm[0].Dot( axisVNorm[1] ) > PIQ_DOT_EPSILON ) { Vector tmp[2]; tmp[0] = axisV[0]; tmp[1] = axisV[1]; axisV[0] = axisU[0]; axisV[1] = axisU[1]; axisU[0] = tmp[0]; axisU[1] = tmp[1]; bFlipped = true; } // // get the "projection" axes // Vector2D projAxes; Vector vNormal = axisU[0].Cross( axisV[0] ); GetNonMajorAxes( vNormal, projAxes ); // // NOTE: axisU[0][projAxes[0]] < axisU[0][projAxes[1]], // this is done to decrease error when dividing later // if( FloatMakePositive( axisU[0][projAxes[0]] ) < FloatMakePositive( axisU[0][projAxes[1]] ) ) { int tmp = projAxes[0]; projAxes[0] = projAxes[1]; projAxes[1] = tmp; } // Here's how we got these equations: // // Given the points and u,v line segments above... // // Then: // // (1.0) PT = P0 + U0 * s + V * t // // where // // (1.1) V = V0 + s * (V1 - V0) // (1.2) U = U0 + t * (U1 - U0) // // Therefore (from 1.1 + 1.0): // PT - P0 = U0 * s + (V0 + s * (V1-V0)) * t // Group s's: // PT - P0 - t * V0 = s * (U0 + t * (V1-V0)) // Two equations and two unknowns in x and y get you the following quadratic: // // solve the quadratic // double s = 0.0, t = 0.0; double A, negB, C; A = ( axisU[0][projAxes[1]] * axisV[0][projAxes[0]] ) - ( axisU[0][projAxes[0]] * axisV[0][projAxes[1]] ) - ( axisU[1][projAxes[1]] * axisV[0][projAxes[0]] ) + ( axisU[1][projAxes[0]] * axisV[0][projAxes[1]] ); C = ( v1[projAxes[1]] * axisU[0][projAxes[0]] ) - ( point[projAxes[1]] * axisU[0][projAxes[0]] ) - ( v1[projAxes[0]] * axisU[0][projAxes[1]] ) + ( point[projAxes[0]] * axisU[0][projAxes[1]] ); negB = C - ( v1[projAxes[1]] * axisU[1][projAxes[0]] ) + ( point[projAxes[1]] * axisU[1][projAxes[0]] ) + ( v1[projAxes[0]] * axisU[1][projAxes[1]] ) - ( point[projAxes[0]] * axisU[1][projAxes[1]] ) + ( axisU[0][projAxes[1]] * axisV[0][projAxes[0]] ) - ( axisU[0][projAxes[0]] * axisV[0][projAxes[1]] ); if( ( A > -PIQ_PLANE_EPSILON ) && ( A < PIQ_PLANE_EPSILON ) ) { // shouldn't be here -- this should have been take care of in the "early out" // Assert( 0 ); Vector vecUAvg, vecVAvg; vecUAvg = ( axisUNorm[0] + axisUNorm[1] ) * 0.5f; vecVAvg = ( axisVNorm[0] + axisVNorm[1] ) * 0.5f; float fLengthUAvg = ( lengthU[0] + lengthU[1] ) * 0.5f; float fLengthVAvg = ( lengthV[0] + lengthV[1] ) * 0.5f; return QuadWithParallelEdges( v1, vecUAvg, fLengthUAvg, vecVAvg, fLengthVAvg, point, uv ); #if 0 // legacy code -- kept here for completeness! // not a quadratic -- solve linearly t = C / negB; // See (1.2) above float ui = axisU[0][projAxes[0]] + t * ( axisU[1][projAxes[0]] - axisU[0][projAxes[0]] ); if( FloatMakePositive( ui ) >= 1e-5 ) { // See (1.0) above s = ( point[projAxes[0]] - v1[projAxes[0]] - axisV[0][projAxes[0]] * t ) / ui; } #endif } else { // (-b +/- sqrt( b^2 - 4ac )) / 2a double discriminant = (negB*negB) - (4.0f * A * C); if( discriminant < 0.0f ) { uv[0] = -99999.0f; uv[1] = -99999.0f; return BARY_QUADRATIC_NEGATIVE_DISCRIMINANT; } double quad = sqrt( discriminant ); double QPlus = ( negB + quad ) / ( 2.0f * A ); double QMinus = ( negB - quad ) / ( 2.0f * A ); ResolveQuadratic( QPlus, QMinus, axisU[0], axisU[1], axisV[0], axisV[1], v1, point, projAxes[0], s, t ); } if( !bFlipped ) { uv[0] = ( float )s; uv[1] = ( float )t; } else { uv[0] = ( float )t; uv[1] = ( float )s; } // inside of the quad?? if( ( uv[0] < 0.0f ) || ( uv[0] > 1.0f ) || ( uv[1] < 0.0f ) || ( uv[1] > 1.0f ) ) return BARY_QUADRATIC_FALSE; return BARY_QUADRATIC_TRUE; #undef PIQ_TEXTURE_EPSILON #undef PIQ_PLANE_EPSILON } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void PointInQuadFromBarycentric( const Vector &v1, const Vector &v2, const Vector &v3, const Vector &v4, const Vector2D &uv, Vector &point ) { // // Think of a quad with points v1, v2, v3, v4 and u, v line segments // find the ray from v0 edge to v1 edge at v // Vector vPts[2]; VectorLerp( v1, v4, uv[1], vPts[0] ); VectorLerp( v2, v3, uv[1], vPts[1] ); VectorLerp( vPts[0], vPts[1], uv[0], point ); } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void TexCoordInQuadFromBarycentric( const Vector2D &v1, const Vector2D &v2, const Vector2D &v3, const Vector2D &v4, const Vector2D &uv, Vector2D &texCoord ) { // // Think of a quad with points v1, v2, v3, v4 and u, v line segments // find the ray from v0 edge to v1 edge at v // Vector2D vCoords[2]; Vector2DLerp( v1, v4, uv[1], vCoords[0] ); Vector2DLerp( v2, v3, uv[1], vCoords[1] ); Vector2DLerp( vCoords[0], vCoords[1], uv[0], texCoord ); } //----------------------------------------------------------------------------- // Compute point from barycentric specification // Edge u goes from v0 to v1, edge v goes from v0 to v2 //----------------------------------------------------------------------------- void ComputePointFromBarycentric( const Vector& v0, const Vector& v1, const Vector& v2, float u, float v, Vector& pt ) { Vector edgeU, edgeV; VectorSubtract( v1, v0, edgeU ); VectorSubtract( v2, v0, edgeV ); VectorMA( v0, u, edgeU, pt ); VectorMA( pt, v, edgeV, pt ); } void ComputePointFromBarycentric( const Vector2D& v0, const Vector2D& v1, const Vector2D& v2, float u, float v, Vector2D& pt ) { Vector2D edgeU, edgeV; Vector2DSubtract( v1, v0, edgeU ); Vector2DSubtract( v2, v0, edgeV ); Vector2DMA( v0, u, edgeU, pt ); Vector2DMA( pt, v, edgeV, pt ); } //----------------------------------------------------------------------------- // Compute a matrix that has the correct orientation but which has an origin at // the center of the bounds //----------------------------------------------------------------------------- static void ComputeCenterMatrix( const Vector& origin, const QAngle& angles, const Vector& mins, const Vector& maxs, matrix3x4_t& matrix ) { Vector centroid; VectorAdd( mins, maxs, centroid ); centroid *= 0.5f; AngleMatrix( angles, matrix ); Vector worldCentroid; VectorRotate( centroid, matrix, worldCentroid ); worldCentroid += origin; MatrixSetColumn( worldCentroid, 3, matrix ); } static void