//====== Copyright 1996-2005, Valve Corporation, All rights reserved. ======= // // Purpose: // //============================================================================= #if defined( WIN32) && !defined( _X360 ) #include "winlite.h" #endif #include "tier0/platform.h" #include "mpafile.h" // NOTE: This has to be the last file included! #include "tier0/memdbgon.h" // static variables const char *CMPAHeader::m_szLayers[] = { "Layer I", "Layer II", "Layer III" }; const char *CMPAHeader::m_szMPEGVersions[] = {"MPEG 2.5", "", "MPEG 2", "MPEG 1" }; const char *CMPAHeader::m_szChannelModes[] = { "Stereo", "Joint Stereo", "Dual Channel", "Single Channel" }; const char *CMPAHeader::m_szEmphasis[] = { "None", "50/15ms", "", "CCIT J.17" }; // tolerance range, look at expected offset +/- m_dwTolerance for subsequent frames const uint32 CMPAHeader::m_dwTolerance = 3; // 3 bytes // max. range where to look for frame sync const uint32 CMPAHeader::m_dwMaxRange = ( 256 * 1024 ); // sampling rates in hertz: 1. index = MPEG Version ID, 2. index = sampling rate index const uint32 CMPAHeader::m_dwSamplingRates[4][3] = { {11025, 12000, 8000, }, // MPEG 2.5 {0, 0, 0, }, // reserved {22050, 24000, 16000, }, // MPEG 2 {44100, 48000, 32000 } // MPEG 1 }; // padding sizes in bytes for different layers: 1. index = layer const uint32 CMPAHeader::m_dwPaddingSizes[3] = { 4, // Layer1 1, // Layer2 1 // Layer3 }; // bitrates: 1. index = LSF, 2. index = Layer, 3. index = bitrate index const uint32 CMPAHeader::m_dwBitrates[2][3][15] = { { // MPEG 1 {0,32,64,96,128,160,192,224,256,288,320,352,384,416,448,}, // Layer1 {0,32,48,56, 64, 80, 96,112,128,160,192,224,256,320,384,}, // Layer2 {0,32,40,48, 56, 64, 80, 96,112,128,160,192,224,256,320,} // Layer3 }, { // MPEG 2, 2.5 {0,32,48,56,64,80,96,112,128,144,160,176,192,224,256,}, // Layer1 {0,8,16,24,32,40,48,56,64,80,96,112,128,144,160,}, // Layer2 {0,8,16,24,32,40,48,56,64,80,96,112,128,144,160,} // Layer3 } }; // Samples per Frame: 1. index = LSF, 2. index = Layer const uint32 CMPAHeader::m_dwSamplesPerFrames[2][3] = { { // MPEG 1 384, // Layer1 1152, // Layer2 1152 // Layer3 }, { // MPEG 2, 2.5 384, // Layer1 1152, // Layer2 576 // Layer3 } }; // Samples per Frame / 8 const uint32 CMPAHeader::m_dwCoefficients[2][3] = { { // MPEG 1 48, // Layer1 144, // Layer2 144 // Layer3 }, { // MPEG 2, 2.5 48, // Layer1 144, // Layer2 72 // Layer3 } }; // needed later for CRC check // sideinformation size: 1.index = lsf, 2. index = layer, 3. index = mono const uint32 CMPAHeader::m_dwSideinfoSizes[2][3][2] = { { // MPEG 1 (not mono, mono {0,0}, // Layer1 {0,0}, // Layer2 {9,17} // Layer3 }, { // MPEG 2, 2.5 {0,0}, // Layer1 {0,0}, // Layer2 {17,32} // Layer3 } }; // constructor (throws exception if no frame found) CMPAHeader::CMPAHeader( CMPAFile* pMPAFile, uint32 dwExpectedOffset, bool bSubsequentFrame, bool bReverse ) : m_pMPAFile( pMPAFile ), m_dwSyncOffset( dwExpectedOffset ), m_dwRealFrameSize( 0 ) { // first check at expected offset (extended for not subsequent frames) HeaderError error = IsSync( m_dwSyncOffset, !bSubsequentFrame ); int nStep=1; int nSyncOffset; while( error != noError ) { // either look in tolerance range if( bSubsequentFrame ) { if( nStep > m_dwTolerance ) { // out of tolerance range throw CMPAException( CMPAException::NoFrameInTolerance, pMPAFile->GetFilename() ); } // look around dwExpectedOffset with increasing steps (+1,-1,+2,-2,...) if( m_dwSyncOffset <= dwExpectedOffset ) { nSyncOffset = dwExpectedOffset + nStep; } else { nSyncOffset = dwExpectedOffset - nStep++; } } // just go forward/backward to find sync else { nSyncOffset = ((int)m_dwSyncOffset) + (bReverse?