//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // //=============================================================================// #ifndef INTERPOLATEDVAR_H #define INTERPOLATEDVAR_H #ifdef _WIN32 #pragma once #endif #include "tier1/utllinkedlist.h" #include "tier1/rangecheckedvar.h" #include "tier1/lerp_functions.h" #include "tier1/convar.h" #include "tier0/memdbgon.h" #define COMPARE_HISTORY(a,b) \ ( memcmp( m_VarHistory[a].GetValue(), m_VarHistory[b].GetValue(), sizeof(Type)*GetMaxCount() ) == 0 ) // Define this to have it measure whether or not the interpolated entity list // is accurate. //#define INTERPOLATEDVAR_PARANOID_MEASUREMENT #define LATCH_ANIMATION_VAR (1<<0) // use AnimTime as sample basis #define LATCH_SIMULATION_VAR (1<<1) // use SimulationTime as sample basis #define EXCLUDE_AUTO_LATCH (1<<2) #define EXCLUDE_AUTO_INTERPOLATE (1<<3) #define INTERPOLATE_LINEAR_ONLY (1<<4) // don't do hermite interpolation #define INTERPOLATE_OMIT_UPDATE_LAST_NETWORKED (1<<5) #define EXTRA_INTERPOLATION_HISTORY_STORED 0.05f // It stores this much extra interpolation history, // so you can always call Interpolate() this far // in the past from your last call and be able to // get an interpolated value. // this global keeps the last known server packet tick (to avoid calling engine->GetLastTimestamp() all the time) extern float g_flLastPacketTimestamp; // when we renormalize hermite spline samples (on the time axis), determines whether we hold the previous sample at a fixed up time or lerp the sample as well as // fix up the time (to get two even time intervals) extern bool g_bHermiteFix; inline void Interpolation_SetLastPacketTimeStamp( float timestamp ) { Assert( timestamp > 0 ); g_flLastPacketTimestamp = timestamp; } // Before calling Interpolate(), you can use this use this to setup the context if // you want to enable extrapolation. class CInterpolationContext { public: CInterpolationContext() { m_bOldAllowExtrapolation = s_bAllowExtrapolation; m_flOldLastTimeStamp = s_flLastTimeStamp; // By default, disable extrapolation unless they call EnableExtrapolation. s_bAllowExtrapolation = false; // this is the context stack m_pNext = s_pHead; s_pHead = this; } ~CInterpolationContext() { // restore values from prev stack element s_bAllowExtrapolation = m_bOldAllowExtrapolation; s_flLastTimeStamp = m_flOldLastTimeStamp; Assert( s_pHead == this ); s_pHead = m_pNext; } static void EnableExtrapolation(bool state) { s_bAllowExtrapolation = state; } static bool IsThereAContext() { return s_pHead != NULL; } static bool IsExtrapolationAllowed() { return s_bAllowExtrapolation; } static void SetLastTimeStamp(float timestamp) { s_flLastTimeStamp = timestamp; } static float GetLastTimeStamp() { return s_flLastTimeStamp; } private: CInterpolationContext *m_pNext; bool m_bOldAllowExtrapolation; float m_flOldLastTimeStamp; static CInterpolationContext *s_pHead; static bool s_bAllowExtrapolation; static float s_flLastTimeStamp; }; extern ConVar cl_extrapolate_amount; template< class T > inline T ExtrapolateInterpolatedVarType( const T &oldVal, const T &newVal, float divisor, float flExtrapolationAmount ) { return newVal; } inline Vector ExtrapolateInterpolatedVarType( const Vector &oldVal, const Vector &newVal, float divisor, float flExtrapolationAmount ) { return Lerp( 1.0f + flExtrapolationAmount * divisor, oldVal, newVal ); } inline float ExtrapolateInterpolatedVarType( const float &oldVal, const float &newVal, float divisor, float flExtrapolationAmount ) { return Lerp( 1.0f + flExtrapolationAmount * divisor, oldVal, newVal ); } inline QAngle ExtrapolateInterpolatedVarType( const QAngle &oldVal, const QAngle &newVal, float divisor, float flExtrapolationAmount ) { return Lerp( 1.0f + flExtrapolationAmount * divisor, oldVal, newVal ); } // -------------------------------------------------------------------------------------------------------------- // // IInterpolatedVar interface. // -------------------------------------------------------------------------------------------------------------- // abstract_class IInterpolatedVar { public: virtual ~IInterpolatedVar() {} virtual void Setup( void *pValue, int type ) = 0; virtual void SetInterpolationAmount( float seconds ) = 0; // Returns true if the new value is different from the prior most recent value. virtual void NoteLastNetworkedValue() = 0; virtual bool NoteChanged( float flCurrentTime, float flChangeTime, bool bUpdateLastNetworkedValue ) = 0; virtual void Reset( float flCurrentTime ) = 0; // Returns 1 if the value will always be the same if currentTime is always increasing. virtual int Interpolate( float currentTime ) = 0; virtual int GetType() const = 0; virtual void RestoreToLastNetworked() = 0; virtual void Copy( IInterpolatedVar *pSrc ) = 0; virtual const char *GetDebugName() = 0; virtual void SetDebugName( const char* pName ) = 0; }; template< typename Type, bool IS_ARRAY > struct CInterpolatedVarEntryBase { CInterpolatedVarEntryBase() { value = NULL; count = 0; flChangeTime = 0; } ~CInterpolatedVarEntryBase() { delete[] value; value = NULL; } // This will transfer the data from another varentry. This is used to avoid allocation // pointers can be transferred (only one varentry has a copy), but not