ComputeCenterIMatrix( const Vector& origin, const QAngle& angles, const Vector& mins, const Vector& maxs, matrix3x4_t& matrix ) { Vector centroid; VectorAdd( mins, maxs, centroid ); centroid *= -0.5f; AngleIMatrix( angles, matrix ); // For the translational component here, note that the origin in world space // is T = R * C + O, (R = rotation matrix, C = centroid in local space, O = origin in world space) // The IMatrix translation = - transpose(R) * T = -C - transpose(R) * 0 Vector localOrigin; VectorRotate( origin, matrix, localOrigin ); centroid -= localOrigin; MatrixSetColumn( centroid, 3, matrix ); } //----------------------------------------------------------------------------- // Compute a matrix which is the absolute value of another //----------------------------------------------------------------------------- static inline void ComputeAbsMatrix( const matrix3x4_t& in, matrix3x4_t& out ) { (out[0][0]) = fabsf(in[0][0]); (out[0][1]) = fabsf(in[0][1]); (out[0][2]) = fabsf(in[0][2]); (out[1][0]) = fabsf(in[1][0]); (out[1][1]) = fabsf(in[1][1]); (out[1][2]) = fabsf(in[1][2]); (out[2][0]) = fabsf(in[2][0]); (out[2][1]) = fabsf(in[2][1]); (out[2][2]) = fabsf(in[2][2]); } //----------------------------------------------------------------------------- // Compute a separating plane between two boxes (expensive!) // Returns false if no separating plane exists //----------------------------------------------------------------------------- static bool ComputeSeparatingPlane( const matrix3x4_t &worldToBox1, const matrix3x4_t &box2ToWorld, const Vector& box1Size, const Vector& box2Size, float tolerance, cplane_t* pPlane ) { // The various separating planes can be either // 1) A plane parallel to one of the box face planes // 2) A plane parallel to the cross-product of an edge from each box // First, compute the basis of second box in the space of the first box // NOTE: These basis place the origin at the centroid of each box! matrix3x4_t box2ToBox1; ConcatTransforms( worldToBox1, box2ToWorld, box2ToBox1 ); // We're going to be using the origin of box2 in the space of box1 alot, // lets extract it from the matrix.... Vector box2Origin; MatrixGetColumn( box2ToBox1, 3, box2Origin ); // Next get the absolute values of these entries and store in absbox2ToBox1. matrix3x4_t absBox2ToBox1; ComputeAbsMatrix( box2ToBox1, absBox2ToBox1 ); // There are 15 tests to make. The first 3 involve trying planes parallel // to the faces of the first box. // NOTE: The algorithm here involves finding the projections of the two boxes // onto a particular line. If the projections on the line do not overlap, // that means that there's a plane perpendicular to the line which separates // the two boxes; and we've therefore found a separating plane. // The way we check for overlay is we find the projections of the two boxes // onto the line, and add them up. We compare the sum with the projection // of the relative center of box2 onto the same line. Vector tmp; float boxProjectionSum; float originProjection; // NOTE: For these guys, we're taking advantage of the fact that the ith // row of the box2ToBox1 is the direction of the box1 (x,y,z)-axis // transformed into the space of box2. // First side of box 1 boxProjectionSum = box1Size.x + MatrixRowDotProduct( absBox2ToBox1, 0, box2Size ); originProjection = FloatMakePositive( box2Origin.x ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { VectorCopy( worldToBox1[0], pPlane->normal.Base() ); return true; } // Second side of box 1 boxProjectionSum = box1Size.y + MatrixRowDotProduct( absBox2ToBox1, 1, box2Size ); originProjection = FloatMakePositive( box2Origin.y ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { VectorCopy( worldToBox1[1], pPlane->normal.Base() ); return true; } // Third side of box 1 boxProjectionSum = box1Size.z + MatrixRowDotProduct( absBox2ToBox1, 2, box2Size ); originProjection = FloatMakePositive( box2Origin.z ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { VectorCopy( worldToBox1[2], pPlane->normal.Base() ); return true; } // The next three involve checking splitting planes parallel to the // faces of the second box. // NOTE: For these guys, we're taking advantage of the fact that the 0th // column of the box2ToBox1 is the direction of the box2 x-axis // transformed into the space of box1. // Here, we're determining the distance of box2's center from box1's center // by projecting it onto a line parallel to box2's axis // First side of box 2 boxProjectionSum = box2Size.x + MatrixColumnDotProduct( absBox2ToBox1, 0, box1Size ); originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 0, box2Origin ) ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, pPlane->normal ); return true; } // Second side of box 2 boxProjectionSum = box2Size.y + MatrixColumnDotProduct( absBox2ToBox1, 1, box1Size ); originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 1, box2Origin ) ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, pPlane->normal ); return true; } // Third side of box 2 boxProjectionSum = box2Size.z + MatrixColumnDotProduct( absBox2ToBox1, 2, box1Size ); originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 2, box2Origin ) ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, pPlane->normal ); return true; } // Next check the splitting planes which are orthogonal to the pairs // of edges, one from box1 and one from box2. As only direction matters, // there are 9 pairs since each box has 3 distinct edge directions. // Here, we take advantage of the fact that the edges from box 1 are all // axis aligned; therefore the crossproducts are simplified. Let's walk through // the example of b1e1 x b2e1: // In this example, the line to check is perpendicular to b1e1 + b2e2 // we can compute this line by taking the cross-product: // // [ i j k ] // [ 1 0 0 ] = - ez j + ey k = l1 // [ ex ey ez ] // Where ex, ey, ez is the components of box2's