-1:+1); } // is new offset within valid range? if( nSyncOffset < 0 || nSyncOffset > (int)((pMPAFile->m_dwEnd - pMPAFile->m_dwBegin) - MPA_HEADER_SIZE) || abs( (long)(nSyncOffset-dwExpectedOffset) ) > m_dwMaxRange ) { // out of tolerance range throw CMPAException( CMPAException::NoFrame, pMPAFile->GetFilename() ); } m_dwSyncOffset = nSyncOffset; // found sync? error = IsSync( m_dwSyncOffset, !bSubsequentFrame ); } } // destructor CMPAHeader::~CMPAHeader() { } // skips first 32kbit/s or lower bitrate frames to estimate bitrate (returns true if bitrate is variable) bool CMPAHeader::SkipEmptyFrames() { if( m_dwBitrate > 32 ) return false; uint32 dwHeader; try { while( m_dwBitrate <= 32 ) { m_dwSyncOffset += m_dwComputedFrameSize + MPA_HEADER_SIZE; dwHeader = m_pMPAFile->ExtractBytes( m_dwSyncOffset, MPA_HEADER_SIZE, false ); if( IsSync( dwHeader, false ) != noError ) return false; } } catch(CMPAException& /*Exc*/) // just catch the exception and return false { return false; } return true; } // in dwHeader stands 32bit header in big-endian format: frame sync at the end! // because shifts do only work for integral types!!! CMPAHeader::HeaderError CMPAHeader::DecodeHeader( uint32 dwHeader, bool bSimpleDecode ) { // Check SYNC bits (last eleven bits set) if( (dwHeader >> 24 != 0xff) || ((((dwHeader >> 16))&0xe0) != 0xe0) ) return noSync; // get MPEG version m_Version = (MPAVersion)((dwHeader >> 19) & 0x03); // mask only the rightmost 2 bits if( m_Version == MPEGReserved ) return headerCorrupt; if( m_Version == MPEG1 ) m_bLSF = false; else m_bLSF = true; // get layer (0 = layer1, 2 = layer2, ...) m_Layer = (MPALayer)(3 - ((dwHeader >> 17) & 0x03)); if( m_Layer == LayerReserved ) return headerCorrupt; // protection bit (inverted) m_bCRC = !((dwHeader >> 16) & 0x01); // bitrate BYTE bIndex = (BYTE)((dwHeader >> 12) & 0x0F); if( bIndex == 0x0F ) // all bits set is reserved return headerCorrupt; m_dwBitrate = m_dwBitrates[m_bLSF][m_Layer][bIndex] * 1000; // convert from kbit to bit if( m_dwBitrate == 0 ) // means free bitrate (is unsupported yet) return freeBitrate; // sampling rate bIndex = (BYTE)((dwHeader >> 10) & 0x03); if( bIndex == 0x03 ) // all bits set is reserved return headerCorrupt; m_dwSamplesPerSec = m_dwSamplingRates[m_Version][bIndex]; // padding bit m_dwPaddingSize = m_dwPaddingSizes[m_Layer] * ((dwHeader >> 9) & 0x01); // calculate frame size m_dwComputedFrameSize = (m_dwCoefficients[m_bLSF][m_Layer] * m_dwBitrate / m_dwSamplesPerSec) + m_dwPaddingSize; m_dwSamplesPerFrame = m_dwSamplesPerFrames[m_bLSF][m_Layer]; if( !bSimpleDecode ) { // private bit m_bPrivate = (dwHeader >> 8) & 0x01; // channel mode m_ChannelMode = (ChannelMode)((dwHeader >> 6) & 0x03); // mode extension (currently not used) m_ModeExt = (BYTE)((dwHeader >> 4) & 0x03); // copyright bit m_bCopyright = (dwHeader >> 3) & 0x01; // original bit m_bCopyright = (dwHeader >> 2) & 0x01; // emphasis m_Emphasis = (Emphasis)(dwHeader & 0x03); if( m_Emphasis == EmphReserved ) return headerCorrupt; } return noError; } CMPAHeader::HeaderError CMPAHeader::IsSync( uint32 dwOffset, bool bExtended ) { HeaderError error = noSync; uint32 dwHeader = m_pMPAFile->ExtractBytes( dwOffset, MPA_HEADER_SIZE, false ); // sync bytes found? if( (dwHeader & 0xFFE00000) == 0xFFE00000 ) { error = DecodeHeader( dwHeader ); if( error == noError ) { // enough buffer to do extended check? if( bExtended ) { // recursive call (offset for next frame header) uint32 dwOffset = m_dwSyncOffset+m_dwComputedFrameSize; try { CMPAHeader m_SubsequentFrame( m_pMPAFile, dwOffset, true ); m_dwRealFrameSize = m_SubsequentFrame.m_dwSyncOffset - m_dwSyncOffset; } catch( CMPAException& Exc ) { // could not find any subsequent frame, assume it is the last frame if( Exc.GetErrorID() == CMPAException::NoFrame ) { if( dwOffset + m_pMPAFile->m_dwBegin > m_pMPAFile->m_dwEnd ) m_dwRealFrameSize = m_pMPAFile->m_dwEnd - m_pMPAFile->m_dwBegin - m_dwSyncOffset; else m_dwRealFrameSize = m_dwComputedFrameSize; error = noError; } else error = noSync; } } } } return error; } // CRC-16 lookup table const uint16 CMPAHeader::wCRC16Table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 };