trivially copied void FastTransferFrom( CInterpolatedVarEntryBase &src ) { Assert(!value); value = src.value; count = src.count; flChangeTime = src.flChangeTime; src.value = 0; src.count = 0; } CInterpolatedVarEntryBase& operator=( const CInterpolatedVarEntryBase& src ) { delete[] value; value = NULL; count = 0; if ( src.value ) { count = src.count; value = new Type[count]; for ( int i = 0; i < count; i++ ) { value[i] = src.value[i]; } } return *this; } Type *GetValue() { return value; } const Type *GetValue() const { return value; } void Init(int maxCount) { if ( !maxCount ) { DeleteEntry(); } else { // resize if ( maxCount != count ) { DeleteEntry(); } if ( !value ) { count = maxCount; value = new Type[maxCount]; } } Assert(count==maxCount); } Type *NewEntry( const Type *pValue, int maxCount, float time ) { flChangeTime = time; Init(maxCount); if ( value && maxCount) { memcpy( value, pValue, maxCount*sizeof(Type) ); } return value; } void DeleteEntry() { delete[] value; value = NULL; count = 0; } float flChangeTime; int count; Type * value; private: CInterpolatedVarEntryBase( const CInterpolatedVarEntryBase &src ); }; template struct CInterpolatedVarEntryBase { CInterpolatedVarEntryBase() {} ~CInterpolatedVarEntryBase() {} const Type *GetValue() const { return &value; } Type *GetValue() { return &value; } void Init(int maxCount) { Assert(maxCount==1); } Type *NewEntry( const Type *pValue, int maxCount, float time ) { Assert(maxCount==1); flChangeTime = time; memcpy( &value, pValue, maxCount*sizeof(Type) ); return &value; } void FastTransferFrom( CInterpolatedVarEntryBase &src ) { *this = src; } void DeleteEntry() {} float flChangeTime; Type value; }; template class CSimpleRingBuffer { public: CSimpleRingBuffer( int startSize = 4 ) { m_pElements = 0; m_maxElement = 0; m_firstElement = 0; m_count = 0; m_growSize = 16; EnsureCapacity(startSize); } ~CSimpleRingBuffer() { delete[] m_pElements; m_pElements = NULL; } inline int Count() const { return m_count; } int Head() const { return (m_count>0) ? 0 : InvalidIndex(); } bool IsIdxValid( int i ) const { return (i >= 0 && i < m_count) ? true : false; } bool IsValidIndex(int i) const { return IsIdxValid(i); } static int InvalidIndex() { return -1; } T& operator[]( int i ) { Assert( IsIdxValid(i) ); i += m_firstElement; i = WrapRange(i); return m_pElements[i]; } const T& operator[]( int i ) const { Assert( IsIdxValid(i) ); i += m_firstElement; i = WrapRange(i); return m_pElements[i]; } void EnsureCapacity( int capSize ) { if ( capSize > m_maxElement ) { int newMax = m_maxElement + ((capSize+m_growSize-1)/m_growSize) * m_growSize; T *pNew = new T[newMax]; for ( int i = 0; i < m_maxElement; i++ ) { // ------------ // If you wanted to make this a more generic container you'd probably want this code // instead - since FastTransferFrom() is an optimization dependent on types stored // here defining this operation. //pNew[i] = m_pElements[WrapRange(i+m_firstElement)]; pNew[i].FastTransferFrom( m_pElements[WrapRange(i+m_firstElement)] ); // ------------ } m_firstElement = 0; m_maxElement = newMax; delete[] m_pElements; m_pElements = pNew; } } int AddToHead() { EnsureCapacity( m_count + 1 ); int i = m_firstElement + m_maxElement - 1; m_count++; i = WrapRange(i); m_firstElement = i; return 0; } int AddToHead( const T &elem ) { AddToHead(); m_pElements[m_firstElement] = elem; return 0; } int AddToTail() { EnsureCapacity( m_count + 1 ); m_count++; return WrapRange(m_firstElement+m_count-1); } void RemoveAll() { m_count = 0; m_firstElement = 0; } void RemoveAtHead() { if ( m_count > 0 ) { m_firstElement = WrapRange(m_firstElement+1); m_count--; } } void Truncate( int newLength ) { if ( newLength < m_count ) { Assert(newLength>=0); m_count = newLength; } } private: inline int WrapRange( int i ) const { return ( i >= m_maxElement ) ? (i - m_maxElement) : i; } T *m_pElements; unsigned short m_maxElement; unsigned short m_firstElement; unsigned short m_count; unsigned short m_growSize; }; // -------------------------------------------------------------------------------------------------------------- // // CInterpolatedVarArrayBase - the main implementation of IInterpolatedVar. // -------------------------------------------------------------------------------------------------------------- // template< typename Type, bool IS_ARRAY> class CInterpolatedVarArrayBase : public IInterpolatedVar { public: friend class CInterpolatedVarPrivate; CInterpolatedVarArrayBase( const char *pDebugName="no debug name" ); virtual ~CInterpolatedVarArrayBase(); // IInterpolatedVar overrides. public: virtual void Setup( void *pValue, int type ); virtual void SetInterpolationAmount( float seconds ); virtual void NoteLastNetworkedValue(); virtual bool NoteChanged( float flCurrentTime, float flChangeTime, bool bUpdateLastNetworkedValue ); virtual void Reset( float flCurrentTime ); virtual int Interpolate( float currentTime ); virtual int GetType() const; virtual void RestoreToLastNetworked(); virtual void Copy( IInterpolatedVar *pInSrc ); virtual const char *GetDebugName() { return m_pDebugName; } public: // Just like the IInterpolatedVar functions, but you can specify an interpolation amount. bool NoteChanged( float flCurrentTime, float