x axis in the space of box 1, // which is == to the 0th column of of box2toBox1 // The projection of box1 onto this line = the absolute dot product of the box size // against the line, which = // AbsDot( box1Size, l1 ) = abs( -ez * box1.y ) + abs( ey * box1.z ) // To compute the projection of box2 onto this line, we'll do it in the space of box 2 // // [ i j k ] // [ fx fy fz ] = fz j - fy k = l2 // [ 1 0 0 ] // Where fx, fy, fz is the components of box1's x axis in the space of box 2, // which is == to the 0th row of of box2toBox1 // The projection of box2 onto this line = the absolute dot product of the box size // against the line, which = // AbsDot( box2Size, l2 ) = abs( fz * box2.y ) + abs ( fy * box2.z ) // The projection of the relative origin position on this line is done in the // space of box 1: // // originProjection = DotProduct( <-ez j + ey k>, box2Origin ) = // -ez * box2Origin.y + ey * box2Origin.z // NOTE: These checks can be bogus if both edges are parallel. The if // checks at the beginning of each block are designed to catch that case // b1e1 x b2e1 if ( absBox2ToBox1[0][0] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.y * absBox2ToBox1[2][0] + box1Size.z * absBox2ToBox1[1][0] + box2Size.y * absBox2ToBox1[0][2] + box2Size.z * absBox2ToBox1[0][1]; originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][0] + box2Origin.z * box2ToBox1[1][0] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, tmp ); CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e1 x b2e2 if ( absBox2ToBox1[0][1] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.y * absBox2ToBox1[2][1] + box1Size.z * absBox2ToBox1[1][1] + box2Size.x * absBox2ToBox1[0][2] + box2Size.z * absBox2ToBox1[0][0]; originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][1] + box2Origin.z * box2ToBox1[1][1] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, tmp ); CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e1 x b2e3 if ( absBox2ToBox1[0][2] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.y * absBox2ToBox1[2][2] + box1Size.z * absBox2ToBox1[1][2] + box2Size.x * absBox2ToBox1[0][1] + box2Size.y * absBox2ToBox1[0][0]; originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][2] + box2Origin.z * box2ToBox1[1][2] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, tmp ); CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e2 x b2e1 if ( absBox2ToBox1[1][0] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[2][0] + box1Size.z * absBox2ToBox1[0][0] + box2Size.y * absBox2ToBox1[1][2] + box2Size.z * absBox2ToBox1[1][1]; originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][0] - box2Origin.z * box2ToBox1[0][0] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, tmp ); CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e2 x b2e2 if ( absBox2ToBox1[1][1] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[2][1] + box1Size.z * absBox2ToBox1[0][1] + box2Size.x * absBox2ToBox1[1][2] + box2Size.z * absBox2ToBox1[1][0]; originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][1] - box2Origin.z * box2ToBox1[0][1] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, tmp ); CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e2 x b2e3 if ( absBox2ToBox1[1][2] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[2][2] + box1Size.z * absBox2ToBox1[0][2] + box2Size.x * absBox2ToBox1[1][1] + box2Size.y * absBox2ToBox1[1][0]; originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][2] - box2Origin.z * box2ToBox1[0][2] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, tmp ); CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e3 x b2e1 if ( absBox2ToBox1[2][0] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[1][0] + box1Size.y * absBox2ToBox1[0][0] + box2Size.y * absBox2ToBox1[2][2] + box2Size.z * absBox2ToBox1[2][1]; originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][0] + box2Origin.y * box2ToBox1[0][0] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, tmp ); CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e3 x b2e2 if ( absBox2ToBox1[2][1] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[1][1] + box1Size.y * absBox2ToBox1[0][1] + box2Size.x * absBox2ToBox1[2][2] + box2Size.z * absBox2ToBox1[2][0]; originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][1] + box2Origin.y * box2ToBox1[0][1] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, tmp ); CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() ); return true; } } // b1e3 x b2e3 if ( absBox2ToBox1[2][2] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[1][2] + box1Size.y * absBox2ToBox1[0][2] + box2Size.x * absBox2ToBox1[2][1] + box2Size.y * absBox2ToBox1[2][0]; originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][2] + box2Origin.y * box2ToBox1[0][2] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, tmp ); CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() ); return true; } } return false; } //----------------------------------------------------------------------------- // Compute a separating plane between two boxes (expensive!) // Returns false if no separating plane exists //----------------------------------------------------------------------------- bool ComputeSeparatingPlane( const Vector& org1, const QAngle& angles1, const Vector& min1, const Vector& max1, const Vector& org2, const QAngle& angles2, const Vector& min2, const Vector& max2, float tolerance, cplane_t* pPlane ) { matrix3x4_t worldToBox1, box2ToWorld; ComputeCenterIMatrix( org1, angles1, min1, max1, worldToBox1 ); ComputeCenterMatrix( org2, angles2, min2, max2, box2ToWorld ); // Then compute the size of the two boxes Vector box1Size, box2Size; VectorSubtract( max1, min1, box1Size ); VectorSubtract( max2, min2, box2Size ); box1Size *= 0.5f; box2Size *= 0.5f; return ComputeSeparatingPlane( worldToBox1, box2ToWorld, box1Size, box2Size, tolerance, pPlane ); } //----------------------------------------------------------------------------- // Swept OBB test //----------------------------------------------------------------------------- bool IsRayIntersectingOBB( const Ray_t &ray, const Vector& org, const QAngle& angles, const Vector& mins, const Vector& maxs ) { if ( angles == vec3_angle ) { Vector vecWorldMins, vecWorldMaxs; VectorAdd( org, mins, vecWorldMins ); VectorAdd( org, maxs, vecWorldMaxs ); return IsBoxIntersectingRay( vecWorldMins, vecWorldMaxs, ray ); } if ( ray.m_IsRay ) { matrix3x4_t worldToBox; AngleIMatrix( angles, org, worldToBox ); Ray_t rotatedRay; VectorTransform( ray.m_Start, worldToBox, rotatedRay.m_Start ); VectorRotate( ray.m_Delta, worldToBox, rotatedRay.m_Delta ); rotatedRay.m_StartOffset = vec3_origin; rotatedRay.m_Extents = vec3_origin; rotatedRay.m_IsRay = ray.m_IsRay; rotatedRay.m_IsSwept = ray.m_IsSwept; return IsBoxIntersectingRay( mins, maxs, rotatedRay ); } if ( !ray.m_IsSwept ) { cplane_t plane; return ComputeSeparatingPlane( ray.m_Start, vec3_angle, -ray.m_Extents, ray.m_Extents, org, angles, mins, maxs, 0.0f, &plane ) == false; } // NOTE: See the comments in ComputeSeparatingPlane to understand this math // First, compute the basis of box in the space of the ray // NOTE: These basis place the origin at the centroid of each box! matrix3x4_t worldToBox1, box2ToWorld; ComputeCenterMatrix( org, angles, mins, maxs, box2ToWorld ); // Find the center + extents of an AABB surrounding the ray Vector vecRayCenter; VectorMA( ray.m_Start, 0.5, ray.m_Delta, vecRayCenter ); vecRayCenter *= -1.0f; SetIdentityMatrix( worldToBox1 ); MatrixSetColumn( vecRayCenter, 3, worldToBox1 ); Vector box1Size; box1Size.x = ray.m_Extents.x + FloatMakePositive( ray.m_Delta.x ) * 0.5f; box1Size.y = ray.m_Extents.y + FloatMakePositive( ray.m_Delta.y ) * 0.5f; box1Size.z = ray.m_Extents.z + FloatMakePositive( ray.m_Delta.z ) * 0.5f; // Then compute the size of the box Vector box2Size; VectorSubtract( maxs, mins, box2Size ); box2Size *= 0.5f; // Do an OBB test of the box with the AABB surrounding the ray cplane_t plane; if ( ComputeSeparatingPlane( worldToBox1, box2ToWorld, box1Size, box2Size, 0.0f, &plane ) ) return false; // Now deal with the planes which are the cross products of the ray sweep direction vs box edges Vector vecRayDirection = ray.m_Delta; VectorNormalize( vecRayDirection ); // Need a vector between ray center vs box center measured in the space of the ray (world) Vector vecCenterDelta; vecCenterDelta.x = box2ToWorld[0][3] - ray.m_Start.x; vecCenterDelta.y = box2ToWorld[1][3] - ray.m_Start.y; vecCenterDelta.z = box2ToWorld[2][3] - ray.m_Start.z; // Rotate the ray direction into the space of the OBB Vector vecAbsRayDirBox2; VectorIRotate( vecRayDirection, box2ToWorld, vecAbsRayDirBox2 ); // Make abs versions of the ray in world space + ray in box2 space VectorAbs( vecAbsRayDirBox2, vecAbsRayDirBox2 ); // Now do the work for the planes which are perpendicular to the edges of the AABB // and the sweep direction edges... // In this example, the line to check is perpendicular to box edge x + ray delta // we can compute this line by taking the cross-product: // // [ i j k ] // [ 1 0 0 ] = - dz j + dy k = l1 // [ dx dy dz ] // Where dx, dy, dz is the ray delta (normalized) // The projection of the box onto this line = the absolute dot product of the box size // against the line, which = // AbsDot( vecBoxHalfDiagonal, l1 ) = abs( -dz * vecBoxHalfDiagonal.y ) + abs( dy * vecBoxHalfDiagonal.z ) // Because the plane contains the sweep direction, the sweep will produce // no extra projection onto the line normal to the plane. // Therefore all we need to do is project the ray extents onto this line also: // AbsDot( ray.m_Extents, l1 ) = abs( -dz * ray.m_Extents.y ) + abs( dy * ray.m_Extents.z ) Vector vecPlaneNormal; // box x x ray delta CrossProduct( vecRayDirection, Vector( box2ToWorld[0][0], box2ToWorld[1][0], box2ToWorld[2][0] ), vecPlaneNormal ); float flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) ); float flBoxProjectionSum = vecAbsRayDirBox2.z * box2Size.y + vecAbsRayDirBox2.y * box2Size.z + DotProductAbs( vecPlaneNormal, ray.m_Extents ); if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) ) return false; // box y x ray delta CrossProduct( vecRayDirection, Vector( box2ToWorld[0][1], box2ToWorld[1][1], box2ToWorld[2][1] ), vecPlaneNormal ); flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) ); flBoxProjectionSum = vecAbsRayDirBox2.z * box2Size.x + vecAbsRayDirBox2.x * box2Size.z + DotProductAbs( vecPlaneNormal, ray.m_Extents ); if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) ) return false; // box z x ray delta CrossProduct( vecRayDirection, Vector( box2ToWorld[0][2], box2ToWorld[1][2], box2ToWorld[2][2] ), vecPlaneNormal ); flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) ); flBoxProjectionSum = vecAbsRayDirBox2.y * box2Size.x + vecAbsRayDirBox2.x * box2Size.y + DotProductAbs( vecPlaneNormal, ray.m_Extents ); if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) ) return false; return true; } //-------------------------------------------------------------------------- // Purpose: // // NOTE: // triangle points are given in clockwise order (aabb-triangle test) // // 1 edge0 = 1 - 0 // | \ edge1 = 2 - 1 // | \ edge2 = 0 - 2 // | \ . // | \ . // 0-----2 . // //-------------------------------------------------------------------------- //----------------------------------------------------------------------------- // Purpose: find the minima and maxima of the 3 given values //----------------------------------------------------------------------------- inline void FindMinMax( float v1, float v2, float v3, float &min, float &max ) { min = max = v1; if ( v2 < min ) { min = v2; } if ( v2 > max ) { max = v2; } if ( v3 < min ) { min = v3; } if ( v3 > max ) { max = v3; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- inline bool