flChangeTime, float interpolation_amount, bool bUpdateLastNetworkedValue ); int Interpolate( float currentTime, float interpolation_amount ); void DebugInterpolate( Type *pOut, float currentTime ); void GetDerivative( Type *pOut, float currentTime ); void GetDerivative_SmoothVelocity( Type *pOut, float currentTime, bool bAllowHermiteFix ); // See notes on ::Derivative_HermiteLinearVelocity for info. void ClearHistory(); void AddToHead( float changeTime, const Type* values, bool bFlushNewer ); const Type& GetPrev( int iArrayIndex=0 ) const; const Type& GetCurrent( int iArrayIndex=0 ) const; // Returns the time difference betweem the most recent sample and its previous sample. float GetInterval() const; bool IsValidIndex( int i ); Type *GetHistoryValue( int index, float& flChangeTime, int iArrayIndex=0 ); int GetHead() { return 0; } int GetNext( int i ) { int next = i + 1; if ( !m_VarHistory.IsValidIndex(next) ) return m_VarHistory.InvalidIndex(); return next; } void SetHistoryValuesForItem( int item, Type& value ); void SetLooping( bool looping, int iArrayIndex=0 ); void SetMaxCount( float flCurrentTime, int newmax ); int GetMaxCount() const; // Get the time of the oldest entry. float GetOldestEntry(); // set a debug name (if not provided by constructor) void SetDebugName(const char *pName ) { m_pDebugName = pName; } bool GetInterpolationInfo( float currentTime, int *pNewer, int *pOlder, int *pOldest ); protected: typedef CInterpolatedVarEntryBase CInterpolatedVarEntry; typedef CSimpleRingBuffer< CInterpolatedVarEntry > CVarHistory; friend class CInterpolationInfo; class CInterpolationInfo { public: bool m_bHermite; int oldest; // Only set if using hermite. int older; int newer; float frac; }; protected: void RemoveOldEntries( float oldesttime ); void RemoveEntriesPreviousTo( float flTime ); bool GetInterpolationInfo( CInterpolationInfo *pInfo, float currentTime, float interpolation_amount, int *pNoMoreChanges ); void TimeFixup_Hermite( CInterpolatedVarEntry &fixup, CInterpolatedVarEntry*& prev, CInterpolatedVarEntry*& start, CInterpolatedVarEntry*& end, bool bAllowHermiteFix ); // Force the time between prev and start to be dt (and extend prev out farther if necessary). void TimeFixup2_Hermite( CInterpolatedVarEntry &fixup, CInterpolatedVarEntry*& prev, CInterpolatedVarEntry*& start, float dt, bool bAllowHermiteFix ); void _Extrapolate( Type *pOut, CInterpolatedVarEntry *pOld, CInterpolatedVarEntry *pNew, float flDestinationTime, float flMaxExtrapolationAmount ); void _Interpolate( Type *out, float frac, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end ); void _Interpolate_Hermite( Type *out, float frac, CInterpolatedVarEntry *pOriginalPrev, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end, bool looping = false ); void _Derivative_Hermite( Type *out, float frac, CInterpolatedVarEntry *pOriginalPrev, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end ); void _Derivative_Hermite_SmoothVelocity( Type *out, float frac, CInterpolatedVarEntry *b, CInterpolatedVarEntry *c, CInterpolatedVarEntry *d, bool bAllowHermiteFix ); void _Derivative_Linear( Type *out, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end ); bool ValidOrder(); protected: // The underlying data element Type *m_pValue; CVarHistory m_VarHistory; // Store networked values so when we latch we can detect which values were changed via networking Type * m_LastNetworkedValue; float m_LastNetworkedTime; byte m_fType; byte m_nMaxCount; byte * m_bLooping; float m_InterpolationAmount; const char * m_pDebugName; }; template< typename Type, bool IS_ARRAY > inline CInterpolatedVarArrayBase::CInterpolatedVarArrayBase( const char *pDebugName ) { m_pDebugName = pDebugName; m_pValue = NULL; m_fType = LATCH_ANIMATION_VAR; m_InterpolationAmount = 0.0f; m_nMaxCount = 0; m_LastNetworkedTime = 0; m_LastNetworkedValue = NULL; m_bLooping = NULL; } template< typename Type, bool IS_ARRAY > inline CInterpolatedVarArrayBase::~CInterpolatedVarArrayBase() { ClearHistory(); delete [] m_bLooping; delete [] m_LastNetworkedValue; } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::Setup( void *pValue, int type ) { m_pValue = ( Type * )pValue; m_fType = type; } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::SetInterpolationAmount( float seconds ) { m_InterpolationAmount = seconds; } template< typename Type, bool IS_ARRAY > inline int CInterpolatedVarArrayBase::GetType() const { return m_fType; } template< typename Type, bool IS_ARRAY > void CInterpolatedVarArrayBase::NoteLastNetworkedValue() { memcpy( m_LastNetworkedValue, m_pValue, m_nMaxCount * sizeof( Type ) ); m_LastNetworkedTime = g_flLastPacketTimestamp; } template< typename Type, bool IS_ARRAY > inline bool CInterpolatedVarArrayBase::NoteChanged( float flCurrentTime, float flChangeTime, float interpolation_amount, bool bUpdateLastNetworkedValue ) { Assert( m_pValue ); // This is a big optimization where it can potentially avoid expensive interpolation // involving this variable if it didn't get an actual new value in here. bool bRet = true; if ( m_VarHistory.Count() ) { if ( memcmp( m_pValue, m_VarHistory[0].GetValue(), sizeof( Type ) * m_nMaxCount ) == 0 ) { bRet = false; } } AddToHead( flChangeTime, m_pValue, true ); if ( bUpdateLastNetworkedValue ) { NoteLastNetworkedValue(); } // Paul : I am re-instating a RemoveOldEntries() // call to delete very old entries which cause glitches entering PVS (JIRA 4524) // I have also changed RemoveOldEntries() to never keep entries older than 0.5s // even if that means there are no remaining history samples. // Since we don't clean out the old entries until Interpolate(), make sure that there // aren't any super old entries hanging around. RemoveOldEntries( flCurrentTime - interpolation_amount - 0.5f ); // JAY: It doesn't seem like the above code is correct. This is keeping more than two seconds of history // for variables that aren't being interpolated for some reason. For example, the player model isn't drawn // in first person, so the history is only truncated here and will accumulate ~40 entries instead of 2 or 3 // changing over to the method in Interpolate() means that we always have a 3-sample neighborhood around // any data we're going to need. Unless flCurrentTime is different when samples are added vs. when // they are interpolated I can't see this having any ill effects. RemoveEntriesPreviousTo( flCurrentTime - interpolation_amount - EXTRA_INTERPOLATION_HISTORY_STORED ); return bRet; } template< typename Type, bool IS_ARRAY > inline bool CInterpolatedVarArrayBase::NoteChanged( float flCurrentTime, float flChangeTime, bool bUpdateLastNetworkedValue ) { return NoteChanged( flCurrentTime, flChangeTime, m_InterpolationAmount, bUpdateLastNetworkedValue ); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::RestoreToLastNetworked() { Assert( m_pValue ); memcpy( m_pValue, m_LastNetworkedValue, m_nMaxCount * sizeof( Type ) ); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::ClearHistory() { for ( int i = 0; i < m_VarHistory.Count(); i++ ) { m_VarHistory[i].DeleteEntry(); } m_VarHistory.RemoveAll(); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::AddToHead( float changeTime, const Type* values, bool bFlushNewer ) { MEM_ALLOC_CREDIT_CLASS(); int newslot; if ( bFlushNewer ) { // Get rid of anything that has a timestamp after this sample. The server might have // corrected our clock and moved us back, so our current changeTime is less than a // changeTime we added samples during previously. while ( m_VarHistory.Count() ) { if ( (m_VarHistory[0].flChangeTime+0.0001f) > changeTime ) { m_VarHistory.RemoveAtHead(); } else { break; } } newslot = m_VarHistory.AddToHead(); } else { newslot = m_VarHistory.AddToHead(); for ( int i = 1; i < m_VarHistory.Count(); i++ ) { if ( m_VarHistory[i].flChangeTime <= changeTime ) break; m_VarHistory[newslot].FastTransferFrom( m_VarHistory[i] ); newslot = i; } } CInterpolatedVarEntry *e = &m_VarHistory[ newslot ]; e->NewEntry( values, m_nMaxCount, changeTime ); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::Reset( float flCurrentTime ) { ClearHistory(); if ( m_pValue ) { AddToHead( flCurrentTime, m_pValue, false ); AddToHead( flCurrentTime, m_pValue, false ); AddToHead( flCurrentTime, m_pValue, false ); memcpy( m_LastNetworkedValue, m_pValue, m_nMaxCount * sizeof( Type ) ); } } template< typename Type, bool IS_ARRAY > inline float CInterpolatedVarArrayBase::GetOldestEntry() { float lastVal = 0; if ( m_VarHistory.Count() ) { lastVal = m_VarHistory[m_VarHistory.Count()-1].flChangeTime; } return lastVal; } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::RemoveOldEntries( float oldesttime ) { int newCount = m_VarHistory.Count(); for ( int i = m_VarHistory.Count(); --i > -1; ) { if ( m_VarHistory[i].flChangeTime > oldesttime ) break; newCount = i; } m_VarHistory.Truncate(newCount); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::RemoveEntriesPreviousTo( float flTime ) { for ( int i = 0; i < m_VarHistory.Count(); i++ ) { if ( m_VarHistory[i].flChangeTime < flTime ) { // We need to preserve this sample (ie: the one right before this timestamp) // and the sample right before it (for hermite blending), and we can get rid // of everything else. m_VarHistory.Truncate( i + 3 ); break; } } } template< typename Type, bool IS_ARRAY > inline bool CInterpolatedVarArrayBase::GetInterpolationInfo( typename CInterpolatedVarArrayBase::CInterpolationInfo *pInfo, float currentTime, float interpolation_amount, int *pNoMoreChanges ) { Assert( m_pValue ); CVarHistory &varHistory = m_VarHistory; float targettime = currentTime - interpolation_amount; pInfo->m_bHermite = false; pInfo->frac = 0; pInfo->oldest = pInfo->older = pInfo->newer = varHistory.InvalidIndex(); for ( int i = 0; i < varHistory.Count(); i++ ) { pInfo->older = i; float older_change_time = m_VarHistory[ i ].flChangeTime; if ( older_change_time == 0.0f ) break; if ( targettime < older_change_time ) { pInfo->newer = pInfo->older; continue; } if ( pInfo->newer == varHistory.InvalidIndex() ) { // Have it linear interpolate between the newest 2 entries. pInfo->newer = pInfo->older; // Since the time given is PAST all of our entries, then as long // as time continues to increase, we'll be returning the same value. if ( pNoMoreChanges ) *pNoMoreChanges = 1; return true; } float newer_change_time = varHistory[ pInfo->newer ].flChangeTime; float dt = newer_change_time - older_change_time; if ( dt > 0.0001f ) { pInfo->frac = ( targettime - older_change_time ) / ( newer_change_time - older_change_time ); pInfo->frac = MIN( pInfo->frac, 2.0f ); int oldestindex = i+1; if ( !(m_fType & INTERPOLATE_LINEAR_ONLY) && varHistory.IsIdxValid(oldestindex) ) { pInfo->oldest = oldestindex; float oldest_change_time = varHistory[ oldestindex ].flChangeTime; float dt2 = older_change_time - oldest_change_time; if ( dt2 > 0.0001f ) { pInfo->m_bHermite = true; } } // If pInfo->newer is the most recent entry we have, and all 2 or 3 other // entries are identical, then we're always going to return the same value // if currentTime increases. if ( pNoMoreChanges && pInfo->newer == m_VarHistory.Head() ) { if ( COMPARE_HISTORY( pInfo->newer, pInfo->older ) ) { if ( !pInfo->m_bHermite || COMPARE_HISTORY( pInfo->newer, pInfo->oldest ) ) *pNoMoreChanges = 1; } } } return true; } // Didn't find any, return last entry??? if ( pInfo->newer != varHistory.InvalidIndex() ) { pInfo->older = pInfo->newer; return true; } // This is the single-element case pInfo->newer = pInfo->older; return (pInfo->older != varHistory.InvalidIndex()); } template< typename Type, bool IS_ARRAY > inline bool CInterpolatedVarArrayBase::GetInterpolationInfo( float currentTime, int *pNewer, int *pOlder, int *pOldest ) { CInterpolationInfo info; bool result = GetInterpolationInfo( &info, currentTime, m_InterpolationAmount, NULL ); if (pNewer) *pNewer = (int)info.newer; if (pOlder) *pOlder = (int)info.older; if (pOldest) *pOldest = (int)info.oldest; return result; } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::DebugInterpolate( Type *pOut, float currentTime ) { float interpolation_amount = m_InterpolationAmount; int noMoreChanges = 0; CInterpolationInfo info; GetInterpolationInfo( &info, currentTime, interpolation_amount, &noMoreChanges ); CVarHistory &history = m_VarHistory; if ( info.m_bHermite ) { // base cast, we have 3 valid sample point _Interpolate_Hermite( pOut, info.frac, &history[info.oldest], &history[info.older], &history[info.newer] ); } else if ( info.newer == info.older ) { // This means the server clock got way behind the client clock. Extrapolate the value here based on its // previous velocity (out to a certain amount). int realOlder = info.newer+1; if ( CInterpolationContext::IsExtrapolationAllowed() && IsValidIndex( realOlder ) && history[realOlder].flChangeTime != 0.0 && interpolation_amount > 0.000001f && CInterpolationContext::GetLastTimeStamp() <= m_LastNetworkedTime ) { // At this point, we know we're out of data and we have the ability to get a velocity to extrapolate with. // // However, we only want to extraploate if the server is choking. We don't want to extrapolate if // the object legimately stopped moving and the server stopped sending updates for it. // // The way we know that the server is choking is if we haven't heard ANYTHING from it for a while. // The server's update interval should be at least as often as our interpolation amount (otherwise, // we wouldn't have the ability to interpolate). // // So right here, if we see that we haven't gotten any server updates since the last interpolation // history update to this entity (and since we're in here, we know that we're out of interpolation data), // then we can assume that the server is choking and decide to extrapolate. // // The End // Use the velocity here (extrapolate up to 1/4 of a second). _Extrapolate( pOut, &history[realOlder], &history[info.newer], currentTime - interpolation_amount, cl_extrapolate_amount.GetFloat() ); } else { _Interpolate( pOut, info.frac, &history[info.older], &history[info.newer] ); } } else { _Interpolate( pOut, info.frac, &history[info.older], &history[info.newer] ); } } template< typename Type, bool IS_ARRAY > inline int CInterpolatedVarArrayBase::Interpolate( float currentTime, float interpolation_amount ) { int noMoreChanges = 0; CInterpolationInfo info; if (!GetInterpolationInfo( &info, currentTime, interpolation_amount, &noMoreChanges )) return noMoreChanges; CVarHistory &history = m_VarHistory; #ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT Type *backupValues = (Type*)_alloca( m_nMaxCount * sizeof(Type) ); memcpy( backupValues, m_pValue, sizeof( Type ) * m_nMaxCount ); #endif if ( info.m_bHermite ) { // base cast, we have 3 valid sample point _Interpolate_Hermite( m_pValue, info.frac, &history[info.oldest], &history[info.older], &history[info.newer] ); } else if ( info.newer == info.older ) { // This means the server clock got way behind the client clock. Extrapolate the value here based on its // previous velocity (out to a certain amount). int realOlder = info.newer+1; if ( CInterpolationContext::IsExtrapolationAllowed() && IsValidIndex( realOlder ) && history[realOlder].flChangeTime != 0.0 && interpolation_amount > 0.000001f && CInterpolationContext::GetLastTimeStamp() <= m_LastNetworkedTime ) { // At this point, we know we're out of data and we have the ability to get a velocity to extrapolate with. // // However, we only want to extraploate if the server is choking. We don't want to extrapolate if // the object legimately stopped moving and the server stopped sending updates for it. // // The way we know that the server is choking is if we haven't heard ANYTHING from it for a while. // The server's