AxisTestEdgeCrossX2( float flEdgeZ, float flEdgeY, float flAbsEdgeZ, float flAbsEdgeY, const Vector &p1, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y // Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z float flDist1 = flEdgeZ * p1.y - flEdgeY * p1.z; float flDist3 = flEdgeZ * p3.y - flEdgeY * p3.z; // Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z float flDistBox = flAbsEdgeZ * vecExtents.y + flAbsEdgeY * vecExtents.z; // Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB). if ( flDist1 < flDist3 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; } return true; } //-------------------------------------------------------------------------- // Purpose: //-------------------------------------------------------------------------- inline bool AxisTestEdgeCrossX3( float flEdgeZ, float flEdgeY, float flAbsEdgeZ, float flAbsEdgeY, const Vector &p1, const Vector &p2, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y // Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z float flDist1 = flEdgeZ * p1.y - flEdgeY * p1.z; float flDist2 = flEdgeZ * p2.y - flEdgeY * p2.z; // Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z float flDistBox = flAbsEdgeZ * vecExtents.y + flAbsEdgeY * vecExtents.z; // Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB). if ( flDist1 < flDist2 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; } return true; } //-------------------------------------------------------------------------- //-------------------------------------------------------------------------- inline bool AxisTestEdgeCrossY2( float flEdgeZ, float flEdgeX, float flAbsEdgeZ, float flAbsEdgeX, const Vector &p1, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x // Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z float flDist1 = -flEdgeZ * p1.x + flEdgeX * p1.z; float flDist3 = -flEdgeZ * p3.x + flEdgeX * p3.z; // Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z float flDistBox = flAbsEdgeZ * vecExtents.x + flAbsEdgeX * vecExtents.z; // Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB). if ( flDist1 < flDist3 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; } return true; } //-------------------------------------------------------------------------- //-------------------------------------------------------------------------- inline bool AxisTestEdgeCrossY3( float flEdgeZ, float flEdgeX, float flAbsEdgeZ, float flAbsEdgeX, const Vector &p1, const Vector &p2, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x // Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z float flDist1 = -flEdgeZ * p1.x + flEdgeX * p1.z; float flDist2 = -flEdgeZ * p2.x + flEdgeX * p2.z; // Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z float flDistBox = flAbsEdgeZ * vecExtents.x + flAbsEdgeX * vecExtents.z; // Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB). if ( flDist1 < flDist2 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; } return true; } //-------------------------------------------------------------------------- //-------------------------------------------------------------------------- inline bool AxisTestEdgeCrossZ1( float flEdgeY, float flEdgeX, float flAbsEdgeY, float flAbsEdgeX, const Vector &p2, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f // Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y float flDist2 = flEdgeY * p2.x - flEdgeX * p2.y; float flDist3 = flEdgeY * p3.x - flEdgeX * p3.y; // Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y float flDistBox = flAbsEdgeY * vecExtents.x + flAbsEdgeX * vecExtents.y; // Either dist2, dist3 is the closest point to the box, determine which and test of overlap with box(AABB). if ( flDist3 < flDist2 ) { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } return true; } //-------------------------------------------------------------------------- //-------------------------------------------------------------------------- inline bool AxisTestEdgeCrossZ2( float flEdgeY, float flEdgeX, float flAbsEdgeY, float flAbsEdgeX, const Vector &p1, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f // Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y float flDist1 = flEdgeY * p1.x - flEdgeX * p1.y; float flDist3 = flEdgeY * p3.x - flEdgeX * p3.y; // Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y float flDistBox = flAbsEdgeY * vecExtents.x + flAbsEdgeX * vecExtents.y; // Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB). if ( flDist1 < flDist3 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; } return true; } //----------------------------------------------------------------------------- // Purpose: Test for an intersection (overlap) between an axial-aligned bounding // box (AABB) and a triangle. // // Using the "Separating-Axis Theorem" to test for intersections between // a triangle and an axial-aligned bounding box (AABB). // 1. 3 Axis Planes - x, y, z // 2. 9 Edge Planes Tests - the 3 edges of the triangle crossed with all 3 axial // planes (x, y, z) // 3. 1 Face Plane - the triangle plane (cplane_t plane below) // Output: false = separating axis (no intersection) // true = intersection //----------------------------------------------------------------------------- bool IsBoxIntersectingTriangle( const Vector &vecBoxCenter, const Vector &vecBoxExtents, const Vector &v1, const Vector &v2, const Vector &v3, const cplane_t &plane, float flTolerance ) { // Test the axial planes (x,y,z) against the min, max of the triangle. float flMin, flMax; Vector p1, p2, p3; // x plane p1.x = v1.x - vecBoxCenter.x; p2.x = v2.x - vecBoxCenter.x; p3.x = v3.x - vecBoxCenter.x; FindMinMax( p1.x, p2.x, p3.x, flMin, flMax ); if ( ( flMin > ( vecBoxExtents.x + flTolerance ) ) || ( flMax < -( vecBoxExtents.x + flTolerance ) ) ) return false; // y plane p1.y = v1.y - vecBoxCenter.y; p2.y = v2.y - vecBoxCenter.y; p3.y = v3.y - vecBoxCenter.y; FindMinMax( p1.y, p2.y, p3.y, flMin, flMax ); if ( ( flMin > ( vecBoxExtents.y + flTolerance ) ) || ( flMax < -( vecBoxExtents.y + flTolerance ) ) ) return false; // z plane p1.z = v1.z - vecBoxCenter.z; p2.z = v2.z - vecBoxCenter.z; p3.z = v3.z - vecBoxCenter.z; FindMinMax( p1.z, p2.z, p3.z, flMin, flMax ); if ( ( flMin > ( vecBoxExtents.z + flTolerance ) ) || ( flMax < -( vecBoxExtents.z + flTolerance ) ) ) return false; // Test the 9 edge cases. Vector vecEdge, vecAbsEdge; // edge 0 (cross x,y,z) vecEdge = p2 - p1; vecAbsEdge.y = FloatMakePositive( vecEdge.y ); vecAbsEdge.z = FloatMakePositive( vecEdge.z ); if ( !AxisTestEdgeCrossX2( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p3, vecBoxExtents, flTolerance ) ) return false; vecAbsEdge.x = FloatMakePositive( vecEdge.x ); if ( !AxisTestEdgeCrossY2( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p3, vecBoxExtents, flTolerance ) ) return false; if ( !AxisTestEdgeCrossZ1( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p2, p3, vecBoxExtents, flTolerance ) ) return false; // edge 1 (cross x,y,z) vecEdge = p3 - p2; vecAbsEdge.y = FloatMakePositive( vecEdge.y ); vecAbsEdge.z = FloatMakePositive( vecEdge.z ); if ( !AxisTestEdgeCrossX2( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p2, vecBoxExtents, flTolerance ) ) return false; vecAbsEdge.x = FloatMakePositive( vecEdge.x ); if ( !AxisTestEdgeCrossY2( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p2, vecBoxExtents, flTolerance ) ) return false; if ( !AxisTestEdgeCrossZ2( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p1, p3, vecBoxExtents, flTolerance ) ) return false; // edge 2 (cross x,y,z) vecEdge = p1 - p3; vecAbsEdge.y = FloatMakePositive( vecEdge.y ); vecAbsEdge.z = FloatMakePositive( vecEdge.z ); if ( !AxisTestEdgeCrossX3( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p2, vecBoxExtents, flTolerance ) ) return false; vecAbsEdge.x = FloatMakePositive( vecEdge.x ); if ( !AxisTestEdgeCrossY3( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p2, vecBoxExtents, flTolerance ) ) return false; if ( !AxisTestEdgeCrossZ1( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p2, p3, vecBoxExtents, flTolerance ) ) return false; // Test against the triangle face plane. Vector vecMin, vecMax; VectorSubtract( vecBoxCenter, vecBoxExtents, vecMin ); VectorAdd( vecBoxCenter, vecBoxExtents, vecMax ); if ( BoxOnPlaneSide( vecMin, vecMax, &plane ) != 3 ) return false; return true; } // NOTE: JAY: This is untested code based on Real-time Collision Detection by Ericson #if 0 Vector CalcClosestPointOnTriangle( const Vector &P, const Vector &v0, const Vector &v1, const Vector &v2 ) { Vector e0 = v1 - v0; Vector e1 = v2 - v0; Vector p0 = P - v0; // voronoi region of v0 float d1 = DotProduct( e0, p0 ); float d2 = DotProduct( e1, p0 ); if (d1 <= 0.0f && d2 <= 0.0f) return v0; // voronoi region of v1 Vector p1 = P - v1; float d3 = DotProduct( e0, p1 ); float d4 = DotProduct( e1, p1 ); if (d3 >=0.0f && d4 <= d3) return v1; // voronoi region of e0 (v0-v1) float ve2 = d1*d4 - d3*d2; if ( ve2 <= 0.0f && d1 >= 0.0f && d3 <= 0.0f ) { float v = d1 / (d1-d3); return v0 + v * e0; } // voronoi region of v2 Vector p2 = P - v2; float d5 = DotProduct( e0, p2 ); float d6 = DotProduct( e1, p2 ); if (d6 >= 0.0f && d5 <= d6) return v2; // voronoi region of e1 float ve1 = d5*d2 - d1*d6; if (ve1 <= 0.0f && d2 >= 0.0f && d6 >= 0.0f) { float w = d2 / (d2-d6); return v0 + w * e1; } // voronoi region on e2 float ve0 = d3*d6 - d5*d4; if ( ve0 <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) { float w = (d4-d3)/((d4-d3) + (d5-d6)); return v1 + w * (v2-v1); } // voronoi region of v0v1v2 triangle float denom = 1.0f / (ve0+ve1+ve2); float v = ve1*denom; float w = ve2 * denom; return v0 + e0 * v + e1 * w; } #endif bool OBBHasFullyContainedIntersectionWithQuad( const Vector &vOBBExtent1_Scaled, const Vector &vOBBExtent2_Scaled, const Vector &vOBBExtent3_Scaled, const Vector &ptOBBCenter, const Vector &vQuadNormal, float fQuadPlaneDist, const Vector &ptQuadCenter, const Vector &vQuadExtent1_Normalized, float fQuadExtent1Length, const Vector &vQuadExtent2_Normalized, float fQuadExtent2Length ) { Vector ptOBB[8]; //this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's) ptOBB[0] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled; ptOBB[1] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[2] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[3] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled; ptOBB[4] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled; ptOBB[5] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[6] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[7] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled; float fDists[8]; for( int i = 0; i != 8; ++i ) fDists[i] = vQuadNormal.Dot( ptOBB[i] ) - fQuadPlaneDist; int iSides[8]; int iSideMask = 0; for( int i = 0; i != 8; ++i ) { if( fDists[i] > 0.0f ) { iSides[i] = 1; iSideMask |= 1; } else { iSides[i] = 2; iSideMask |= 2; } } if( iSideMask != 3 ) //points reside entirely on one side of the quad's plane return false; Vector ptPlaneIntersections[12]; //only have 12 lines, can only possibly generate 12 split points int iPlaneIntersectionsCount = 0; for( int i = 0; i != 8; ++i ) { if( iSides[i] == 2 ) //point behind the plane { int iAxisCrossings[3]; iAxisCrossings[0] = i ^ 4; //upper 4 vs lower 4 crosses vOBBExtent1 axis iAxisCrossings[1] = ((i + 1) & 3) + (i & 4); //cycle to the next element while staying within the upper 4 or lower 4, this will cross either vOBBExtent2 or vOBBExtent3 axis, we don't care which iAxisCrossings[2] = ((i - 1) & 3) + (i & 4); //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross for( int j = 0; j != 3; ++j ) { if( iSides[iAxisCrossings[j]] == 1 ) //point in front of the plane { //line between ptOBB[i] and ptOBB[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing float fTotalDist = fDists[iAxisCrossings[j]] - fDists[i]; //remember