update interval should be at least as often as our interpolation amount (otherwise, // we wouldn't have the ability to interpolate). // // So right here, if we see that we haven't gotten any server updates since the last interpolation // history update to this entity (and since we're in here, we know that we're out of interpolation data), // then we can assume that the server is choking and decide to extrapolate. // // The End // Use the velocity here (extrapolate up to 1/4 of a second). _Extrapolate( m_pValue, &history[realOlder], &history[info.newer], currentTime - interpolation_amount, cl_extrapolate_amount.GetFloat() ); } else { _Interpolate( m_pValue, info.frac, &history[info.older], &history[info.newer] ); } } else { _Interpolate( m_pValue, info.frac, &history[info.older], &history[info.newer] ); } #ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT if ( memcmp( backupValues, m_pValue, sizeof( Type ) * m_nMaxCount ) != 0 ) { extern int g_nInterpolatedVarsChanged; extern bool g_bRestoreInterpolatedVarValues; ++g_nInterpolatedVarsChanged; // This undoes the work that we do in here so if someone is in the debugger, they // can find out which variable changed. if ( g_bRestoreInterpolatedVarValues ) { memcpy( m_pValue, backupValues, sizeof( Type ) * m_nMaxCount ); return noMoreChanges; } } #endif // Clear out all entries before the oldest since we should never access them again. // Usually, Interpolate() calls never go backwards in time, but C_BaseAnimating::BecomeRagdollOnClient for one // goes slightly back in time RemoveEntriesPreviousTo( currentTime - interpolation_amount - EXTRA_INTERPOLATION_HISTORY_STORED ); return noMoreChanges; } template< typename Type, bool IS_ARRAY > void CInterpolatedVarArrayBase::GetDerivative( Type *pOut, float currentTime ) { CInterpolationInfo info; if (!GetInterpolationInfo( &info, currentTime, m_InterpolationAmount, NULL )) return; if ( info.m_bHermite ) { _Derivative_Hermite( pOut, info.frac, &m_VarHistory[info.oldest], &m_VarHistory[info.older], &m_VarHistory[info.newer] ); } else { _Derivative_Linear( pOut, &m_VarHistory[info.older], &m_VarHistory[info.newer] ); } } template< typename Type, bool IS_ARRAY > void CInterpolatedVarArrayBase::GetDerivative_SmoothVelocity( Type *pOut, float currentTime, bool bAllowHermiteFix ) { CInterpolationInfo info; if (!GetInterpolationInfo( &info, currentTime, m_InterpolationAmount, NULL )) return; CVarHistory &history = m_VarHistory; bool bExtrapolate = false; int realOlder = 0; if ( info.m_bHermite ) { _Derivative_Hermite_SmoothVelocity( pOut, info.frac, &history[info.oldest], &history[info.older], &history[info.newer], bAllowHermiteFix ); return; } else if ( info.newer == info.older && CInterpolationContext::IsExtrapolationAllowed() ) { // This means the server clock got way behind the client clock. Extrapolate the value here based on its // previous velocity (out to a certain amount). realOlder = info.newer+1; if ( IsValidIndex( realOlder ) && history[realOlder].flChangeTime != 0.0 ) { // At this point, we know we're out of data and we have the ability to get a velocity to extrapolate with. // // However, we only want to extraploate if the server is choking. We don't want to extrapolate if // the object legimately stopped moving and the server stopped sending updates for it. // // The way we know that the server is choking is if we haven't heard ANYTHING from it for a while. // The server's update interval should be at least as often as our interpolation amount (otherwise, // we wouldn't have the ability to interpolate). // // So right here, if we see that we haven't gotten any server updates for a whole interpolation // interval, then we know the server is choking. // // The End if ( m_InterpolationAmount > 0.000001f && CInterpolationContext::GetLastTimeStamp() <= (currentTime - m_InterpolationAmount) ) { bExtrapolate = true; } } } if ( bExtrapolate ) { // Get the velocity from the last segment. _Derivative_Linear( pOut, &history[realOlder], &history[info.newer] ); // Now ramp it to zero after cl_extrapolate_amount.. float flDestTime = currentTime - m_InterpolationAmount; float diff = flDestTime - history[info.newer].flChangeTime; diff = clamp( diff, 0, cl_extrapolate_amount.GetFloat() * 2 ); if ( diff > cl_extrapolate_amount.GetFloat() ) { float scale = 1 - (diff - cl_extrapolate_amount.GetFloat()) / cl_extrapolate_amount.GetFloat(); for ( int i=0; i < m_nMaxCount; i++ ) { pOut[i] *= scale; } } } else { _Derivative_Linear( pOut, &history[info.older], &history[info.newer] ); } } template< typename Type, bool IS_ARRAY > inline int CInterpolatedVarArrayBase::Interpolate( float currentTime ) { return Interpolate( currentTime, m_InterpolationAmount ); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::Copy( IInterpolatedVar *pInSrc ) { CInterpolatedVarArrayBase *pSrc = dynamic_cast< CInterpolatedVarArrayBase* >( pInSrc ); if ( !pSrc || pSrc->m_nMaxCount != m_nMaxCount ) { Assert( false ); return; } Assert( (m_fType & ~EXCLUDE_AUTO_INTERPOLATE) == (pSrc->m_fType & ~EXCLUDE_AUTO_INTERPOLATE) ); Assert( m_pDebugName == pSrc->GetDebugName() ); for ( int i=0; i < m_nMaxCount; i++ ) { m_LastNetworkedValue[i] = pSrc->m_LastNetworkedValue[i]; m_bLooping[i] = pSrc->m_bLooping[i]; } m_LastNetworkedTime = pSrc->m_LastNetworkedTime; // Copy the entries. m_VarHistory.RemoveAll(); for ( int i = 0; i < pSrc->m_VarHistory.Count(); i++ ) { int newslot = m_VarHistory.AddToTail(); CInterpolatedVarEntry *dest = &m_VarHistory[newslot]; CInterpolatedVarEntry *src = &pSrc->m_VarHistory[i]; dest->NewEntry( src->GetValue(), m_nMaxCount, src->flChangeTime ); } } template< typename Type, bool IS_ARRAY > inline const Type& CInterpolatedVarArrayBase::GetPrev( int iArrayIndex ) const { Assert( m_pValue ); Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount ); if ( m_VarHistory.Count() > 1 ) { return m_VarHistory[1].GetValue()[iArrayIndex]; } return m_pValue[ iArrayIndex ]; } template< typename Type, bool IS_ARRAY > inline const Type& CInterpolatedVarArrayBase::GetCurrent( int iArrayIndex ) const { Assert( m_pValue ); Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount ); if ( m_VarHistory.Count() > 0 ) { return m_VarHistory[0].GetValue()[iArrayIndex]; } return m_pValue[ iArrayIndex ]; } template< typename Type, bool IS_ARRAY > inline float CInterpolatedVarArrayBase::GetInterval() const { if ( m_VarHistory.Count() > 1 ) { return m_VarHistory[0].flChangeTime - m_VarHistory[1].flChangeTime; } return 0.0f; } template< typename Type, bool IS_ARRAY > inline bool CInterpolatedVarArrayBase::IsValidIndex( int i ) { return m_VarHistory.IsValidIndex( i ); } template< typename Type, bool IS_ARRAY > inline Type *CInterpolatedVarArrayBase::GetHistoryValue( int index, float& flChangeTime, int iArrayIndex ) { Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount ); if ( m_VarHistory.IsIdxValid(index) ) { CInterpolatedVarEntry *entry = &m_VarHistory[ index ]; flChangeTime = entry->flChangeTime; return &entry->GetValue()[ iArrayIndex ]; } else { flChangeTime = 0.0f; return NULL; } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::SetHistoryValuesForItem( int item, Type& value ) { Assert( item >= 0 && item < m_nMaxCount ); for ( int i = 0; i < m_VarHistory.Count(); i++ ) { CInterpolatedVarEntry *entry = &m_VarHistory[ i ]; entry->GetValue()[ item ] = value; } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::SetLooping( bool looping, int iArrayIndex ) { Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount ); m_bLooping[ iArrayIndex ] = looping; } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::SetMaxCount( float flCurrentTime, int newmax ) { bool changed = ( newmax != m_nMaxCount ) ? true : false; // BUGBUG: Support 0 length properly? newmax = MAX(1,newmax); m_nMaxCount = newmax; // Wipe everything any time this changes!!! if ( changed ) { delete [] m_bLooping; delete [] m_LastNetworkedValue; m_bLooping = new byte[m_nMaxCount]; m_LastNetworkedValue = new Type[m_nMaxCount]; memset( m_bLooping, 0, sizeof(byte) * m_nMaxCount); memset( m_LastNetworkedValue, 0, sizeof(Type) * m_nMaxCount); Reset( flCurrentTime ); } } template< typename Type, bool IS_ARRAY > inline int CInterpolatedVarArrayBase::GetMaxCount() const { return m_nMaxCount; } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::_Interpolate( Type *out, float frac, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end ) { Assert( start ); Assert( end ); if ( start == end ) { // quick exit for ( int i = 0; i < m_nMaxCount; i++ ) { out[i] = end->GetValue()[i]; Lerp_Clamp( out[i] ); } return; } Assert( frac >= 0.0f && frac <= 1.0f ); // Note that QAngle has a specialization that will do quaternion interpolation here... for ( int i = 0; i < m_nMaxCount; i++ ) { if ( m_bLooping[ i ] ) { out[i] = LoopingLerp( frac, start->GetValue()[i], end->GetValue()[i] ); } else { out[i] = Lerp( frac, start->GetValue()[i], end->GetValue()[i] ); } Lerp_Clamp( out[i] ); } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::_Extrapolate( Type *pOut, CInterpolatedVarEntry *pOld, CInterpolatedVarEntry *pNew, float flDestinationTime, float flMaxExtrapolationAmount ) { if ( fabs( pOld->flChangeTime - pNew->flChangeTime ) < 0.001f || flDestinationTime <= pNew->flChangeTime ) { for ( int i=0; i < m_nMaxCount; i++ ) pOut[i] = pNew->GetValue()[i]; } else { float flExtrapolationAmount = MIN( flDestinationTime - pNew->flChangeTime, flMaxExtrapolationAmount ); float divisor = 1.0f / (pNew->flChangeTime - pOld->flChangeTime); for ( int i=0; i < m_nMaxCount; i++ ) { pOut[i] = ExtrapolateInterpolatedVarType( pOld->GetValue()[i], pNew->GetValue()[i], divisor, flExtrapolationAmount ); } } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::TimeFixup2_Hermite( typename CInterpolatedVarArrayBase::CInterpolatedVarEntry &fixup, typename CInterpolatedVarArrayBase::CInterpolatedVarEntry*& prev, typename CInterpolatedVarArrayBase::CInterpolatedVarEntry*& start, float dt1, bool bAllowHermiteFix ) { float dt2 = start->flChangeTime - prev->flChangeTime; // If times are not of the same interval renormalize the earlier sample to allow for uniform hermite spline interpolation if ( fabs( dt1 - dt2 ) > 0.0001f && dt2 > 0.0001f ) { // Renormalize float frac = dt1 / dt2; // Fixed interval into past fixup.flChangeTime = start->flChangeTime - dt1; for ( int i = 0; i < m_nMaxCount; i++ ) { if ( m_bLooping[i] ) { fixup.GetValue()[i] = (g_bHermiteFix && bAllowHermiteFix) ? prev->GetValue()[i] : LoopingLerp( 1-frac, prev->GetValue()[i], start->GetValue()[i] ); } else { fixup.GetValue()[i] = (g_bHermiteFix && bAllowHermiteFix) ? prev->GetValue()[i] : Lerp( 1-frac, prev->GetValue()[i], start->GetValue()[i] ); } } // Point previous sample at fixed version prev = &fixup; } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::TimeFixup_Hermite( typename CInterpolatedVarArrayBase::CInterpolatedVarEntry &fixup, typename CInterpolatedVarArrayBase::CInterpolatedVarEntry*& prev, typename CInterpolatedVarArrayBase::CInterpolatedVarEntry*& start, typename CInterpolatedVarArrayBase::CInterpolatedVarEntry*& end, bool bAllowHermiteFix ) { TimeFixup2_Hermite( fixup, prev, start, end->flChangeTime - start->flChangeTime, bAllowHermiteFix ); } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::_Interpolate_Hermite( Type *out, float frac, CInterpolatedVarEntry *prev, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end, bool looping ) { Assert( start ); Assert( end ); // Disable range checks because we can produce weird values here and it's not an error. // After interpolation, we will clamp the values. CDisableRangeChecks disableRangeChecks; CInterpolatedVarEntry fixup; fixup.Init(m_nMaxCount); TimeFixup_Hermite( fixup, prev, start, end, true ); for( int i = 0; i < m_nMaxCount; i++ ) { // Note that QAngle has a specialization that will do quaternion interpolation here... if ( m_bLooping[ i ] ) { out[ i ] = LoopingLerp_Hermite( out[ i ], frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i] ); } else { out[ i ] = Lerp_Hermite( out[ i ], frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i] ); } // Clamp the output from interpolation. There are edge cases where something like m_flCycle // can get set to a really high or low value when we set it to zero after a really small // time interval (the hermite blender will think it's got a really high velocity and // skyrocket it off into la-la land). Lerp_Clamp( out[i] ); } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::_Derivative_Hermite( Type *out, float frac, CInterpolatedVarEntry *prev, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end ) { Assert( start ); Assert( end ); // Disable range checks because we can produce weird values here and it's not an error. // After interpolation, we will clamp the values. CDisableRangeChecks disableRangeChecks; CInterpolatedVarEntry fixup; fixup.value = (Type*)_alloca( sizeof(Type) * m_nMaxCount ); TimeFixup_Hermite( fixup, prev, start, end, true ); float divisor = 1.0f / (end->flChangeTime - start->flChangeTime); for( int i = 0; i < m_nMaxCount; i++ ) { Assert( !m_bLooping[ i ] ); out[i] = Derivative_Hermite( frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i] ); out[i] *= divisor; } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::_Derivative_Hermite_SmoothVelocity( Type *out, float frac, CInterpolatedVarEntry *b, CInterpolatedVarEntry *c, CInterpolatedVarEntry *d, bool bAllowHermiteFix ) { CInterpolatedVarEntry fixup; fixup.Init(m_nMaxCount); TimeFixup_Hermite( fixup, b, c, d, bAllowHermiteFix ); for ( int i=0; i < m_nMaxCount; i++ ) { Type prevVel = (c->GetValue()[i] - b->GetValue()[i]) / (c->flChangeTime - b->flChangeTime); Type curVel = (d->GetValue()[i] - c->GetValue()[i]) / (d->flChangeTime - c->flChangeTime); out[i] = Lerp( frac, prevVel, curVel ); } } template< typename Type, bool IS_ARRAY > inline void CInterpolatedVarArrayBase::_Derivative_Linear( Type *out, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end ) { if ( start == end || fabs( start->flChangeTime - end->flChangeTime ) < 0.0001f ) { for( int i = 0; i < m_nMaxCount; i++ ) { out[ i ] = start->GetValue()[i] * 0; } } else { float divisor = 1.0f / (end->flChangeTime - start->flChangeTime); for( int i = 0; i < m_nMaxCount; i++ ) { out[ i ] = (end->GetValue()[i] - start->GetValue()[i]) * divisor; } } } template< typename Type, bool IS_ARRAY > inline bool CInterpolatedVarArrayBase::ValidOrder() { float newestchangetime = 0.0f; bool first = true; for ( int i = 0; i < m_VarHistory.Count(); i++ ) { CInterpolatedVarEntry *entry = &m_VarHistory[ i ]; if ( first ) { first = false; newestchangetime = entry->flChangeTime; continue; } // They should get older as wel walk backwards if ( entry->flChangeTime > newestchangetime ) { Assert( 0 ); return false; } newestchangetime = entry->flChangeTime; } return true; } template< typename Type, int COUNT > class CInterpolatedVarArray : public CInterpolatedVarArrayBase { public: CInterpolatedVarArray( const char *pDebugName = "no debug name" ) : CInterpolatedVarArrayBase< Type, true>( pDebugName ) { CInterpolatedVarArrayBase< Type, true >::SetMaxCount( 0.0f, COUNT ); } }; // -------------------------------------------------------------------------------------------------------------- // // CInterpolatedVar. // -------------------------------------------------------------------------------------------------------------- // template< typename Type > class CInterpolatedVar : public CInterpolatedVarArrayBase< Type, false > { public: CInterpolatedVar( const char *pDebugName = NULL ) : CInterpolatedVarArrayBase< Type, false >(pDebugName) { CInterpolatedVarArrayBase< Type, false >::SetMaxCount( 0.0f, 1 ); } }; #include "tier0/memdbgoff.h" #endif // INTERPOLATEDVAR_H