that fDists[i] is a negative value ptPlaneIntersections[iPlaneIntersectionsCount] = (ptOBB[iAxisCrossings[j]] * (-fDists[i]/fTotalDist)) + (ptOBB[i] * (fDists[iAxisCrossings[j]]/fTotalDist)); Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane ++iPlaneIntersectionsCount; } } } } Assert( iPlaneIntersectionsCount != 0 ); for( int i = 0; i != iPlaneIntersectionsCount; ++i ) { //these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents Vector vToPointFromQuadCenter = ptPlaneIntersections[i] - ptQuadCenter; float fExt1Dist = vQuadExtent1_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt1Dist ) > fQuadExtent1Length ) return false; //point is outside boundaries //vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads float fExt2Dist = vQuadExtent2_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt2Dist ) > fQuadExtent2Length ) return false; //point is outside boundaries } return true; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries } //----------------------------------------------------------------------------- // Compute if the Ray intersects the quad plane, and whether the entire // Ray/Quad intersection is contained within the quad itself // // False if no intersection exists, or if part of the intersection is // outside the quad's extents //----------------------------------------------------------------------------- bool RayHasFullyContainedIntersectionWithQuad( const Ray_t &ray, const Vector &vQuadNormal, float fQuadPlaneDist, const Vector &ptQuadCenter, const Vector &vQuadExtent1_Normalized, float fQuadExtent1Length, const Vector &vQuadExtent2_Normalized, float fQuadExtent2Length ) { Vector ptPlaneIntersections[(12 + 12 + 8)]; //absolute max possible: 12 lines to connect the start box, 12 more to connect the end box, 8 to connect the boxes to eachother //8 points to make an AABB, 8 lines to connect each point from it's start to end point along the ray, 8 possible intersections int iPlaneIntersectionsCount = 0; if( ray.m_IsRay ) { //just 1 line if( ray.m_IsSwept ) { Vector ptEndPoints[2]; ptEndPoints[0] = ray.m_Start; ptEndPoints[1] = ptEndPoints[0] + ray.m_Delta; int i; float fDists[2]; for( i = 0; i != 2; ++i ) fDists[i] = vQuadNormal.Dot( ptEndPoints[i] ) - fQuadPlaneDist; for( i = 0; i != 2; ++i ) { if( fDists[i] <= 0.0f ) { int j = 1-i; if( fDists[j] >= 0.0f ) { float fInvTotalDist = 1.0f / (fDists[j] - fDists[i]); //fDists[i] <= 0, ray is swept so no chance that the denom was 0 ptPlaneIntersections[0] = (ptEndPoints[i] * (fDists[j] * fInvTotalDist)) - (ptEndPoints[j] * (fDists[i] * fInvTotalDist)); //fDists[i] <= 0 Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane iPlaneIntersectionsCount = 1; } else { return false; } break; } } if( i == 2 ) return false; } else //not swept, so this is actually a point on quad question { if( fabs( vQuadNormal.Dot( ray.m_Start ) - fQuadPlaneDist ) < 1e-6 ) { ptPlaneIntersections[0] = ray.m_Start; iPlaneIntersectionsCount = 1; } else { return false; } } } else { Vector ptEndPoints[2][8]; //this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's) ptEndPoints[0][0] = ray.m_Start; ptEndPoints[0][0].x -= ray.m_Extents.x; ptEndPoints[0][0].y -= ray.m_Extents.y; ptEndPoints[0][0].z -= ray.m_Extents.z; ptEndPoints[0][1] = ray.m_Start; ptEndPoints[0][1].x -= ray.m_Extents.x; ptEndPoints[0][1].y -= ray.m_Extents.y; ptEndPoints[0][1].z += ray.m_Extents.z; ptEndPoints[0][2] = ray.m_Start; ptEndPoints[0][2].x -= ray.m_Extents.x; ptEndPoints[0][2].y += ray.m_Extents.y; ptEndPoints[0][2].z += ray.m_Extents.z; ptEndPoints[0][3] = ray.m_Start; ptEndPoints[0][3].x -= ray.m_Extents.x; ptEndPoints[0][3].y += ray.m_Extents.y; ptEndPoints[0][3].z -= ray.m_Extents.z; ptEndPoints[0][4] = ray.m_Start; ptEndPoints[0][4].x += ray.m_Extents.x; ptEndPoints[0][4].y -= ray.m_Extents.y; ptEndPoints[0][4].z -= ray.m_Extents.z; ptEndPoints[0][5] = ray.m_Start; ptEndPoints[0][5].x += ray.m_Extents.x; ptEndPoints[0][5].y -= ray.m_Extents.y; ptEndPoints[0][5].z += ray.m_Extents.z; ptEndPoints[0][6] = ray.m_Start; ptEndPoints[0][6].x += ray.m_Extents.x; ptEndPoints[0][6].y += ray.m_Extents.y; ptEndPoints[0][6].z += ray.m_Extents.z; ptEndPoints[0][7] = ray.m_Start; ptEndPoints[0][7].x += ray.m_Extents.x; ptEndPoints[0][7].y += ray.m_Extents.y; ptEndPoints[0][7].z -= ray.m_Extents.z; float fDists[2][8]; int iSides[2][8]; int iSideMask[2] = { 0, 0 }; for( int i = 0; i != 8; ++i ) { fDists[0][i] = vQuadNormal.Dot( ptEndPoints[0][i] ) - fQuadPlaneDist; if( fDists[0][i] > 0.0f ) { iSides[0][i] = 1; iSideMask[0] |= 1; } else { iSides[0][i] = 2; iSideMask[0] |= 2; } } if( ray.m_IsSwept ) { for( int i = 0; i != 8; ++i ) ptEndPoints[1][i] = ptEndPoints[0][i] + ray.m_Delta; for( int i = 0; i != 8; ++i ) { fDists[1][i] = vQuadNormal.Dot( ptEndPoints[1][i] ) - fQuadPlaneDist; if( fDists[1][i] > 0.0f ) { iSides[1][i] = 1; iSideMask[1] |= 1; } else { iSides[1][i] = 2; iSideMask[1] |= 2; } } } if( (iSideMask[0] | iSideMask[1]) != 3 ) { //Assert( (iSideMask[0] | iSideMask[1]) != 2 ); return false; //all points resides entirely on one side of the quad } //generate intersections for boxes split by the plane at either end of the ray for( int k = 0; k != 2; ++k ) { if( iSideMask[k] == 3 ) //box is split by the plane { for( int i = 0; i != 8; ++i ) { if( iSides[k][i] == 2 ) //point behind the plane { int iAxisCrossings[3]; iAxisCrossings[0] = i ^ 4; //upper 4 vs lower 4 crosses X axis iAxisCrossings[1] = ((i + 1) & 3) + (i & 4); //cycle to the next element while staying within the upper 4 or lower 4, this will cross either Y or Z axis, we don't care which iAxisCrossings[2] = ((i - 1) & 3) + (i & 4); //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross for( int j = 0; j != 3; ++j ) { if( iSides[k][iAxisCrossings[j]] == 1 ) //point in front of the plane { //line between ptEndPoints[i] and ptEndPoints[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing float fInvTotalDist = 1.0f / (fDists[k][iAxisCrossings[j]] - fDists[k][i]); //remember that fDists[k][i] is a negative value ptPlaneIntersections[iPlaneIntersectionsCount] = (ptEndPoints[k][iAxisCrossings[j]] * (-fDists[k][i] * fInvTotalDist)) + (ptEndPoints[k][i] * (fDists[k][iAxisCrossings[j]] * fInvTotalDist)); Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane ++iPlaneIntersectionsCount; } } } } } } if( ray.m_IsSwept ) { for( int i = 0; i != 8; ++i ) { if( iSides[0][i] != iSides[1][i] ) { int iPosSide, iNegSide; if( iSides[0][i] == 1 ) { iPosSide = 0; iNegSide = 1; } else { iPosSide = 1; iNegSide = 0; } Assert( (fDists[iPosSide][i] >= 0.0f) && (fDists[iNegSide][i] <= 0.0f) ); float fInvTotalDist = 1.0f / (fDists[iPosSide][i] - fDists[iNegSide][i]); //remember that fDists[iNegSide][i] is a negative value ptPlaneIntersections[iPlaneIntersectionsCount] = (ptEndPoints[iPosSide][i] * (-fDists[iNegSide][i] * fInvTotalDist)) + (ptEndPoints[iNegSide][i] * (fDists[iPosSide][i] * fInvTotalDist)); Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane ++iPlaneIntersectionsCount; } } } } //down here, we should simply have a collection of plane intersections, now we see if they reside within the quad Assert( iPlaneIntersectionsCount != 0 ); for( int i = 0; i != iPlaneIntersectionsCount; ++i ) { //these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents Vector vToPointFromQuadCenter = ptPlaneIntersections[i] - ptQuadCenter; float fExt1Dist = vQuadExtent1_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt1Dist ) > fQuadExtent1Length ) return false; //point is outside boundaries //vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads float fExt2Dist = vQuadExtent2_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt2Dist ) > fQuadExtent2Length ) return false; //point is outside boundaries } return true; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries } //----------------------------------------------------------------------------- // Purpose: override how single player rays hit the player //----------------------------------------------------------------------------- bool LineCircleIntersection(const Vector2D ¢er, const float radius, const Vector2D &vLinePt, const Vector2D &vLineDir, float *fIntersection1, float *fIntersection2) { // Line = P + Vt // Sphere = r (assume we've translated to origin) // (P + Vt)^2 = r^2 // VVt^2 + 2PVt + (PP - r^2) // Solve as quadratic: (-b +/- sqrt(b^2 - 4ac)) / 2a // If (b^2 - 4ac) is < 0 there is no solution. // If (b^2 - 4ac) is = 0 there is one solution // If (b^2 - 4ac) is > 0 there are two solutions. // Translate circle to origin. const Vector2D P( vLinePt - center ); const float a = vLineDir.Dot(vLineDir); const float b = 2.0f * P.Dot(vLineDir); const float c = P.Dot(P) - (radius * radius); const float insideSqr = b*b - 4*a*c; // No solution - (b^2 - 4ac) is < 0 if( insideSqr < -1.0e-6f ) { return false; } else { const float sqr = (float)FastSqrt(insideSqr); const float denom = 1.0 / (2.0f * a); const float t0 = (-b - sqr) * denom; const float t1 = (-b + sqr) * denom; // One solution - (b^2 - 4ac) is = 0 if( insideSqr < 1.0e-6f ) { // a = 0 if the line direction is the zero vector, in which case, // the line starts inside the circle but will never exit. We fudge // it for this case and say it intersects at the origin of the line. // Otherwise, the result is the smallest positive result *fIntersection1 = *fIntersection2 = ( a == 0.0f ) ? 0.0f : ( t0 < 0 ? t1 : t0 ); Assert( !IS_NAN(*fIntersection1) ); // Started inside of the sphere (the only way we get one solution, unless // the ray direction is the zero vector) return c < 0; } // Two solutions - (b^2 - 4ac) is > 0 else { *fIntersection1 = t0; *fIntersection2 = t1; } return true; } } bool IntersectRayWithAACylinder( const Ray_t &ray, const Vector ¢er, float radius, float height, CBaseTrace *pTrace ) { Assert( ray.m_IsRay ); Collision_ClearTrace( ray.m_Start, ray.m_Delta, pTrace ); // First intersect the ray with the top + bottom planes float halfHeight = height * 0.5; // Handle parallel case Vector vStart = ray.m_Start - center; Vector vEnd = vStart + ray.m_Delta; float flEnterFrac, flLeaveFrac; if (FloatMakePositive(ray.m_Delta.z) < 1e-8) { if ( (vStart.z < -halfHeight) || (vStart.z > halfHeight) ) { return false; // no hit } flEnterFrac = 0.0f; flLeaveFrac = 1.0f; } else { // Clip the ray to the top and bottom of box flEnterFrac = IntersectRayWithAAPlane( vStart, vEnd, 2, 1, halfHeight); flLeaveFrac = IntersectRayWithAAPlane( vStart, vEnd, 2, 1, -halfHeight); if ( flLeaveFrac < flEnterFrac ) { float temp = flLeaveFrac; flLeaveFrac = flEnterFrac; flEnterFrac = temp; } if ( flLeaveFrac < 0 || flEnterFrac > 1) { return false; } } // Intersect with circle float flCircleEnterFrac, flCircleLeaveFrac; if ( !LineCircleIntersection( vec3_origin.AsVector2D(), radius, vStart.AsVector2D(), ray.m_Delta.AsVector2D(), &flCircleEnterFrac, &flCircleLeaveFrac ) ) { return false; // no hit } Assert( flCircleEnterFrac <= flCircleLeaveFrac ); if ( flCircleLeaveFrac < 0 || flCircleEnterFrac > 1) { return false; } if ( flEnterFrac < flCircleEnterFrac ) flEnterFrac = flCircleEnterFrac; if ( flLeaveFrac > flCircleLeaveFrac ) flLeaveFrac = flCircleLeaveFrac; if ( flLeaveFrac < flEnterFrac ) return false; VectorMA( ray.m_Start, flEnterFrac , ray.m_Delta, pTrace->endpos ); pTrace->fraction = flEnterFrac; pTrace->contents = CONTENTS_SOLID; // Calculate the point on our center line where we're nearest the intersection point Vector collisionCenter; CalcClosestPointOnLineSegment( pTrace->endpos, center + Vector( 0, 0, halfHeight ), center - Vector( 0, 0, halfHeight ), collisionCenter ); // Our normal is the direction from that center point to the intersection point pTrace->plane.normal = pTrace->endpos - collisionCenter; VectorNormalize( pTrace->plane.normal ); return true; } #endif // !_STATIC_LINKED || _SHARED_LIB